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Example HelpMate, Transition Research Corp.
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Example B21, Real World Interface
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Example Robart II, H.R. Everett
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Savannah, River Site Nuclear Surveillance Robot
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BibaBot, BlueBotics SA, Switzerland

Pan-Tilt Camera

Omnidirectional Camera

IMU
Inertial Measurement Unit

Sonar Sensors

Laser Range Scanner

Bumper

Emergency Stop Button

Wheel Encoders
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Classification of Sensors

l Proprioceptive sensors 
Ø measure values internally to the system (robot), 
Ø e.g. motor speed, wheel load, heading of the robot, battery stat us

l Exteroceptive sensors 
Ø information from the robots environment
Ø distances to objects, intensity of the ambient light, unique fea tures.

l Passive sensors 
Ø energy coming for the environment 

l Active sensors 
Ø emit their proper energy and measure the reaction 
Ø better performance, but some influence on envrionment 

4.1.1
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General Classification (1)

4.1.1
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General Classification (2)

4.1.1
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Characterizing Sensor Performance (1)

Measurement in real world environment is error prone
l Basic sensor response ratings
Ø Dynamic range

u ratio between lower and upper limits, usually in decibels (dB, p ower)
u e.g. power measurement from 1 Milliwatt to 20 Watts

u e.g. voltage measurement from 1 Millivolt to 20 Volt

u 20 instead of 10 because square of voltage is equal to power!!

Ø Range
u upper limit

4.1.2
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Characterizing Sensor Performance (2)

l Basic sensor response ratings (cont.)
Ø Resolution

u minimum difference between two values
u usually: lower limit of dynamic range = resolution
u for digital sensors it is usually the A/D resolution.

e.g.  5V / 255 (8 bit)

Ø Linearity
u variation of output signal as function of the input signal
u linearity is less important when signal is after treated with a computer

Ø Bandwidth or Frequency
u the speed with which a sensor can provide a stream of readings
u usually there is an upper limit depending on the sensor and the sampling rate
u Lower limit is also possible, e.g. acceleration sensor

4.1.2
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In Situ Sensor Performance (1)

Characteristics that are especially relevant for real world environments

l Sensitivity
Ø ratio of output change to input change
Ø however, in real world environment, the sensor has very often hi gh 

sensitivity to other environmental changes, e.g. illumination
l Cross-sensitivity
Ø sensitivity to environmental parameters that are orthogonal to the target 

parameters
l Error / Accuracy
Ø difference between the sensor’s output and the true value

m = measured value
v = true value

error

4.1.2
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In Situ Sensor Performance (2)

Characteristics that are especially relevant for real world environments

l Systematic error -> deterministic errors
Ø caused by factors that can (in theory) be modeled -> prediction
Ø e.g. calibration of a laser sensor or of the distortion cause by the optic of 

a camera
l Random error -> non-deterministic
Ø no prediction possible
Ø however, they can be described probabilistically 
Ø e.g. Hue instability of camera, black level noise of camera ..

l Precision
Ø reproducibility of sensor results

4.1.2
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Characterizing Error: The Challenges in Mobile Robotics

l Mobile Robot has to perceive, analyze and interpret the state of the 
surrounding

l Measurements in real world environment are dynamically changing 
and error prone. 

l Examples:
Ø changing illuminations
Ø specular reflections
Ø light or sound absorbing surfaces
Ø cross-sensitivity of robot sensor to robot pose and robot-environment 

dynamics
u rarely possible to model -> appear as random errors
u systematic errors and random errors might be well defined in con trolled 

environment. This is not the case for mobile robots !!

4.1.2
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Multi-Modal Error Distributions: The Challenges in …

l Behavior of sensors modeled by probability distribution (random 
errors)
Ø usually very little knowledge about the causes of random errors
Ø often probability distribution is assumed to be symmetric or even 

Gaussian
Ø however, it is important to realize how wrong this can be!
Ø Examples: 

u Sonar (ultrasonic) sensor might overestimate the distance in rea l environment and 
is therefore not symmetric

Thus the sonar sensor might be best modeled by two modes:
- mode for the case that the signal returns directly
- mode for the case that the signals returns after multi -path reflections.

u Stereo vision system might correlate to images incorrectly, thus causing results that 
make no sense at all 

4.1.2
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Wheel / Motor Encoders (1)

l measure position or speed of the wheels or steering
l wheel movements can be integrated to get an estimate of the robo ts position  -> 

odometry 
l optical encoders are proprioceptive sensors
Ø thus the position estimation in relation to a fixed reference fr ame is only 

valuable for short movements. 
l typical resolutions: 2000 increments per revolution. 
Ø for high resolution: interpolation 

4.1.3
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Wheel / Motor Encoders (2)

4.1.3

scanning 
reticle 
fields

scale 
slits

Notice what happen when the direction 
changes:
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Heading Sensors

l Heading sensors can be proprioceptive (gyroscope, inclinometer) or
exteroceptive (compass). 

l Used to determine the robots orientation and inclination. 
l Allow, together with an appropriate velocity information, to int egrate 

the movement to an position estimate. 
Ø This procedure is called dead reckoning (ship navigation) 

4.1.4
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Compass

l Since over 2000 B.C.
Ø when Chinese suspended a piece of naturally magnetite from a sil k thread and 

used it to guide a chariot over land. 
l Magnetic field on earth 
Ø absolute measure for orientation. 

l Large variety of solutions to measure the earth magnetic field
Ø mechanical magnetic compass
Ø direct measure of the magnetic field (Hall-effect, magnetoresistive sensors)

l Major drawback
Ø weakness of the earth field
Ø easily disturbed by magnetic objects or other sources
Ø not feasible for indoor environments

4.1.4
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Gyroscope

l Heading sensors, that keep the orientation to a fixed frame
Ø absolute measure for the heading of a mobile system. 

l Two categories, the mechanical and the optical gyroscopes
Ø Mechanical Gyroscopes

u Standard gyro
u Rated gyro

Ø Optical Gyroscopes
u Rated gyro

4.1.4
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Mechanical Gyroscopes

l Concept:  inertial properties of a fast spinning rotor
Ø gyroscopic precession

l Angular momentum associated with a spinning wheel keeps the axis of the gyroscope
inertially stable. 

l Reactive torque t (tracking stability) is proportional to the sp inning speed w, the 
precession speed W and the wheels inertia I.

l No torque can be transmitted from the outer pivot to the wheel a xis
Ø spinning axis will therefore be space-stable

l Quality: 0.1° in 6 hours

l If the spinning axis is aligned with the 
north-south meridian, the earth’s rotation 
has no effect on the gyro’s horizontal axis

l If it points east-west, the horizontal axis 
reads the earth rotation

Ω= ωτ I

4.1.4
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Rate gyros

l Same basic arrangement shown as regular mechanical gyros

l But: gimble(s) are restrained by a torsional spring
Ø enables to measure angular speeds instead of the orientation.

l Others, more simple gyroscopes, use Coriolis forces to measure 
changes in heading. 

4.1.4
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Optical Gyroscopes

l First commercial use started only in the early 1980 when they wh ere 
first installed in airplanes.

l Optical gyroscopes
Ø angular speed (heading) sensors using two monochromic light (or laser) 

beams from the same source. 
l On is traveling in a fiber clockwise, the other counterclockwise around 

a cylinder
l Laser beam traveling in direction of rotation 
Ø slightly shorter path -> shows a higher frequency
Ø difference in frequency ∆f of the two beams is proportional to the 

angular velocity Ω of the cylinder
l New solid-state optical gyroscopes based on the same principle are 

build using microfabrication technology.

4.1.4
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Ground-Based Active and Passive Beacons

l Elegant way to solve the localization problem in mobile robotics
l Beacons are signaling guiding devices with a precisely known pos ition
l Beacon base navigation is used since the humans started to trave l
Ø Natural beacons (landmarks) like stars, mountains or the sun
Ø Artificial beacons like lighthouses 

l The recently introduced Global Positioning System (GPS) revoluti onized modern 
navigation technology
Ø Already one of the key sensors for outdoor mobile robotics
Ø For indoor robots GPS is not applicable, 

l Major drawback with the use of beacons in indoor:
Ø Beacons require changes in the environment 

-> costly. 
Ø Limit flexibility and adaptability to changing 

environments. 

4.1.5
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Global Positioning System (GPS) (1)

Ø Developed for military use
Ø Recently it became accessible for commercial applications
Ø 24 satellites (including three spares) orbiting the earth every 12 hours at a 

height of 20.190 km. 
Ø Four satellites are located in each of six planes inclined 55 degrees with respect 

to the plane of the earth’s equators
Ø Location of any GPS receiver is determined through a time of flight 

measurement 

l Technical challenges:
Ø Time synchronization between the individual satellites and the G PS receiver
Ø Real time update of the exact location of the satellites
Ø Precise measurement of the time of flight
Ø Interferences with other signals

4.1.5
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Global Positioning System (GPS) (2)

4.1.5
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Global Positioning System (GPS) (3)

l Time synchronization:
Ø atomic clocks on each satellite
Ø monitoring them from different ground stations. 

l Ultra-precision time synchronization is extremely important
Ø electromagnetic radiation propagates at light speed, 

l Roughly 0.3 m per nanosecond. 
Ø position accuracy proportional to precision of time measurement.

l Real time update of the exact location of the satellites:
Ø monitoring the satellites from a number of widely distributed ground stations
Ø master station analyses all the measurements and transmits the a ctual position to each of 

the satellites 
l Exact measurement of the time of flight
Ø the receiver correlates a pseudocode with the same code coming from the satellite
Ø The delay time for best correlation represents the time of fligh t.
Ø quartz clock on the GPS receivers are not very precise
Ø the range measurement with four satellite
Ø allows to identify the three values (x, y, z) for the position a nd the clock correction ?T

l Recent commercial GPS receiver devices allows position accuracie s down to a couple meters.

4.1.5
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Range Sensors (time of flight) (1)

l Large range distance measurement  -> called range sensors
l Range information:
Ø key element for localization and environment modeling

l Ultrasonic sensors as well as laser range sensors make use of 
propagation speed of sound or electromagnetic waves respectively . 
The traveled distance of a sound or electromagnetic wave is give n by 

d = c . t
l Where
Ø d = distance traveled (usually round-trip)
Ø c = speed of wave propagation
Ø t = time of flight.

4.1.6
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Range Sensors (time of flight) (2)

l It is important to point out 
Ø Propagation speed v of sound: 0.3 m/ms 
Ø Propagation speed v of of electromagnetic signals:  0.3 m/ns, 

u one million times faster. 

Ø 3 meters 
u is 10 ms ultrasonic system 
u only 10 ns for a laser range sensor
u time of flight t with electromagnetic signals is not an easy tas k
u laser range sensors expensive and delicate

l The quality of time of flight range sensors manly depends on:
Ø Uncertainties about the exact time of arrival of the reflected s ignal
Ø Inaccuracies in the time of fight measure (laser range sensors)
Ø Opening angle of transmitted beam (ultrasonic range sensors)
Ø Interaction with the target (surface, specular reflections)
Ø Variation of propagation speed
Ø Speed of mobile robot and target (if not at stand still)

4.1.6



Autonomous Mobile Robots, Chapter 4

© R. Siegwart, I. Nourbakhsh

Ultrasonic Sensor (time of flight, sound) (1)

l transmit a packet of (ultrasonic) pressure waves 
l distance d of the echoing object can be calculated based on the 

propagation speed of sound c and the time of flight t.

l The speed of sound c (340 m/s) in air is given by

where
: ration of specific heats

R: gas constant
T: temperature in degree Kelvin

TRc ..γ=

2
.tc

d =

γ

4.1.6
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Ultrasonic Sensor (time of flight, sound) (2)

Transmitted sound

Analog echo signal
Trashold

Digital echo signal

Integrated time
Output signal

integrator Time of flight (sensor output)

trashold

Wave packet

Signals of an ultrasonic sensor

4.1.6
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Ultrasonic Sensor (time of flight, sound) (3)

l typically a frequency: 40 - 180 kHz 
l generation of sound wave: piezo transducer
Ø transmitter and receiver separated or not separated

l sound beam propagates in a cone like manner 
Ø opening angles around 20 to 40 degrees
Ø regions of constant depth
Ø segments of an arc (sphere for 3D)

Typical intensity distribution of a ultrasonic sensor

-30°

-60°

0°

30°

60°

Amplitude [dB]

measurement cone

4.1.6
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Ultrasonic Sensor (time of flight, sound) (4)

l Other problems for ultrasonic sensors
Ø soft surfaces that absorb most of the 

sound energy
Ø surfaces that are fare from being 

perpendicular to the direction of 
the sound -> specular reflection

a) 360° scan b) results from different geometric primitives

4.1.6
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Laser Range Sensor (time of flight, electromagnetic) (1)

l Transmitted and received beams coaxial
l Transmitter illuminates a target with a collimated beam
l Received detects the time needed for round-trip
l A mechanical mechanism with a mirror sweeps 
Ø 2 or 3D measurement

Phase
Measurement

Target

D

L

Transmitter

Transmitted Beam
Reflected Beam

P

4.1.6
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Laser Range Sensor (time of flight, electromagnetic) (2)

Time of flight measurement
l Pulsed laser
Ø measurement of elapsed time directly
Ø resolving picoseconds 

l Beat frequency between a frequency modulated continuous wave and
its received reflection

l Phase shift measurement to produce range estimation
Ø technically easier than the above two methods.

4.1.6
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Laser Range Sensor (time of flight, electromagnetic) (3)

l Phase-Shift Measurement

Where
c: is the speed of light;  f the modulating frequency; D’ covered by the emitted light 
is

Ø for f = 5 Mhz (as in the A.T&T. sensor), λ = 60 meters

Phase
Measurement

Target

D

L

Transmitter

Transmitted Beam
Reflected Beam

P

λ
π

θ
2

2 +=+=′ LDLDλ = c/f

4.1.6



Autonomous Mobile Robots, Chapter 4

© R. Siegwart, I. Nourbakhsh

Laser Range Sensor (time of flight, electromagnetic) (4)

l Distance D, between the beam splitter and the target

l where 
Ø θ: phase difference between the transmitted 

l Theoretically ambiguous range estimates
Ø since for example if λ = 60 meters, a target at a range of 5 meters = target at 35 

meters

θ
π
λ
4

=D

Transmitted Beam
Reflected Beam

0 θ

λ

Phase [m]

Amplitude [V]

(2.33)
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Laser Range Sensor (time of flight, electromagnetic) (5)

l Confidence in the range (phase estimate) is inversely proportion al to the square of the 
received signal amplitude. 
Ø Hence dark, distant objects will not produce such good range est imated as 

closer brighter objects …

4.1.6
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Laser Range Sensor (time of flight, electromagnetic)

l Typical range image of a 2D laser range sensor with a rotating m irror. The length of 
the lines through the measurement points indicate the uncertaint ies.

4.1.6
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Triangulation Ranging

l geometrical properties of the image to establish a distance meas urement 
l e.g. project a well defined light pattern (e.g. point, line) onto the environment. 
Ø reflected light is than captured by a photo -sensitive line or matrix (camera) 

sensor device
Ø simple triangulation allows to establish a distance.

l e.g. size of an captured object is precisely known
Ø triangulation without light projecting

4.1.6
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Laser Triangulation (1D)

Principle of 1D laser triangulation .

Ø distance is proportional to the 1/x

Target

D

L

Laser / Collimated beam

Transmitted Beam
Reflected Beam

P

Position-Sensitive Device (PSD)
or Linear Camera

x
Lens

x
L

fD =

x
L

fD =

4.1.6
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Structured Light (vision, 2 or 3D)

l Eliminate the correspondence problem by projecting structured li ght on the scene. 
l Slits of light or emit collimated light (possibly laser) by mean s of a rotating mirror. 
l Light perceived by camera 
l Range to an illuminated point can then be determined from simple geometry. 

4.1.6

αtanDH ⋅=

b

u

a b
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Structured Light (vision, 2 or 3D)

l One dimensional schematic 
of the principle

l From the figure, simple 
geometry shows that:

Target

b

Laser / Collimated beam

Transmitted Beam
Reflected Beam

(x, z)

u

Lens

Camera

x

z

α

fcotα-u

f
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Structured Light (vision, 2 or 3D)

l Range resolution is defined as the triangulation gain Gp :

l Influence of α:

l Baseline length b: 
Ø the smaller b is the more compact the sensor can be. 
Ø the larger b is the better the range resolution is. 

Note: for large  b, the chance that an illuminated point is not visible to the receiver 
increases.

l Focal length f: 
Ø larger focal length f can provide 

u either a larger field of view 
u or an improved range resolution

Ø however, large focal length means a larger sensor head

4.1.6
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Doppler Effect Based (Radar or Sound)

a) between two moving objects                   b) between a moving and a stationary object                                     

if transmitter is moving if receiver is moving

Doppler frequency shift relative speed

• Sound waves: e.g. industrial process control, security, fish fin ding, measure of ground speed

• Electromagnetic waves: e.g. vibration measurement, radar systems , object tracking

4.1.7
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Vision-based Sensors: Hardware

l CCD (light-sensitive, discharging capacitors of 5 to 25 micron )

l CMOS (Complementary Metal Oxide Semiconductor technology )

2048 x 2048 CCD array

Cannon IXUS 300

Sony DFW-X700 

Orangemicro iBOT Firewire

4.1.8
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Vision in General

Vision is our most powerful sense. It provides us with an enormo us amount of information about 
our environment and enables us to interact intelligently with the environment, all without 
direct physical contact. It is therefore not surprising that an enormous amount of effort has 
occurred to give machines a sense of vision (almost since the be ginning of digital computer 
technology!)

Vision is also our most complicated sense. Whilst we can reconst ruct views with high resolution 
on photographic paper, the next step of understanding how the br ain processes the information 
from our eyes is still in its infancy.

When an image is recorded through a camera, a 3 dimensional scen e is projected onto a 2 
dimensional plane (the film or a light sensitive photo sensitive array). In order to try and 
recover some “useful information” from the scene, usually edge d etectors are used to find the 
contours of the objects. From these edges or edge fragments, much research time has to been 
spent attempting to produce fool proof algorithms which can provide all the necessary 
information required to reconstruct the 3 -D scene which produced the 2 -D image. Even in this 
simple situation, the edge fragments found are not perfect, and will require careful processing 
if they are to be integrated into a clean line drawing represent ing the edges of objects. The 
interpretation of 3-D scenes from 2-D images is not a trivial task. However, using stereo 
imaging or triangulation methods, vision can become a powerful t ool for environment 
capturing.
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Vision-based Sensors: Sensing

l Visual Range Sensors
Ø Depth from focus
Ø Stereo vision

l Motion and Optical Flow

l Color Tracking Sensors

4.1.8
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Depth from Focus (1)

4.1.8
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Depth from Focus (2)

l Measure of sub-image gradient:

4.1.8
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Depth from Focus (3)

l Point Spread Function h

4.1.8
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Stereo Vision

l Idealized camera geometry for stereo vision
Ø Disparity between two images -> Computing of depth
Ø From the figure it can be seen that

4.1.8
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Stereo Vision

1. Distance is inversely proportional to disparity
Ø closer objects can be measured more accurately 

2. Disparity is proportional to b. 
Ø For a given disparity error, the accuracy of the depth estimate 

increases with increasing baseline b.
Ø However, as b is increased, some objects may appear in one camera, 

but not in the other.
3. A point visible from both cameras produces a conjugate pair. 
Ø Conjugate pairs lie on epipolar line (parallel to the x-axis for the 

arrangement in the figure above)

4.1.8
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Stereo Vision – the general case

l The same point P is measured differently in the left camera imag e :

l where 
Ø R is a 3 x 3 rotation matrix
Ø r0 = offset translation matrix

l The above equations have two uses:
Ø We can find rr if we knew R and rl and r0. Note: 

For perfectly aligned cameras R=I (unity matrix)
Ø We can calibrate the system and find r11, r12 … 

given corresponding values of xl, yl, zl, xr, yr and zr.
l We have 12 unknowns and require 12 equations: 
Ø we require 4 conjugate points for a complete calibration.
Ø Note: Additionally there is a optical distortion of the image

4.1.8

left camera 
coordinate system

P

yl

xl

zl

yr

xr

zr

rl

rr

right camera 
coordinate system
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Stereo Vision

Calculation of Depth
Ø The key problem in stereo is now how do we solve the corresponde nce 

problem? 

Gray-Level Matching
Ø match gray-level wave forms on corresponding epipolar lines
Ø “brightness” =  image irradiance I(x,y)
Ø Zero Crossing of Laplacian of Gaussian is a widely used approach for 

identifying feature in the left and right image

4.1.8
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Zero Crossing of Laplacian of Gaussian

l Identification of features that are stable and match well

l Laplacian of intensity image

l Convolution with P:

l Step / Edge Detection
in Noisy Image
Ø filtering through

Gaussian smoothing

P=

4.1.8
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Stereo Vision Example

l Extracting depth information from a stereo image

Ø a1 and a2: left and right image

Ø b1 and b2: vertical edge filtered 
left and right image; 
filter = [1 2 4 -2 -10 -2 4 2 1]

Ø c: confidence image: 
bright = high confidence (good texture)

Ø d: depth image: 
bright = close; dark = far

4.1.8
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SVM Stereo Head Mounted on an All-terrain Robot

l Stereo Camera
Ø Vider Desing
Ø www.videredesign.com

l Robot
Ø Shrimp, EPFL

l Application of Stereo Vision
Ø Traversability calculation based on 

stereo images for outdoor navigation
Ø Motion tracking

4.1.8
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Optical Flow (1)

l E (x, y, t) = irradiance at time t at the image point (x, y). 
l u (x, y) and v (x, y) = optical flow vector at that point

Ø find a new image for a point where the irradiance will be the sa me at time t+ δ t

l If brightness varies smoothly with x, y and t we can expand the left hand side as a 
Taylor series to obtain:

l e = second and higher order terms in δx …

Ø With δ t -> 0

4.1.8
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Optical Flow (2)

l from which we can abbreviate:

optical flow constraint equation

Ø The derivatives Ex, Ey and Et are estimated from the image. 

l From this equation we can only get the direction of the velocity (u, v) and not unique 
values for u and v. 
Ø One therefore introduces additional constraint, smoothness of op tical flow (see 

lecture notes)

4.1.8
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Problems with Optical Flow

l Motion of the sphere or the light source here demonstrates that optical flow is not 
always the same as the motion field.

l Left: Discontinuities in Optical Flow
Ø silhouettes (one object occluding another)

u discontinuities in optical flow 

Ø find these points 
u stop  joining with smooth solution.

l Right: Motion of sphere, moving light sources

4.1.8
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Color Tracking Sensors

l Motion estimation of ball and robot for soccer playing using col or 
tracking

4.1.8
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Motion detector Skin color detector

Acquisition

Decimation by factor 5

Validation

Event creation

Narrative-level output

Motion presence

Average travelled
distance

Adaptation

Tracking

Distance scoring

Contour to target 
assignment

RGB to HSV convers.

Segmentation

Grayscale convers.

Image differencing Hue-saturat. Limiter

Skin color binary im.

Image closing

Segmentation

Continuous 
adaptation

Motion history im.

Motion initialization

Big contour presence

Skin color presence

4.1.8
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Adaptive Human-Motion Tracking
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Uncertainty Representation

l Sensing is always related to uncertainties. 
Ø What are the sources of uncertainties?
Ø How can uncertainty be represented or quantified?
Ø How do they propagate - uncertainty of a function of uncertain values?
Ø How do uncertainties combine if different sensor reading are fused?
Ø What is the merit of all this for mobile robotics?

l Some definitions:
Ø Sensitivity: G=out/in
Ø Resolution: Smallest change which can be detected
Ø Dynamic Range: valuemax/ resolution (104 -106)
Ø Accuracy: errormax= (measured value) - (true value)

l Errors are usually unknown: 
deterministic non deterministic (random)

4.2
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Uncertainty Representation (2)

l Statistical representation and independence of random variables on 
blackboard

4.2
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Gaussian Distribution

0.4

-1-2 1 2
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The Error Propagation Law: Motivation

l Imagine extracting a line based 
on point measurements with 
uncertainties.

l The model parameters  ρi (length of the 
perpendicular) and θi (its angle to the 
abscissa) describe a line uniquely.

l The question:
ØWhat is the uncertainty of the extracted line knowing the uncertainties of 

the measurement points that contribute to it ?

4.2.2

α
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The Error Propagation Law

l Error propagation in a multiple-input multi-output system with n
inputs and m outputs.

X1

Xi

Xn

System

…
…

Y1

Yi

Ym

…
…
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The Error Propagation Law

l One-dimensional case of a 
nonlinear error propagation 
problem

l It can be shown, that 
the output covariance
matrix CY is given by 
the error propagation law:

l where
Ø CX: covariance matrix representing the input uncertainties
Ø CY: covariance matrix representing the propagated uncertainties fo r the outputs.
Ø FX: is the Jacobian matrix defined as:

Ø which is the transposed of the gradient of f(X).

4.2.2
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Feature Extraction - Scene Interpretation

l A mobile robot must be able to determine its relationship to the
environment by sensing and interpreting the measured signals. 
Ø A wide variety of sensing technologies are available as we have seen in 

previous section. 
Ø However, the main difficulty lies in interpreting these data, that is, in 

deciding what the sensor signals tell us about the environment. 

Ø Choice of sensors (e.g. in-door, out-door, walls, free space …)
Ø Choice of the environment model

sensing
signal

treatment
feature

extraction

scene

pretation
inter-
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Feature

l Features are distinctive elements or geometric primitives of the environment. 

l They usually can be extracted from measurements and mathematical ly 
described. 
Ø low-level features (geometric primitives) like lines, circles 
Ø high-level features like edges, doors, tables or trash cans.

In mobile robotics features help for 
localization and map building.

4.3
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Environment Representation and Modeling → Features

l Environment Representation
Ø Continuos Metric → x,y,θ
Ø Discrete Metric → metric grid
Ø Discrete Topological → topological grid

l Environment Modeling
Ø Raw sensor data, e.g. laser range data, grayscale images

u large volume of data, low distinctiveness
u makes use of all acquired information

Ø Low level features, e.g. line other geometric features
u medium volume of data, average distinctiveness
u filters out the useful information, still ambiguities

Ø High level features, e.g. doors, a car, the Eiffel tower
u low volume of data, high distinctiveness
u filters out the useful information, few/no ambiguities, not enough information

4.3
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Environment Models: Examples

A: Feature base Model B: Occupancy Grid

4.3
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Feature extraction base on range images

l Geometric primitives like line segments, circles, corners, edges

l Most other geometric primitives the parametric description of the features 
becomes already to complex and no closed form solutions exist. 

l However, lines segments are very often sufficient to model the environment, 
especially for indoor applications. 

4.3.1
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Features Based on Range Data: Line Extraction (1)

l Least Square

l Weighted Least Square

4.3.1
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Features Based on Range Data: Line Extraction (2)

l 17 measurement
l error (σ) proportional to ρ2

l weighted least square:

4.3.1
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Propagation of uncertainty during line extraction

?  (output covariance matrix)

Jacobian:

4.3.1
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Segmentation for Line Extraction

4.3.1
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Angular Histogram (range)
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Extracting Other Geometric Features

4.3.1
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Feature extraction

l Recognition of features is, in general, a complex procedure requiring a 
variety of steps that successively transform the iconic data to recognition 
information. 

l Handling unconstrained environments is still very challenging problem.

Scheme and tools in computer vision

4.3.2



Autonomous Mobile Robots, Chapter 4

© R. Siegwart, I. Nourbakhsh

Visual Appearance-base Feature Extraction (Vision)

conditioning

labeling/grouping

extracting

matching model

environment

im
ag

e

simplified image

properties

groups of pixel

co
gn

iti
on

 / 
ac

tio
n

thresholding

connected
component

labeling

edge
detection

Hough
transfor-
mation

filtering

disparity

correlation

Image Processing Scheme
Computer Vision

Tools in Computer Vision
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Feature Extraction (Vision): Tools

l Conditioning
Ø Suppresses noise
Ø Background normalization by suppressing uninteresting systematic or patterned 

variations
Ø Done by:

u gray-scale modification (e.g. trasholding) 
u (low pass) filtering 

l Labeling
Ø Determination of the spatial arrangement of the events, i.e. searching for a 

structure
l Grouping
Ø Identification of the events by collecting together pixel participating in the same 

kind of event
l Extracting
Ø Compute a list of properties for each group

l Matching (see chapter 5)

4.3.2
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Filtering and Edge Detection

l Gaussian Smoothing 
Ø Removes high-frequency noise
Ø Convolution of intensity image I with G:

with:

l Edges
Ø Locations where the brightness undergoes a sharp change,
Ø Differentiate one or two times the image 
Ø Look for places where the magnitude of the derivative is large. 
Ø Noise, thus first filtering/smoothing required before edge detec tion

4.3.2
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Edge Detection

l Ultimate goal of edge detection 
Ø an idealized line drawing. 

l Edge contours in the image correspond to important scene contour s.

4.3.2
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Optimal Edge Detection: Canny

l The processing steps 
Ø Convolution of image with the Gaussian function G
Ø Finding maxima in the derivative

l Canny combines both in one operation

(a) A Gaussian function. (b) The first derivative of a Gaussian function.

4.3.2
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Optimal Edge Detection: Canny 1D example

(a) Intensity 1-D profile of an ideal step edge. 
(b) Intensity profile I(x) of a real edge. 
(c) Its derivative I’(x).
(d) The result of the convolution R(x) = G’ ⊗ I, where G’ is the first 

derivative of a Gaussian function.

4.3.2
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Optimal Edge Detection: Canny

l 1-D edge detector can be defined with the following steps:
1. Convolute the image I with G’ to obtain R.
2. Find the absolute value of R.
3. Mark those peaks |R| that are above some predefined threshold T. The 

threshold is chosen to eliminate spurious peaks due to noise.

l 2D → Two dimensional Gaussian function

4.3.2
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Optimal Edge Detection: Canny Example

a) Example of Canny edge detection
b) After nonmaxima suppression

4.3.2
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Gradient Edge Detectors

l Roberts

l Prewitt

l Sobel

4.3.2
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Example

a) Raw image

b) Filtered 
(Sobel)

c) Thresholding

d) Nonmaxima 
suppression

4.3.2
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Nonmaxima Suppression

l Output of an edge detector is usually a b/w 
image where the pixels with gradient magnitude 
above a predefined threshold are black and all 
the others are white

l Nonmaxima suppression generates contours 
described with only one pixel thinness

4.3.2
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Comparison of Edge Detection Methods

l Average time required to compute the edge figure of a 780 x 560 pixels image. 
l The times required to compute an edge image are proportional wit h the accuracy of 

the resulting edge images

4.3.2
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Dynamic Thresholding

l Changing illumination
Ø Constant threshold level in edge detection is not suitable

l Dynamically adapt the threshold level
Ø consider only the n pixels with the highest gradient magnitude for further 

calculation steps.

(a) Number of pixels with a specific gradient magnitude in the image of Figure 1.2(b). 
(b) Same as (a), but with logarithmic scale

4.3.2
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Hough Transform: Straight Edge Extraction

l All points p on a straight-line edge must satisfy yp = m1 xp + b1 .
l Each point (xp, yp) that is part of this line constraints the parameter m1

and b1. 
l The Hough transform finds the line (line-parameters m, b) that get most 

“votes” from the edge pixels in the image. 
l This is realized by four stepts

1. Create a 2D array A [m,b] with axes that tessellate the values of m and b.
2. Initialize the array A to zero.
3. For each edge pixel (xp, yp) in the image, loop over all values of m and b:

if yp = m1 xp + b1 then A[m,b]+=1
4. Search cells in A with largest value. They correspond to extracted straight-

line edge in the image.

4.3.2
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Grouping, Clustering: Assigning Features to Features

l Connected Component Labeling

pixels feature object
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Floor Plane Extraction

l Vision based identification of traversable 
l The processing steps
Ø As pre-processing, smooth If using a Gaussian smoothing operator
Ø Initialize a histogram array H with n intensity values:  

for 
Ø For every pixel (x,y) in If increment the histogram:

4.3.2
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Whole-Image Features

l OmniCam

4.3.2
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Image Histograms

l The processing steps
Ø As pre-processing, smooth      using a Gaussian smoothing operator
Ø Initialize       with n levels:
Ø For every pixel (x,y) in   increment the histogram:

4.3.2
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Image Fingerprint Extraction

l Highly distinctive combination of simple features 
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Example:

l Suppose:
Ø the segmentation problem has 

already been solved,
Ø regression equations for the 

model fit to the points have a 
closed-form solution – which is 
the case when fitting straight 
lines. 

Ø that the measurement 
uncertainties of the data points 
are known

Probabilistic Line Extraction from Noisy 1D Range Data

4.XX
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Line Extraction 

l Estimating a line in the least squares sense. The model parameters  (length of 
the perpendicular) and  (its angle to the abscissa) describe uniquely a line.

l n measurement points in polar coordinates  

l modeled as random variables 

l Each point is independently affected by Gaussian noise in both coordinates.

4.XX
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Line Extraction

l Task: find the line

l This model minimizes the orthogonal distances  di of a point          to 
the line

l Let S be the (unweighted) sum of squared errors.

4.XX
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Line Extraction

l The model parameters        are now found by solving the nonline ar equation system

l Suppose each point a known variance modelling the uncertainty in radial and 
angular. 
Ø variance is used to determine a weight     for each single point , e.g.

l Then, equation (2.53) becomes

4.XX
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Line Extraction

l It can be shown that the solution of (2.54) in the weighted least 
square sense is

l How the uncertainties of the measurements propagate through 
‘the system’ (eq. 2.57, 2.58)? 

4.XX
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Line Extractionà Error Propagation Law

l given the  2n x 2n input covariance matrix:

l and the system relationships (2.57) and (2.58). Then by calculat ing the Jacobian

l we can instantly form the error propagation equation () yielding the sought CAR

4.XX
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Feature Extraction: The Simplest Case – Linear Regression

{R}

Model for s traight lines :

Model for circles :

x xc+( )2 y yc+( )2 r2–+ 0=

x α( )cos y α( )sin r–+ 0=

xc yc,( ) r

r

α

Linear Regression

Yi = α + βXi + εi 

εi : in y direction ~N(0,σ2)

-> α, β such that Σεi
2 is minimal.

x

y
εi
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Feature Extraction: Nonlinear Linear Regression

ε
i

ε
i

x

y

x

y

xi xc+( )2 yi yc+( )2 r2–+ εi=

xi α( )cos yi α( )sin r–+ εi=

in order that is minimal:

α∂
∂ xi α( )cos yi α( )sin r–+( )

2

i

∑ 0=

r∂
∂

xi α( )cos yi α( )sin r–+( )
2

i

∑ 0=

A nonlinear 
equation 
s ystem
→ α, r

1) For s traight lines A measure of the estimate’s  uncertainty:
covariance matrix

Apply error propagation law

2) For circles

σαα ρi∂
∂α ρ( )

2
σi

2

i
∑≈

σrr ρi∂
∂r ρ( )

2
σi

2

i
∑≈

σαr COV A R,[ ]=

εi
2

i
∑

Pi = (ρi , θi)

Cαr
σαα σα r

σαr σ rr

=
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Feature Extraction / Sensory Interpretation

l A mobile robot must be able to determine its relationship to the environment 
by sensing and interpreting the measured signals. 

l A wide variety of sensing technologies are available as we have seen in 
previous section. 

l However, the main difficulty lies in interpreting these data, that is, in 
deciding what the sensor signals tell us about the environment. 
Ø Choice of sensors (e.g. in-door, out-door, walls, free space …)
Ø choice of the environment model

4.XX


