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Model building

e A real system S is studied for a certain aim or goal:
prediction/simulation
control
understanding/comprehension
design

diagnostics

e Two kinds of information are available:

— “a priori” info : previous knowledge, plausible assumptions, physical laws, ...

— “a posteriori” info  : experimental measurements
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e “a priori” information = theoretical structure of the mathematical model:

M (p), with p : unknown parameters

® “a posteriori” information = estimate of the parameters p

e Problem issues:
— “consistency” evaluation of “a priori” and “a posteriori” informations

— evaluation of estimation errors

e Typology of models:

— physical (or “white box”) model: reproduction of the inner structure of S

— black box model: reproduction of the input-output behaviour of S

— grey box model: suitable combination of physical and black box model
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Example #1: car suspension system
Assumption: the car chassis is rigid = a “quarter car” model is used

palw-2) Ve

~ 0,01

™o : overall mass of the body of car with passengers, engine, etc.

ko, 62 : spring and damper representing the suspension system
™1 : mass of the axis with the rigid part of the wheel

k1 : spring representing the tyre
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Example #1: car suspension system
Assumption: the car chassis is rigid = a “quarter car” model is used

~ 001

Goal: for low-frequency vertical movements, study the effects of the road profile p on:

d*w
dt?
: , - d’z
e the wheel vertical acceleration 2 = -5

e the body vertical acceleration w = (to optimize the passenger comfort)
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Example #1: car suspension system
Assumption: the car chassis is rigid = a “quarter car” model is used

Further assumptions: ~ Oet o °°°§:€§
1) nonlinear characteristic of 3, = nonlinear characteristic between
the body vs wheel relative speed W — Z and the damper force 35 (W — 2)

dw

(w = : body vertical speed; z = : wheel vertical speed)
dt
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Example #1: car suspension system
Assumption: the car chassis is rigid = a “quarter car” model is used

Further assumptions: ~ 0ot
2) nonlinear characteristic of £1 = nonlinear characteristic between
the wheel vs road relative position z — p and the elastic force k1 (2 — p)
(z : wheel vertical position; p : road vertical position or road profile)
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Example #1: car suspension system

Assumption: the car chassis is rigid = a “quarter car” model is used

4 P (w-2) )y

. o ' —

Further assumptions: ~ 001 o Y
3) vertical weight forces 1m1 g and mog due to gravitational field are constant =
they are neglected, to focus only on the variations induced by the road profile
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Example #1: car suspension system
Assumption: the car chassis is rigid = a “quarter car” model is used

@ @

~ 001

Using Newton’s laws of the vertical dynamics, a continuous-time model is derived:

{mlé’ = —[k;l(z—p)+k2(z—w)—|—52(73—w)]
mot = — k2 (w—2)+ By (W — 2)]
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the two second-order differential equations of the physical model are transformed

into four first-order differential equations:

/

\
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a system of first-order differential equations called state equations is then derived:

iz (t),u(t))

m1

where ¥ (t) : output variables of the system =

a system of static (or instantaneous) equations called output equations is derived:

[n®)] [ (),
0= ) | =re = | mE0
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e |n general, state and output equations are nonlinear (with respect to x and u)

o If k1, ko, B, are constant (i.e., the system works in linearity conditions), while
m1 and meso are time-varying = a linear time-variant (LTV) model is derived:

() = A z(t)+ B¢ ul)
y(t) = C@®)xz(t)+ D) ul(?)

where A (t), B (t), C' (t) and D (t) are suitable time-varying matrices:

0 1 0

__k1+ko B9 ko
ml(t) ml(t) B (t) —
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e If ky, ko, 85, m1, Mo are constant (e.g., for short distances) =
a linear time-invariant (LTI) model is derived:
Az (t) + Bu (1)
Czx (t) + Du(t)
where A, B, C and D are suitable constant matrices:

0 1 0 0
_ki4ks  _ Bo ko B

mi mi mi
0 0

2
1
ko Ba _ Ba
mo mo m -
Ba
m

ko Bo
mo mo

_kitke B Bo

m1 m1 m

2
2
2
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Example #2: car cooling system

Assumption: data are acquired = variables are know only at the sampling times =
discrete-time variables must be considered

'I; : air temperature inside the car

1T, : external environment temperature
T : cooling system temperature

T}, - temperature of the body of the car

Goal: study the effects on I; due to (small) time variations of 1, and 1.
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Example #2: car cooling system

Assumption: data are acquired = variables are know only at the sampling times =
discrete-time variables must be considered

Further (simplifying) assumptions:
1) all the temperatures are not too much different

2) the air temperature 7; is constant inside the car

3) the temperature gradients of 1, I, and I}, are neglected
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“%% Politecnico di Torino - DET M. Taragna

Example #2: car cooling system

Assumption: data are acquired = variables are know only at the sampling times =
discrete-time variables must be considered

Considering all the thermal exchanges, a discrete-time model s derived:
am; [T;((7 + 1) At) = T; (jAL)] =
= — {kic [T; (JAL) — T, (JAO)]™ + ki [T; (JAL) — T, (FAL)]}
comyp [Ty (7 + 1) At) =Ty, (JAL)] =
= —{kip [T, (JAL) — T; (JAL)] + ke [T, (JAL) — Te (jAL)]}
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Considering all the thermal exchanges, a discrete-time model s derived:
[ am [T; (5 +1) At) = T; (AL)] =
= —{kic [T (jAL) = T, (FAO)]™ + kip [T; (JAL) — Ty, (jAL)]}
comp [Ty (7 +1) At) =Ty, (JAL)] =
(= Ak [Ty ALY = T; (JAY)] + ke [Ty, (jAL) — Te (jAL)]}

At : sampling time

c; : thermal capacity of the air inside the car (almost constant at 20°)
m; : mass of the air inside the car

kic : thermal conductivity between the air inside the car and the cooling system

m € [1, 1.5] : parameter depending on the kind of cooling system and on how it is placed
kiv : thermal conductivity between the air inside the car and the body of the car
Cp : thermal capacity of the body of the car

myp : mass of the body of the car

kpe : thermal conductivity between the body of the car and the external environment
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A more general model is obtained by introducing the so-called state variables :
{ n(f) = TGAY [ 71 (3) ]
T (j) = Ty (jAL) T2 (7)

and the input variables

ful

two first-order difference equations are obtained:
(21 +1) = 21()) = o {kic [21(G) —wai (D)™ + kap [21(G) — 22(5)]} =
=Ci2”;gkibx1<j>+c’f;3 22(j) — 2= (21 (§) —u1 ()]"'= f1(2(5), u(j))
2(j +1) = 22(j) — 7= {hip [22(4) — o1 ()] 4 ke [22(3) — ua ()]} =
by () + SeRibRbe gy () + Sheuy () = f2 ((t) , u(t))

4
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a system of first-order difference equations called state equations is then derived:

r(j+1)=F(x(),u(i)) = ;j;gngg

About the variable of interest (air temperature 1), the output equation is:
y(4) =T (jAt) = 21 (j) = n(z (4),u(j))

where ¥ (7 ) : output variable of the system

Fundamentals of Dynamic System Identification 18
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e If m # 1, state equations are nonlinear (with respect to  and )

e If all the coefficients are constantand m = 1 =
a linear time-invariant (LTI) model is derived:

r(j+1) = Ax(j)+ Bu(y)
y(g) = Cx(j)+ Du(j)
where A, B, C and D are suitable constant matrices:

cim;—kip—K;c kb

Ci; 1, C;1TNn;

kb cymp—kip—kpe
CpMny

0
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Input-output representations

e At first, linear dynamics systems will be considered (much simpler case);
later, also nonlinear dynamic systems will be analyzed
e Some mathematical instruments are necessary:.

— the Laplace transform for continuous-time linear time-invariant systems

t(t) = Ax(t)+ Bu(t) Vi e R

y(t) = Cx(t)+ Du(t)

— the z-transform for discrete-time linear time-invariant systems

r(j+1) = Az(j)+ Bu(j)
y(j) = Cz(j)+Du(y)

e |nput-output representation can be directly derived from state variable models

V79 €N
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(Unilateral) Laplace transform

Laplace transform takes as argument a continuous-time real function f(¢) : R — R
and returns a complex valued function F'(s) : C — C defined as:

F(s) = L[f(t)] = / f(t) e *dt, s=oc+jweC
t=0_
Main properties:

e The Laplace transform L is invertible, with a unique inverse transform L1

e Both £ and £ ! are linear operators: £ [ f1(t) +aa fa(t)] =1 Fi(s)+aa Fa(s)
e The Laplace transforms of the time derivatives of f (%) are:

s [%(tt)] — sF(s)—f(t=0_)

Fundamentals of Dynamic System Identification 21
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e Laplace transforms can be applied to continuous-time LTI state representations,
transforming linear differential equations into linear algebraic equations:

[ Ll ()] = sX (s) — 2 (t=0_) = sX () — 2
L[Az (t)+ Bu(t)] = AX (s) + BU (s)

sX(s)—xg=AX(s)+ BU (s) =
sX (s) —AX (s) = (s — A) X (s) = x9 + BU (s)

\

if det (sI — A) £ 0, then (sI — A) is invertible = J a unique (sI — A) ™"
The values of s that give det (sI — A) = 0 are the eigenvalues of A, whose
number is equal to the dimension n of the matrix A, because det (s — A) is a
polynomial of degree n in the variable s (<= fundamental theorem of algebra) =
with the exception of n values of s for which det (sI — A) = 0:

X (s)=(sI —A) "z + (sI — A" BU (s)
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® Moreover:
p

Lly(t)] =Y (s)
L[Cx(t)+ Du(t)] = CX (s) + DU (s)
Y (s) = CX( )+ DU (s) =
Y(s)=C(s[—A) 2o+ |C(sI—A) "B+D|U(s)
e |n particular, for g = 0 (i.e., the system is initially at rest):
Y (s)=H(s)U (s)
H(s)=C(sI — A)~" B+ D : transfer matrix of the system € C9*?

since in general

—

\

U _(t)

up (8) ]
with p = number of inputs, ¢ = number of outputs
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e Inthe SISOcase(p=q=1), H (3) Is simply a transfer function , whose form

IS a rational function, i.e. a ratio of two polynomials in s:

Y N

sy = Y _ Nuls)
U(s) Dg(s)
Ds™4b1s" 1 4bas™ 2 4. .+ by Ds"+b1s" t4bas™ 4. .+ by

det (sl — A) s 4ays"l4ass”—24.. .+ ay,

where the degree of the two polynomials is not greater than n — system order =
number of states = dimension of the state vector x

— The denominator of H (s) is the characteristic polynomial p.. (s) of A,

defined as det (sI — A), whose roots are the eigenvalues of A for

which no solution exists for the equation (s — A) X (s) = zg + BU (s)
— Zeros z; of H (s) : roots of numerator polynomial Ng (s)
— Poles p; of H (s) : roots of denominator polynomial Dy ()
— In general, H () can be factorized as:

n

e R T
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e Inthe MIMO case (p > 1 and/or ¢ > 1), H (s) is a matrix in CZ*P
whose elements are transfer functions:

HH.(S) Hlj.(s) Hlp.(s)

H(s) = ) Hipl(s)

qu-(S) qu.(s) qu.(s)

where H;; () is the transfer function between the j-th input U, (s) and
the ¢-th output Y; (s ) assuming that Uy, (s) = 0 Vk # 7, since:

Z Hw Uj (s) =

Fundamentals of Dynamic System Identification 25
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(Unilateral) z-transform

z-transform takes as argument a discrete-time real function f(k) : N — R
and returns a complex valued function F'(z) : C — C defined as:

ZIf(R) =) f(k)zF, z=]z|e>e®) eC
k=0

Main properties:

e The z-transform Z is invertible, with a unique inverse transform z—1

e Both Z and Z~ ! are linear operators

e The z-transform of the one-step left (or forward or in advance) shifted function
f(E+1)is:
Zflk+1)]=2F(z2)—z- f(k=0)

e The z-transform of the [-step right (or backward) shifted function f(k — [) is:
Z[f(k=1)]=2""F(z)

Fundamentals of Dynamic System Identification 26
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e The z-transform can be applied to discrete-time LTI state representations,
transforming linear difference equations into linear algebraic equations:

Zlx(j+ 1] =2X(2)—z-2(j=0)=2X(2) —2z-x9
Z[Az (j) + Bu(j)] = AX (2) + BU (2)

2 X (z)—z-20=AX (2)+ BU (2) =
2 X (2) —AX (2) = (2l —A) X (2) = z- 29+ BU (2)

if det (21 — A) # 0, then (21 — A) is invertible = 3 a unique (2] — A) ™"
The values of 2 that give det (21 — A) = 0 are the eigenvalues of A, whose
number is equal to the dimension n of the matrix A, because det (zI — A) is a

polynomial of degree n in the variable z (<= fundamental theorem of algebra) =
with the exception of 1 values of s for which det (21 — A) =0

X(2)=z-(2I —A) " zg+ (zI — A" BU (2)

Fundamentals of Dynamic System Identification 27
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® Moreover:

—

Y(2)=CX(2)+ DU (2) =
Y(2)=2-C(zI —A) "o+ [C(zI—A)_lB—FD} U (2)
e |n particular, for g = 0 (i.e., the system is initially at rest):
Y(2)=H (2)U (2)
H(z)=C(zI — A" B+ D : transfer matrix of the system € CI*P

since in general

U1 _(t)

up (8) ]
with p = number of inputs, ¢ = number of outputs
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Input-output representation in regression form
The input-output representation of a SISO discrete-time LTI model, for xog = 0, is:
Dz + b1z P+ bz 2+ ...+ b,

2" a2 a2+ ...+ a,
By taking some simple algebraic manipulation:

(zn—l—alzn_1+a2zn_2—|—. ctan)Y(z) = (Dzn+b1zn_1—|—bgzn_2+. +bn)-U(z2)
2"Y(2) +a12" Y (2) +a2z" Y (2) + ... FanY(2) =
= Dz"U(2) + b12" U (2) + bez" 2U(2) + ... + b,U(2)
dividing by z" and then leaving only the term Y (z) in the left hand side:
Y(2)+a1z7'Y(2) + a2z ?Y(2) + ... +anz "Y(2) =
= DU(2) + b1z 'U(2) + bez 2U(2) + ... + bpz "U(2)

U ()

—a12 'Y (2) —a227Y (2) — ... —anz "Y(2) +
+DU(2) + b1z 'U(2) + b2z 2U(2) + ... + buz "U(2)
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—a12 'Y (2) —a227 %Y (2) — ... —anz "Y(2) +
+DU(2) + b1z 'U(2) + b2z ?U(2) + ... + buz "U(2)
Iz

y(j) =—ay(j—1) —a2y(j —2) —... —any(j —n)+
+Du(j) + biu(j — 1) +bau(j —2) + ... + bpu(j — n)

:—Z a;y (j — 1)+ Du ])—I—Z biu (j — 1)
(input-output representation in regression form for a SISO discrete-time LTI model)
e For a LTI model of dimension n, the output (j) is a linear combination of:
— the n past values of the output from y(j — 1) upto y(j — n)
— the m past values of the input from u(j — 1) up to u(j — n)
— possibly the input u(j), if D #£ 0

Neither output values from y(j —n—1) to y(j —o0), neither past input values
from u(j—n—1) to u(j—o0) have influence on y(7)

e Problem : estimate a1, as, ..., a,, D, by, ba, ..., b, from experimental data
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A finite number N of measurements of input () and output y(-) is performed,
supposing for simplicity that there is not measurement error = Vj € [n 4+ 1, N]| :

y(j) = —a1y(i—1) — ... —any(j—n) + Du(j) + bru(j—1) + ... + bau(j—n)
Y
a set of N — n linear algebraic equations is obtained:

(y(n+1)= —ary(n) — ... —anpy(l) + Du(n+1) + byu(n) + ... + bpu(1)
y(n—|—2) —a1y(n+1) —... —any(2) + Du(n+2) + biu(n+1) + ... 4+ bpu(2)

L (M) = —a1y(N=1)—...—any(N—n)+Du(N)+bru(N—1)+. . .+bpu(N—n)

y(n+1)] —y(n) - —y(1) u(n+l) um) - wu(l)
y(n+2) —y(n+1) - —y2) un+2) u(n+l) - u(2)

) | |y (N =) —y(N—n) w(N) w(N—1) - u(N—n)

"~

Lc R(N—n)X(2n+1)
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—y(n) - —y(1) uwln+tl) u() - wu(l)
—y(n+1) -+ —y(2) un+2)u(n+1) - u(2)

_—y(N—l) . —y(N—n) u(N) u(N—l) . u(N.—n)_

"

(.

Lc R(N—n)X(2n+1)

Y
yN =L-0

— ¢, L : known matrices (depend only on measurements %(-) and u(-))
— 6 : unknown vector

e Estimation problem : how to evaluate 6 from experimental data?
— If L is square (i.e., N = 3n + 1) and invertible = 0 = L= - yV
— Otherwise?
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