FUNDAMENTALS OF DYNAMIC SYSTEM IDENTIFICATION

Michele TARAGNA

Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino
michele.taragna@polito.it

III Level Course 02LCPRV / 01LCPRV / 01LCPIU

"Experimental modeling: model building from experimental data"

Model building

- \bullet A **real system** S is studied for a certain **aim** or goal:
 - prediction/simulation
 - control
 - understanding/comprehension
 - design
 - diagnostics
- Two kinds of information are available:
 - "a priori" info : previous knowledge, plausible assumptions, physical laws, ...
 - "a posteriori" info: experimental measurements

- "a priori" information \Rightarrow theoretical structure of the mathematical model:
 - $M\left(p\right)$, with p: unknown parameters
- ullet "a posteriori" information \Rightarrow estimate of the parameters p
- Problem issues:
 - "consistency" evaluation of "a priori" and "a posteriori" informations
 - evaluation of estimation errors
- Typology of models:
 - **physical** (or "white box") model: reproduction of the inner structure of ${\mathcal S}$
 - black box model: reproduction of the input-output behaviour of ${\mathcal S}$
 - grey box model: suitable combination of physical and black box model

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

 m_2 : overall mass of the body of car with passengers, engine, etc.

 k_2, eta_2 : spring and damper representing the suspension system

 $m_1:$ mass of the axis with the rigid part of the wheel

 k_1 : spring representing the tyre

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Goal: for low-frequency vertical movements, study the effects of the road profile p on:

- the body vertical acceleration $\ddot{w} = \frac{d^2w}{dt^2}$ (to optimize the passenger comfort)
- ullet the wheel vertical acceleration $\ddot{z}=rac{d^2z}{dt^2}$

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Further assumptions:

1) nonlinear characteristic of $eta_2\Rightarrow$ nonlinear characteristic between the body vs wheel relative speed $\dot w-\dot z$ and the damper force $eta_2~(\dot w-\dot z)$ ($\dot w=\frac{dw}{dt}$: body vertical speed; $\dot z=\frac{dz}{dt}$: wheel vertical speed)

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Further assumptions:

2) nonlinear characteristic of $k_1 \Rightarrow$ nonlinear characteristic between the wheel vs road relative position z-p and the elastic force k_1 (z-p) (z: wheel vertical position; p: road vertical position or road profile)

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Further assumptions:

3) vertical weight forces m_1g and m_2g due to gravitational field are constant \Rightarrow they are neglected, to focus only on the variations induced by the road profile

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Using Newton's laws of the vertical dynamics, a continuous-time model is derived:

$$\begin{cases} m_1 \ddot{z} &= -[k_1 (z - p) + k_2 (z - w) + \beta_2 (\dot{z} - \dot{w})] \\ m_2 \ddot{w} &= -[k_2 (w - z) + \beta_2 (\dot{w} - \dot{z})] \end{cases}$$

A more general model is obtained by introducing the so-called **state variables**:

$$\begin{cases} x_1 &= z \\ x_2 &= \dot{z} \\ x_3 &= w \\ x_4 &= \dot{w} \end{cases}, \quad x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix}$$

 $\downarrow \downarrow$

the two second-order differential equations of the physical model are transformed into four first-order differential equations:

$$\begin{cases} \dot{x}_1 = x_2 & = f_1(x(t), u(t)) \\ \dot{x}_2 = -\frac{k_1 + k_2}{m_1} x_1 - \frac{\beta_2}{m_1} x_2 + \frac{k_2}{m_1} x_3 + \frac{\beta_2}{m_1} x_4 + \frac{k_1}{m_1} u = f_2(x(t), u(t)) \\ \dot{x}_3 = x_4 & = f_3(x(t), u(t)) \\ \dot{x}_4 = \frac{k_2}{m_2} x_1 + \frac{\beta_2}{m_2} x_2 - \frac{k_2}{m_2} x_3 - \frac{\beta_2}{m_2} x_4 & = f_4(x(t), u(t)) \end{cases}$$

where $u\left(t\right)=p\left(t\right)$: input variable of the system \Rightarrow

a system of first-order differential equations called **state equations** is then derived:

$$\dot{x}(t) = f(x(t), u(t)) = \begin{bmatrix} f_1(x(t), u(t)) \\ f_2(x(t), u(t)) \\ f_3(x(t), u(t)) \\ f_4(x(t), u(t)) \end{bmatrix}$$

About the variables of interest (body and wheel accelerations):

$$\begin{cases} y_1 = \ddot{w} = \frac{k_2}{m_2} x_1 + \frac{\beta_2}{m_2} x_2 - \frac{k_2}{m_2} x_3 - \frac{\beta_2}{m_2} x_4 & = \eta_1(x(t), u(t)) \\ y_2 = \ddot{z} = -\frac{k_1 + k_2}{m_1} x_1 - \frac{\beta_2}{m_1} x_2 + \frac{k_2}{m_1} x_3 + \frac{\beta_2}{m_1} x_4 + \frac{k_1}{m_1} u = \eta_2(x(t), u(t)) \end{cases}$$

where y(t) : **output variables** of the system \Rightarrow

a system of static (or instantaneous) equations called output equations is derived:

$$y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \eta(x(t), u(t)) = \begin{bmatrix} \eta_1(x(t), u(t)) \\ \eta_2(x(t), u(t)) \end{bmatrix}$$

- ullet In general, state and output equations are nonlinear (with respect to x and u)
- If k_1 , k_2 , β_2 are constant (i.e., the system works in linearity conditions), while m_1 and m_2 are time-varying \Rightarrow a linear time-variant (LTV) model is derived:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

where A(t), B(t), C(t) and D(t) are suitable time-varying matrices:

$$A(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_1 + k_2}{m_1(t)} & -\frac{\beta_2}{m_1(t)} & \frac{k_2}{m_1(t)} & \frac{\beta_2}{m_1(t)} \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_2(t)} & \frac{\beta_2}{m_2(t)} & -\frac{k_2}{m_2(t)} & -\frac{\beta_2}{m_2(t)} \end{bmatrix}, \qquad B(t) = \begin{bmatrix} 0 \\ \frac{k_1}{m_1(t)} \\ 0 \\ 0 \end{bmatrix}$$

$$C(t) = \begin{bmatrix} \frac{k_2}{m_2(t)} & \frac{\beta_2}{m_2(t)} & -\frac{k_2}{m_2(t)} & -\frac{\beta_2}{m_2(t)} \\ -\frac{k_1 + k_2}{m_1(t)} & -\frac{\beta_2}{m_1(t)} & \frac{k_2}{m_1(t)} & \frac{\beta_2}{m_1(t)} \end{bmatrix}, \qquad D(t) = \begin{bmatrix} 0 \\ \frac{k_1}{m_1(t)} \end{bmatrix}$$

• If k_1 , k_2 , β_2 , m_1 , m_2 are constant (e.g., for short distances) \Rightarrow a **linear time-invariant (LTI)** model is derived:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

where A, B, C and D are suitable constant matrices:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_1 + k_2}{m_1} & -\frac{\beta_2}{m_1} & \frac{k_2}{m_1} & \frac{\beta_2}{m_1} \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_2} & \frac{\beta_2}{m_2} & -\frac{k_2}{m_2} & -\frac{\beta_2}{m_2} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{k_1}{m_1} \\ 0 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} \frac{k_2}{m_2} & \frac{\beta_2}{m_2} & -\frac{k_2}{m_2} & -\frac{\beta_2}{m_2} \\ -\frac{k_1 + k_2}{m_1} & -\frac{\beta_2}{m_1} & \frac{k_2}{m_1} & \frac{\beta_2}{m_1} \end{bmatrix}, \quad D = \begin{bmatrix} 0 \\ \frac{k_1}{m_1} \end{bmatrix}$$

Example #2: car cooling system

Assumption: data are acquired \Rightarrow variables are know only at the sampling times \Rightarrow discrete-time variables must be considered

 T_i : air temperature inside the car

 T_e : external environment temperature

 T_c : cooling system temperature

 T_b : temperature of the body of the car

Goal: study the effects on T_i due to (small) time variations of T_e and T_c

Example #2: car cooling system

Assumption: data are acquired \Rightarrow variables are know only at the sampling times \Rightarrow discrete-time variables must be considered

Further (simplifying) assumptions:

- 1) all the temperatures are not too much different
- 2) the air temperature T_i is constant inside the car
- 3) the temperature gradients of T_e , T_c and T_b are neglected

Example #2: car cooling system

Assumption: data are acquired \Rightarrow variables are know only at the sampling times \Rightarrow discrete-time variables must be considered

Considering all the thermal exchanges, a discrete-time model is derived:

$$\begin{cases} c_{i}m_{i} \left[T_{i} \left((j+1) \Delta t\right) - T_{i} \left(j \Delta t\right)\right] = \\ = -\left\{k_{ic} \left[T_{i} \left(j \Delta t\right) - T_{c} \left(j \Delta t\right)\right]^{m} + k_{ib} \left[T_{i} \left(j \Delta t\right) - T_{b} \left(j \Delta t\right)\right]\right\} \\ c_{b}m_{b} \left[T_{b} \left((j+1) \Delta t\right) - T_{b} \left(j \Delta t\right)\right] = \\ = -\left\{k_{ib} \left[T_{b} \left(j \Delta t\right) - T_{i} \left(j \Delta t\right)\right] + k_{be} \left[T_{b} \left(j \Delta t\right) - T_{e} \left(j \Delta t\right)\right]\right\} \end{cases}$$

Considering all the thermal exchanges, a discrete-time model is derived:

$$\begin{cases} c_{i}m_{i} \left[T_{i} \left((j+1) \Delta t\right) - T_{i} \left(j \Delta t\right)\right] = \\ = -\left\{k_{ic} \left[T_{i} \left(j \Delta t\right) - T_{c} \left(j \Delta t\right)\right]^{m} + k_{ib} \left[T_{i} \left(j \Delta t\right) - T_{b} \left(j \Delta t\right)\right]\right\} \\ c_{b}m_{b} \left[T_{b} \left((j+1) \Delta t\right) - T_{b} \left(j \Delta t\right)\right] = \\ = -\left\{k_{ib} \left[T_{b} \left(j \Delta t\right) - T_{i} \left(j \Delta t\right)\right] + k_{be} \left[T_{b} \left(j \Delta t\right) - T_{e} \left(j \Delta t\right)\right]\right\} \end{cases}$$

 Δt : sampling time

 c_i : thermal capacity of the air inside the car (almost constant at 20^o)

 m_i : mass of the air inside the car

 $k_{ic}:$ thermal conductivity between the air inside the car and the cooling system

 $m \in [1, 1.5]$: parameter depending on the kind of cooling system and on how it is placed

 k_{ib} : thermal conductivity between the air inside the car and the body of the car

 c_b : thermal capacity of the body of the car

 m_b : mass of the body of the car

 $k_{be}:$ thermal conductivity between the body of the car and the external environment

A more general model is obtained by introducing the so-called **state variables**:

$$\begin{cases} x_1(j) = T_i(j\Delta t) \\ x_2(j) = T_b(j\Delta t) \end{cases}, \quad x(j) = \begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix}$$

and the **input variables**:

$$\begin{cases}
 u_1(j) = T_c(j\Delta t) \\
 u_2(j) = T_e(j\Delta t)
\end{cases}, \quad u(j) = \begin{bmatrix} u_1(j) \\ u_2(j) \end{bmatrix}$$

 $\downarrow \downarrow$

two first-order difference equations are obtained:

$$\begin{cases} x_{1}(j+1) = x_{1}(j) - \frac{1}{c_{i}m_{i}} \left\{ k_{ic} \left[x_{1}(j) - u_{1}(j) \right]^{m} + k_{ib} \left[x_{1}(j) - x_{2}(j) \right] \right\} = \\ = \frac{c_{i}m_{i} - k_{ib}}{c_{i}m_{i}} x_{1}(j) + \frac{k_{ib}}{c_{i}m_{i}} x_{2}(j) - \frac{k_{ic}}{c_{i}m_{i}} \left[x_{1}(j) - u_{1}(j) \right]^{m} = f_{1}(x(j), u(j)) \\ x_{2}(j+1) = x_{2}(j) - \frac{1}{c_{b}m_{b}} \left\{ k_{ib} \left[x_{2}(j) - x_{1}(j) \right] + k_{be} \left[x_{2}(j) - u_{2}(j) \right] \right\} = \\ = \frac{k_{ib}}{c_{b}m_{b}} x_{1}(j) + \frac{c_{b}m_{b} - k_{ib} - k_{be}}{c_{b}m_{b}} x_{2}(j) + \frac{k_{be}}{c_{b}m_{b}} u_{2}(j) = f_{2}(x(t), u(t)) \end{cases}$$

a system of first-order difference equations called state equations is then derived:

$$x(j+1) = f(x(j), u(j)) = \begin{bmatrix} f_1(x(j), u(j)) \\ f_2(x(j), u(j)) \end{bmatrix}$$

About the variable of interest (air temperature T_i), the **output equation** is:

$$y(j) = T_i(j\Delta t) = x_1(j) = \eta(x(j), u(j))$$

where y(j): **output variable** of the system

- If $m \neq 1$, state equations are nonlinear (with respect to x and u)
- If all the coefficients are constant and $m=1 \Rightarrow$ a linear time-invariant (LTI) model is derived:

$$x(j+1) = Ax(j) + Bu(j)$$

$$y(j) = Cx(j) + Du(j)$$

where A, B, C and D are suitable constant matrices:

$$A = \begin{bmatrix} \frac{c_i m_i - k_{ib} - k_{ic}}{c_i m_i} & \frac{k_{ib}}{c_i m_i} \\ \frac{k_{ib}}{c_b m_b} & \frac{c_b m_b - k_{ib} - k_{be}}{c_b m_b} \end{bmatrix}, \qquad B = \begin{bmatrix} \frac{k_{ic}}{c_i m_i} & 0 \\ 0 & \frac{k_{be}}{c_b m_b} \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Input-output representations

- At first, linear dynamics systems will be considered (much simpler case);
 later, also nonlinear dynamic systems will be analyzed
- Some mathematical instruments are necessary:
 - the Laplace transform for continuous-time linear time-invariant systems

$$\begin{array}{rcl}
\dot{x}\left(t\right) & = & Ax\left(t\right) + Bu\left(t\right) \\
y\left(t\right) & = & Cx\left(t\right) + Du\left(t\right)
\end{array} \quad \forall t \in \mathbb{R}$$

- the z-transform for discrete-time linear time-invariant systems

$$x(j+1) = Ax(j) + Bu(j)$$

 $y(j) = Cx(j) + Du(j)$ $\forall j \in \mathbb{N}$

Input-output representation can be directly derived from state variable models

(Unilateral) Laplace transform

Laplace transform takes as argument a continuous-time real function $f(t): \mathbb{R} \to \mathbb{R}$ and returns a complex valued function $F(s): \mathbb{C} \to \mathbb{C}$ defined as:

$$F(s) = \mathcal{L}[f(t)] = \int_{t=0}^{\infty} f(t) e^{-st} dt, \quad s = \sigma + j\omega \in \mathbb{C}$$

Main properties:

- ullet The Laplace transform ${\cal L}$ is invertible, with a unique inverse transform ${\cal L}^{-1}$
- Both \mathcal{L} and \mathcal{L}^{-1} are linear operators: $\mathcal{L}\left[\alpha_1 f_1(t) + \alpha_2 f_2(t)\right] = \alpha_1 F_1(s) + \alpha_2 F_2(s)$
- ullet The Laplace transforms of the time derivatives of f(t) are:

$$\mathcal{L}\left[\frac{df(t)}{dt}\right] = sF(s) - f(t = 0_{-})$$

$$\mathcal{L}\left[\frac{d^{2}f(t)}{dt^{2}} = \frac{d\frac{df(t)}{dt}}{dt} = \frac{dg(t)}{dt}\right] = sG(s) - g(t = 0_{-}) =$$

$$= s^{2}F(s) - s \cdot f(t = 0_{-}) - \frac{df(t)}{dt}\Big|_{t=0_{-}}$$

 Laplace transforms can be applied to continuous-time LTI state representations, transforming linear differential equations into linear algebraic equations:

$$\begin{cases} \mathcal{L}\left[\dot{x}\left(t\right)\right] = sX\left(s\right) - x\left(t = 0_{-}\right) = sX\left(s\right) - x_{0} \\ \mathcal{L}\left[Ax\left(t\right) + Bu\left(t\right)\right] = AX\left(s\right) + BU\left(s\right) \\ sX\left(s\right) - x_{0} = AX\left(s\right) + BU\left(s\right) \Rightarrow \\ sX\left(s\right) - AX\left(s\right) = \left(sI - A\right)X\left(s\right) = x_{0} + BU\left(s\right) \end{cases}$$

If $\det{(sI-A)} \neq 0$, then (sI-A) is invertible $\Rightarrow \exists$ a unique $(sI-A)^{-1}$. The values of s that give $\det{(sI-A)} = 0$ are the eigenvalues of s, whose number is equal to the dimension s of the matrix s, because $\det{(sI-A)}$ is a polynomial of degree s in the variable s (s fundamental theorem of algebra) s with the exception of s values of s for which $\det{(sI-A)} = 0$:

$$X(s) = (sI - A)^{-1} x_0 + (sI - A)^{-1} BU(s)$$

• Moreover:

$$\begin{cases}
\mathcal{L}[y(t)] = Y(s) \\
\mathcal{L}[Cx(t) + Du(t)] = CX(s) + DU(s)
\end{cases}
\Rightarrow$$

$$Y(s) = CX(s) + DU(s) \Rightarrow$$

$$Y(s) = C(sI - A)^{-1}x_0 + \left[C(sI - A)^{-1}B + D\right]U(s)$$

• In particular, for $x_0 = 0$ (i.e., the system is initially at rest):

$$Y\left(s\right) = H\left(s\right)U\left(s\right)$$

 $H\left(s\right)=C\left(sI-A\right)^{-1}B+D$: transfer matrix of the system $\in\mathbb{C}^{q imes p}$ since in general

$$u\left(t\right) = \begin{bmatrix} u_{1}\left(t\right) \\ \vdots \\ u_{p}\left(t\right) \end{bmatrix} \in \mathbb{R}^{p}, \quad y\left(t\right) = \begin{bmatrix} y_{1}\left(t\right) \\ \vdots \\ y_{q}\left(t\right) \end{bmatrix} \in \mathbb{R}^{q}$$

with p = number of inputs, q = number of outputs

• In the SISO case (p=q=1), $H\left(s\right)$ is simply a **transfer function**, whose form is a rational function, i.e. a ratio of two polynomials in s:

$$H(s) = \frac{Y(s)}{U(s)} = \frac{N_H(s)}{D_H(s)} = \frac{Ds^n + b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_n}{\det(sI - A)} = \frac{Ds^n + b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \ldots + a_n}$$

where the degree of the two polynomials is not greater than n= system order = number of states = dimension of the state vector x

- The denominator of $H\left(s\right)$ is the characteristic polynomial $p_{c}\left(s\right)$ of A, defined as $\det\left(sI-A\right)$, whose roots are the eigenvalues of A for which no solution exists for the equation $\left(sI-A\right)X\left(s\right)=x_{0}+BU\left(s\right)$
- Zeros z_i of $H\left(s\right)$: roots of numerator polynomial $N_H\left(s\right)$
- Poles p_i of $H\left(s\right)$: roots of denominator polynomial $D_H\left(s\right)$
- In general, $H\left(s\right)$ can be factorized as:

$$H(s) = D \frac{\prod_{i=1}^{n} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} \text{ if } D \neq 0, \quad H(s) = b_1 \frac{\prod_{i=1}^{n-1} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} \text{ if } D = 0$$

• In the MIMO case (p>1 and/or q>1), $H\left(s\right)$ is a matrix in $\mathbb{C}^{q\times p}$ whose elements are transfer functions:

$$H(s) = \begin{bmatrix} H_{11}(s) & \cdots & H_{1j}(s) & \cdots & H_{1p}(s) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ H_{i1}(s) & \cdots & H_{ij}(s) & \cdots & H_{ip}(s) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ H_{q1}(s) & \cdots & H_{qj}(s) & \cdots & H_{qp}(s) \end{bmatrix}$$

where $H_{ij}\left(s\right)$ is the transfer function between the j-th input $U_{j}\left(s\right)$ and the i-th output $Y_{i}\left(s\right)$, assuming that $U_{k}\left(s\right)=0\ \forall k\neq j$, since:

$$Y_{i}(s) = \sum_{j=1}^{p} H_{ij}(s) U_{j}(s) \Rightarrow$$

$$H_{ij}(s) = \frac{Y_{i}(s)}{U_{j}(s)} \Big|_{U_{k}(s)=0, \forall k \neq i}$$

(Unilateral) z-transform

z-transform takes as argument a discrete-time real function $f(k):\mathbb{N}\to\mathbb{R}$ and returns a complex valued function $F(z):\mathbb{C}\to\mathbb{C}$ defined as:

$$F(z) = \mathcal{Z}[f(k)] = \sum_{k=0}^{\infty} f(k) z^{-k}, \quad z = |z| e^{j \arg(z)} \in \mathbb{C}$$

Main properties:

- The z-transform $\mathcal Z$ is invertible, with a unique inverse transform $\mathcal Z^{-1}$
- ullet Both ${\mathcal Z}$ and ${\mathcal Z}^{-1}$ are linear operators
- The z-transform of the one-step left (or forward or in advance) shifted function f(k+1) is:

$$\mathcal{Z}\left[f(k+1)\right] = zF(z) - z \cdot f(k=0)$$

• The z-transform of the l-step right (or backward) shifted function f(k-l) is:

$$\mathcal{Z}\left[f(k-l)\right] = z^{-l}F(z)$$

• The z-transform can be applied to discrete-time LTI state representations, transforming linear difference equations into linear algebraic equations:

$$\begin{cases}
\mathcal{Z}\left[x\left(j+1\right)\right] = zX\left(z\right) - z \cdot x\left(j=0\right) = zX\left(z\right) - z \cdot x_{0} \\
\mathcal{Z}\left[Ax\left(j\right) + Bu\left(j\right)\right] = AX\left(z\right) + BU\left(z\right)
\end{cases} \Rightarrow \\
zX\left(z\right) - z \cdot x_{0} = AX\left(z\right) + BU\left(z\right) \Rightarrow \\
zX\left(z\right) - AX\left(z\right) = (zI - A)X\left(z\right) = z \cdot x_{0} + BU\left(z\right)
\end{cases}$$

If $\det(zI-A) \neq 0$, then (zI-A) is invertible $\Rightarrow \exists$ a unique $(zI-A)^{-1}$. The values of z that give $\det(zI-A)=0$ are the eigenvalues of A, whose number is equal to the dimension n of the matrix A, because $\det(zI-A)$ is a polynomial of degree n in the variable z (\Leftarrow fundamental theorem of algebra) \Rightarrow with the exception of n values of s for which $\det(zI-A)=0$:

$$X(z) = z \cdot (zI - A)^{-1} x_0 + (zI - A)^{-1} BU(z)$$

• Moreover:

$$\begin{cases}
\mathcal{Z}[y(j)] = Y(z) \Rightarrow \Rightarrow \\
\mathcal{Z}[Cx(j) + Du(j)] = CX(z) + DU(z) \Rightarrow \\
Y(z) = CX(z) + DU(z) \Rightarrow \\
Y(z) = z \cdot C(zI - A)^{-1} x_0 + \left[C(zI - A)^{-1} B + D\right] U(z)
\end{cases}$$

• In particular, for $x_0 = 0$ (i.e., the system is initially at rest):

$$Y(z) = H(z)U(z)$$

 $H\left(z\right)=C\left(zI-A\right)^{-1}B+D: \text{transfer matrix of the system}\in\mathbb{C}^{q\times p}$ since in general

$$u\left(t\right) = \begin{bmatrix} u_{1}\left(t\right) \\ \vdots \\ u_{p}\left(t\right) \end{bmatrix} \in \mathbb{R}^{p}, \quad y\left(t\right) = \begin{bmatrix} y_{1}\left(t\right) \\ \vdots \\ y_{q}\left(t\right) \end{bmatrix} \in \mathbb{R}^{q}$$

with p = number of inputs, q = number of outputs

Input-output representation in regression form

The input-output representation of a SISO discrete-time LTI model, for $x_0=0$, is:

$$Y(z) = H(z)U(z) = \frac{Dz^{n} + b_{1}z^{n-1} + b_{2}z^{n-2} + \dots + b_{n}}{z^{n} + a_{1}z^{n-1} + a_{2}z^{n-2} + \dots + a_{n}}U(z)$$

By taking some simple algebraic manipulation:

$$(z^{n} + a_{1}z^{n-1} + a_{2}z^{n-2} + \dots + a_{n}) \cdot Y(z) = (Dz^{n} + b_{1}z^{n-1} + b_{2}z^{n-2} + \dots + b_{n}) \cdot U(z)$$

$$z^{n}Y(z) + a_{1}z^{n-1}Y(z) + a_{2}z^{n-2}Y(z) + \dots + a_{n}Y(z) =$$

$$= Dz^{n}U(z) + b_{1}z^{n-1}U(z) + b_{2}z^{n-2}U(z) + \dots + b_{n}U(z)$$

dividing by z^n and then leaving only the term Y(z) in the left hand side:

$$Y(z) + a_1 z^{-1} Y(z) + a_2 z^{-2} Y(z) + \dots + a_n z^{-n} Y(z) =$$

$$= DU(z) + b_1 z^{-1} U(z) + b_2 z^{-2} U(z) + \dots + b_n z^{-n} U(z)$$

$$Y(z) = -a_1 z^{-1} Y(z) - a_2 z^{-2} Y(z) - \dots - a_n z^{-n} Y(z) +$$

$$+ DU(z) + b_1 z^{-1} U(z) + b_2 z^{-2} U(z) + \dots + b_n z^{-n} U(z)$$

$$Y(z) = -a_1 z^{-1} Y(z) - a_2 z^{-2} Y(z) - \dots - a_n z^{-n} Y(z) + DU(z) + b_1 z^{-1} U(z) + b_2 z^{-2} U(z) + \dots + b_n z^{-n} U(z)$$

$$\downarrow \mathcal{Z}^{-1}$$

$$y(j) = -a_1 y(j-1) - a_2 y(j-2) - \dots - a_n y(j-n) + Du(j) + b_1 u(j-1) + b_2 u(j-2) + \dots + b_n u(j-n)$$

$$= -\sum_{i=1}^{n} a_i y(j-i) + Du(j) + \sum_{i=1}^{n} b_i u(j-i)$$

(input-output representation in regression form for a SISO discrete-time LTI model)

- For a LTI model of dimension n, the output y(j) is a linear combination of:
 - the n past values of the output from y(j-1) up to y(j-n)
 - the n past values of the input from u(j-1) up to u(j-n)
 - possibly the input u(j), if $D \neq 0$

Neither output values from y(j-n-1) to $y(j-\infty)$, neither past input values from u(j-n-1) to $u(j-\infty)$ have influence on y(j)

• **Problem**: estimate $a_1, a_2, \ldots, a_n, D, b_1, b_2, \ldots, b_n$ from experimental data

A finite number N of measurements of input $u(\cdot)$ and output $y(\cdot)$ is performed, supposing for simplicity that there is not measurement error $\Rightarrow \forall j \in [n+1,N]$:

$$y(j) = -a_1 y(j-1) - \dots - a_n y(j-n) + Du(j) + b_1 u(j-1) + \dots + b_n u(j-n)$$

a set of N-n linear algebraic equations is obtained:

$$\begin{cases} y(n+1) = -a_1y(n) - \dots - a_ny(1) + Du(n+1) + b_1u(n) + \dots + b_nu(1) \\ y(n+2) = -a_1y(n+1) - \dots - a_ny(2) + Du(n+2) + b_1u(n+1) + \dots + b_nu(2) \\ \vdots \\ y(N) = -a_1y(N-1) - \dots - a_ny(N-n) + Du(N) + b_1u(N-1) + \dots + b_nu(N-n) \end{cases}$$

$$\begin{bmatrix} y(n+1) \\ y(n+2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} -y(n) & \cdots & -y(1) & u(n+1) & u(n) & \cdots & u(1) \\ -y(n+1) & \cdots & -y(2) & u(n+2) & u(n+1) & \cdots & u(2) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -y(N-1) & \cdots & -y(N-n) & u(N) & u(N-1) & \cdots & u(N-n) \end{bmatrix}$$

$$y^N \in \mathbb{R}^{N-n}$$

$$L \in \mathbb{R}^{(N-n)\times(2n+1)}$$

$$\begin{bmatrix} \vdots \\ a_n \\ D \\ b_1 \\ \vdots \\ b_n \end{bmatrix}$$

 $\theta \in \mathbb{R}^{2n+1}$

$$\underbrace{\begin{bmatrix} y(n+1) \\ y(n+2) \\ \vdots \\ y(N) \end{bmatrix}}_{} = \underbrace{\begin{bmatrix} -y(n) & \cdots & -y(1) & u(n+1) & u(n) & \cdots & u(1) \\ -y(n+1) & \cdots & -y(2) & u(n+2) & u(n+1) & \cdots & u(2) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -y(N-1) & \cdots & -y(N-n) & u(N) & u(N-1) & \cdots & u(N-n) \end{bmatrix}}_{L \in \mathbb{R}^{(N-n) \times (2n+1)}} \underbrace{\begin{bmatrix} a_1 \\ \vdots \\ a_n \\ D \\ b_1 \\ \vdots \\ b_n \end{bmatrix}}_{\theta \in \mathbb{R}^{2n+1}}$$

$$\psi \\ y^N = L \cdot \theta$$

- y^N, L : known matrices (depend only on measurements $y(\cdot)$ and $u(\cdot)$)
- $-\theta$: unknown vector
- Estimation problem: how to evaluate θ from experimental data?
 - If L is square (i.e., N=3n+1) and invertible $\Rightarrow \theta = L^{-1} \cdot y^N$
 - Otherwise?