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Introduction

• Consider a nonlinear dynamic system of the form:
yt+1 = fo (wt)

wt = [yt...yt−n+1 ut...ut−n1+1]
T ∈W ⊂ Rm

• fo is not known.
• A set of noise corrupted measurements eyt and ewt, of yt and
wt, t = 0, 1, 2, ..., T is available.

Problem:

Find estimate bf of fo
giving “small” simulation error
for any future input sequence
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Introduction

• Most of identification methods in the literature assume:
fo ∈ K

.
= {fp (ϕ) , p ∈ Rr, ϕ ∈ Rm}

Measured data are used to derive an estimate bp of p.
• Estimate bp of p is usually obtained by means of a Prediction
Error (PE) method:bp = argminp V (p,ΦT )

V (p,ΦT ) =
PT−1

t=0 |eyt+1 − fp (ϕt)|l

where ϕt is a regression vector and ΦT = [ϕ0, ϕ1, ... , ϕT ].

•Widely used are the following choices for the regressor ϕt:

ϕt = ewt = [eyt ... eyt−n+1 eut ... eut−n1+1]T =⇒ NARX

ϕt = bwt = [fp(bwt−1) ... fp(bwt−n) eut ... eut−n1+1]T =⇒ NOE
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Introduction

Problems:

• Models giving lower cost functions (prediction errors) do not
necessarily give lower simulation errors on future inputs.

• Even boundedness of the simulation error is not guaranteed.
⇓

More relevant for NARX than for NOE models.

• Using the Nonlinear SM identification method (M. Milanese
and C. Novara, “Optimality in SM Identification of Non-
linear Systems”, SYSID 2003) it is possible to derive condi-
tions for boundedness of simulation error.
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Nonlinear SM identification

• Let eyt and ewt noise corrupted data generated by the system
yt+1 = fo (wt). Then:

ỹt+1 = fo (ewt) + et, t = 0, 1, .., T − 1
• Let θ ∈ Rm be a linear approximation of fo, i.e. fo (w) ≈ θTw,
and let:

f∆ (w)
.
= fo (w)− θTw

f∆ (w) is called residue function.

Assumptions on f∆ (w):

f∆ ∈ KL .
= {g ∈ C1(W ), kg0 (w)k ≤ γ,∀w ∈W}

g0(w): gradient of g(w), kwk: euclidean norm.

Assumptions on noise:

|et| ≤ εt, t = 0, 1, ..., T
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Nonlinear SM identification

• Feasible Systems Set:
FSST

.
= {f : f(w) = θTw + g(w), g ∈ KL,

|ỹt+1 − f (ewt)| ≤ εt, t = 0, 1, ..., T − 1}

• Identification error of estimate f̂ :
E(f̂)

.
= sup

f∈FSST

°°°f − f̂
°°°
p

• Optimal estimate:
E (f∗) .

= inf
f
E (f) = infbf sup

f∈FSST

°°°f − f̂
°°°
p
= rI

rI : (local) radius of information, i.e. minimal identification error
that can be guaranteed by any estimate based on the available
information up to time T .

||f ||p .
=
£R

W |f (w)|p dw
¤1/p
, p <∞, ||f ||∞ .

=ess-supw∈W |f (w)|,
W : bounded subset of Rm.
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Nonlinear SM identification

• Define:
fc (w)

.
= θTw +

1

2

h
f
∆
(w) + f∆(w)

i
f∆(w)

.
= min

t=0,...,T−1
¡
ht + γ kw − ewtk

¢
f
∆
(w)

.
= max

t=0,...,T−1
(ht − γ kw − ewtk)

ht
.
= eyt+1 − θT ewt + εt hk

.
= eyt+1 − θT ewt − εt

Theorem 1 For any Lp(W ) norm, with p ∈ [1,∞]:
i) The estimate fc is optimal

ii) E (fc) =
1
2

°°°f∆ − f
∆

°°°
p
= rI = inff E (f)
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Estimation of the simulation error

• Consider the nonlinear system:
yt+1 = fo (xt, vt)

xt = [yt...yt−n+1]T vt = [u
1
t ...u

1
t−n1+1...u

q
t ...u

q
t−nq+1]

T

• For given initial condition x0 ∈ X and input sequence v =
[v0, v1, v2, ...] the sequence:

yt (f, x0, v) , t = 0, 1, 2, ...

is called solution of the system, corresponding to initial condi-
tion x0 and input v.

• The simulation error at time t of model yt+1 = fc (xt, vt) is:

SEt
.
= |yt (fo, x0, v)− yt (fc, ex0, v)|

Being fo and x0 not known, SEt cannot be exactly evaluated,
and a bound on it is looked for.

8



Politecnico di Torino M. Milanese and C. Novara

Estimation of the simulation error

• Let:

Θ
.
=


θ1 θ2 · · · · · · θn−1 θn
1 0 · · · · · · 0 0
0 1 · · · · · · 0 0
... ... . . . . . . ... ...
0 0 · · · · · · 0 0
0 0 · · · · · · 1 0

 ∈ R
n×n

Note:
|λi(Θ)| < 1
⇓°°Θt

°° ≤ Lρt, ∀t
for some L > 0 and maxi |λi(Θ)| ≤ ρ < 1
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Estimation of the simulation error

Theorem 2 Assume that:
i) |λi(Θ)| < 1
ii) γ < 1−ρ

L
Then, for all initial conditions xo and inputs v giving solutions
for fo such that (xt, vt) ∈ W ∀t, a constant K ∈ [0,∞) exists
such that the simulation error SEt is bounded as:

SEt ≤ KrI =
K
2

°°°f∆ − f
∆

°°°
∞
∀t

Note:
|λi(Θ)| < 1
⇓

The linear regression model yt+1 = θTwt is asymptotically stable.
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Example

• A set of 6000 data has been generated from the nonlinear
system:

yt+1 = 1.8yt − 0.82yt−1 + 0.0024 sin(yt−1) + 0.047 tanh(3ut)

Figure 1: Nonlinear mass-spring-damper system.

• A random input of amplitude ≤ 1 has been used.
• The output data of the estimation set have been corrupted by
a uniform random additive noise of amplitude ≤ 0.025.
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Example

Figure 2: Estimation data set (bold line) and validation data set (dashed line).

• Estimation set: the first 5000 data, called estimation set,
used for model identification.

• Validation set: the remaining 1000 data, used for model
testing.
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Example

• Regressions of the following form have been considered for
model identification:

yt+1 = f (wt)

wt = [yt yt−1 ut]
T

Linear Output Error model OE:

f (w) = θTw

where θ = [1.8 − 0.81 0.06]T has been estimated by means of
the Matlab Systems Identification Toolbox using the output error
estimation method.
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Example

Nonlinear Set Membership model NSM:

fc (w) = θTw +
1

2

h
f
∆
(w) + f∆(w)

i
L = 19.8 ρ = 0.952 γ = 0.0024 ε = 0.08

Figure 3: Validation curve for model NSM.

Figure 4: kΘtk (bold line) and Lρt (thin line) sequences.

14



Politecnico di Torino M. Milanese and C. Novara

Example

Neural Network models NNnarx and NNnoe:

f (w) =
rX

i=1

αiσ
¡
βT
i w − λi

¢
+ ζ

• Several NARX and NOE models with different values of r
(from r = 3 to r = 16) have been trained using the Matlab
Neural Networks Toolbox.

• The NARX model with r = 8 showing the best simulation
performances, has been taken for model NNnarx.

• All the NOE identified models got stuck on (possibly) local
minima during the training phase, providing bad simulation
performances.

• The best result has been obtained by using as starting point the
parameters of the NNnarx model. This NOE model, showing
a slight improvement in simulation performances with respect
to the NNnarx one, has been taken for model NNnoe.
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Example

• In table 1 the root mean square errors obtained by the identi-
fied models on the validation data set are reported.

RMSEP: one-step ahead prediction error
RMSES: simulation error

Model NSM OE NNnarx NNnoe
RMSEP 0.005 0.011 0.008 0.009
RMSES 0.091 0.267 0.299 0.262
Table 1. One-step ahead prediction and simulation errors.

Figure 5: Validation set: data (bold line), NSM simulation (thin line) and NNnoe simulation (dashed line).
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Conclusions

• The quality of identified models is related to the accuracy in
simulating the system behavior for future inputs not used in
the identification.

• Models identified by classical methods minimizing the predic-
tion error, do not necessary give “good” simulation error on
future inputs and even boundedness of this error is not guar-
anteed.

• Using a Set Membership approach, under suitable conditions
on the bounding constants γ and ε defining the SM assump-
tions, the simulation error can be bounded as a function of the
radius of information rI that goes to zero as rI decreases to
zero.
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