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1. Basic Questions About System Identification

What is System Identification?
System Identification allows you to build mathematical models of a dynamic 
system based on measured data.

How is that done?
Essentially by adjusting parameters within a given model until its output 
coincides as well as possible with the measured output.

How do you know if the model is any good?
A good test is to take a close look at the model’s output compared to the 
measured one on a data set that wasn’t used for the fit (“Validation Data”).

Can the quality of the model be tested in other ways?
It is also valuable to look at what the model couldn’t reproduce in the data (“the 
residuals”). This should not be correlated with other available information, 
such as the system's input.

What models are most common?
The techniques apply to very general models. Most common models are 
difference equations descriptions, such as ARX and ARMAX models, as well as 
all types of linear state-space models.

Do you have to assume a model of a particular type?
For parametric models, you have to specify the structure. However, if you just 
assume that the system is linear, you can directly estimate its impulse or step 
response using Correlation Analysis or its frequency response using Spectral 
Analysis. This allows useful comparisons with other estimated models.

What does the System Identification Toolbox contain?
It contains all the common techniques to adjust parameters in all kinds of 
linear models. It also allows you to examine the models’ properties, and to 
check if they are any good, as well as to preprocess and polish the measured 
data.



Isn’t it a big limitation to work only with linear models?
No, actually not. Most common model nonlinearities are such that the 
measured data should be nonlinearly transformed (like squaring a voltage 
input if you think that it’s the power that is the stimuli). Use physical insight 
about the system you are modeling and try out such transformations on models 
that are linear in the new variables, and you will cover a lot!

How do I get started?
If you are a beginner, browse through Chapter and then try out a couple of the 
data sets that come with the toolbox. Use the graphical user interface (GUI) 
and check out the built-in help functions to understand what you are doing.

Is this really all there is to System Identification?
Actually, there is a huge amount written on the subject. Experience with real 
data is the driving force to understand more. It is important to remember that 
any estimated model, no matter how good it looks on your screen, has only 
picked up a simple reflection of reality. Surprisingly often, however, this is 
sufficient for rational decision making.
1-3
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2. Common Terms Used in System Identification 
This section defines some of the terms that are frequently used in System 
Identification.

• Estimation Data is the data set that is used to fit a model to data. In the 
GUI this is the same as the Working Data.

• Validation Data is the data set that is used for model validation purposes. 
This includes simulating the model for these data and computing the 
residuals from the model when applied to these data.

• Model Views are various ways of inspecting the properties of a model. They 
include looking at zeros and poles, transient and frequency response, and 
similar things.

• Data Views are various ways of inspecting properties of data sets. A most 
common and useful thing is just to plot the data and scrutinize it. 
So-called outliers could be detected then. These are unreliable 
measurements, perhaps arising from failures in the measurement 
equipment. The frequency contents of the data signals, in terms of 
periodograms or spectral estimates, is also most revealing to study.

• Model Sets or Model Structures are families of models with adjustable 
parameters. Parameter Estimation amounts to finding the “best” values 
of these parameters. The System Identification problem amounts to finding 
both a good model structure and good numerical values of its parameters.

• Parametric Identification Methods are techniques to estimate 
parameters in given model structures. Basically it is a matter of finding (by 
numerical search) those numerical values of the parameters that give the 
best agreement between the model’s (simulated or predicted) output and the 
measured one.

• Nonparametric Identification Methods are techniques to estimate 
model behavior without necessarily using a given parametrized model set. 
Typical nonparametric methods include Correlation analysis, which 
estimates a system’s impulse response, and Spectral analysis, which 
estimates a system’s frequency response.

• Model Validation is the process of gaining confidence in a model. 
Essentially this is achieved by “twisting and turning” the model to scrutinize 
all aspects of it. Of particular importance is the model’s ability to reproduce 
the behavior of the Validation Data sets. Thus it is important to inspect the 
properties of the residuals from the model when applied to the Validation 
Data.



3. Basic Information About Dynamic Models
System Identification is about building Dynamic Models. Some knowledge 
about such models is therefore necessary for successful use of the toolbox.The 
topic is treated in several places in the Chapter  and there is a wide range of 
textbooks available for introductory and in-depth studies. For basic use of the 
toolbox, it is sufficient to have quite superficial insights about dynamic models. 
This section describes such a basic level of knowledge. 

The Signals
Models describe relationships between measured signals. It is convenient to 
distinguish between input signals and output signals. The outputs are then 
partly determined by the inputs. Think for example of an airplane where the 
inputs would be the different control surfaces, ailerons, elevators, and the like, 
while the outputs would be the airplane’s orientation and position. In most 
cases, the outputs are also affected by more signals than the measured inputs. 
In the airplane example it would  be wind gusts and turbulence effects. Such 
‘‘unmeasured inputs’’ will be called disturbance signals or noise. If we denote 
inputs, outputs, and disturbances by u, y, and e, respectively, the relationship 
can be depicted in the following figure. 

Figure 1-1:  Input Signals u, Output Signals y, and Disturbances e

All these signals are functions of time, and the value of the input at time t will 
be denoted by u(t). Often, in the identification context, only discrete-time points 
are considered, since the measurement equipment typically records the signals 
just at discrete-time instants, often equally spread in time with a 
sampling interval of T time units. The modeling problem is then to describe 
how the three signals relate to each other.

y

e

u
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The Basic Dynamic Model
The basic relationship is the linear difference equation. An example of such 
an equation is the following one.

y( t) -1.5y( t-T)+0.7y (t -2T)=0.9u( t-2T)+0.5u( t-3T)+e (t ) (ARX)

Such a relationship tells us, for example, how to compute the output y(t) if the 
input is known and the disturbance can be ignored:

y( t)=1.5y (t -T )-0.7y (t -2T)+0.9u( t-2T)+0.5u( t-3T)

The output at time t is thus computed as a linear combination of past outputs 
and past inputs. It follows, for example, that the output at time t depends on 
the input signal at many previous time instants. This is what the word 
dynamic refers to. The identification problem is then to use measurements of 
u and y to figure out 

• The coefficients in this equation (i.e., -1.5, 0.7, etc.)

How many delayed outputs to use in the description (two in the example:

y( t-T)  and y( t-2T) ) 

• The time delay in the system is (2T in the example: you see from the second 
equation that it takes 2T time units before a change in u will affect y)  and 

• How many delayed inputs to use (two in the example: u(t-2T) and u(t-3T))

Variants of Model Descriptions
The model given above is called an ARX model. There are a handful of 
variants of this model known as Output-Error (OE) models, ARMAX models, 
FIR models, and Box-Jenkins  (BJ) models. These are described later on in 
the manual. At a basic level it is sufficient to think of them as variants of the 
ARX model allowing also a characterization of the properties of the 
disturbances e.

General linear models can be described symbolically by

y=Gu+He

which says that the measured output y(t) is a sum of one contribution that 
comes from the measured input u(t) and one contribution that comes from the 
noise He. The symbol G then denotes the dynamic properties of the system, that 
is, how the output is formed from the input. For linear systems it is called the 
transfer function from input to output. The symbol H refers to the noise 



properties, and is called the noise model. It describes how the disturbances at 
the output are formed from some standardized noise source e(t). 

State-space models are common representations of dynamical models. They 
describe the same type of linear difference relationship between the inputs and 
the outputs as in the ARX model, but they are rearranged so that only one 
delay is used in the expressions. To achieve this, some extra variables, the 
state variables, are introduced. They are not measured, but can be 
reconstructed from the measured input-output data. This is especially useful 
when there are several output signals, i.e., when y(t) is a vector. Chapter gives 
more details about this. For basic use of the toolbox it is sufficient to know that 
the order of the state-space model relates to the number of delayed inputs and 
outputs used in the corresponding linear difference equation. The state-space 
representation looks like

x ( t+1)=Ax( t)+Bu(t )+Ke( t)

y ( t)=Cx( t)+Du( t)+e( t)

Here x(t) is the vector of state variables. The matrix K determines the noise 
properties. Notice that if K = 0, then the noise source e(t) affects only the 
output, and no specific model of the noise properties is built. This corresponds 
to H = 1 in the general description above, and is usually referred to as an 
Output-Error model. Notice also that D = 0 means that there is no direct 
influence from u(t) to y(t). Thus the effect of the input on the output all passes 
via x(t) and will thus be delayed at least one sample. The first value of the state 
variable vector x(0) reflects the initial conditions for the system at the 
beginning of the data record. When dealing with models in state-space form, a 
typical option is whether to estimate D, K, and x(0) or to let them be zero.

How to Interpret the Noise Source
In many cases of system identification, the effects of the noise on the output are 
insignificant compared to those of the input. With good signal-to-noise ratios 
(SNR), it is less important to have an accurate noise model. Nevertheless it is 
important to understand the role of the noise and the noise source e(t), whether 
it appears in the ARX model or in the general descriptions given above. 

There are three aspects of the noise that should be stressed: 

• understanding white noise 

• interpreting the noise source

• using the noise source when working with the model 
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These aspects are discussed one by one. 

How can we understand white noise? From a formal point of view, the noise 
source e(t) will normally be regarded as white noise. This means that it is 
entirely unpredictable. In other words, it is impossible to guess the value of e(t) 
no matter how accurately we have measured past data up to time t-1.

How can we interpret the noise source? The actual noise contribution to the 
output, H e(t), has real significance. It contains all the influences on the 
measured y, known and unknown, that are not contained in the input u. It 
explains and captures the fact that even if an experiment is repeated with the 
same input, the output signal will typically be somewhat different. However, 
the noise source e(t) need not have a physical significance. In the airplane 
example mentioned earlier, the noise effects are wind gusts and turbulence. 
Describing these as arising from a white noise source via a transfer function H, 
is just a convenient way of capturing their character.

How can we deal with the noise source when using the model? If the model is 
used just for simulation, i.e., the responses to various inputs are to be studied, 
then the noise model plays no immediate role. Since the noise source e(t) for 
new data will be unknown, it is taken as zero in the simulations, so as to study 
the effect of the input alone (a noise-free simulation). Making another 
simulation with e(t) being arbitrary white noise will reveal how reliable the 
result of the simulation is, but it will not give a more accurate simulation result 
for the actual system’s response.

The need and use of the noise model can be summarized as follows:

• It is, in most cases, required to obtain a better estimate for the dynamics, G.

• It indicates how reliable noise-free simulations are.

• It is required for reliable predictions and stochastic control design.



Terms to Characterize the Model Properties
The properties of an input-output relationship like the ARX model follow from 
the numerical values of the coefficients, and the number of delays used. This is 
however a fairly implicit way of talking about the model properties. Instead a 
number of different terms are used in practice:

Impulse Response
The impulse response of a dynamical model is the output signal that results 
when the input is an impulse, i.e., u(t) is zero for all values of t except t=0, 
where u(0)=1. It can be computed as in the equation following (ARX), by letting 
t be equal to 0, 1, 2, ... and taking y(-T)=y(-2T)=0 and u(0)=1.

Step Response
The step response is the output signal that results from a step input, i.e., u(t) 
is zero for negative values of t and equal to one for positive values of t. The 
impulse and step responses together are called the model’s transient 
response.

Frequency Response
The frequency response of a linear dynamic model describes how the model 
reacts to sinusoidal inputs. If we let the input u(t) be a sinusoid of a certain 
frequency, then the output y(t) will also be a sinusoid of this frequency. The 
amplitude and the phase (relative to the input) will however be different. This 
frequency response is most often depicted by two plots; one that shows the 
amplitude change as a function of the sinusoid’s frequency and one that shows 
the phase shift as function of frequency. This is known as a Bode plot.

Zeros and Poles
The zeros and the poles are equivalent ways of describing the coefficients of a 
linear difference equation like the ARX model. The poles relate to the 
“output-side” and the zeros relate to the “input-side” of this equation. The 
number of poles (zeros) is equal to number of sampling intervals between the 
most and least delayed output (input). In the ARX example in the beginning of 
this section, there are consequently two poles and one zero. 
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4. The Basic Steps of System Identification
The System Identification problem is to estimate a model of a system based on 
observed input-output data. Several ways to describe a system and to estimate 
such descriptions exist. This section gives a brief account of the most important 
approaches. 

The procedure to determine a model of a dynamical system from observed 
input-output data involves three basic ingredients:

• The input-output data

• A set of candidate models (the model structure)

• A criterion to select a particular model in the set, based on the information 
in the data (the identification method)

The identification process amounts to repeatedly selecting a model structure, 
computing the best model in the structure, and evaluating this model’s 
properties to see if they are satisfactory. The cycle can be itemized as follows:

1 Design an experiment and collect input-output data from the process to be 
identified.

2 Examine the data. Polish it so as to remove trends and outliers, select useful 
portions of the original data, and apply filtering to enhance important 
frequency ranges.

3 Select and define a model structure (a set of candidate system descriptions) 
within which a model is to be found.

4 Compute the best model in the model structure according to the 
input-output data and a given criterion of fit.

5 Examine the obtained model’s properties

6 If the model is good enough, then stop; otherwise go back to Step 3 to try 
another model set. Possibly also try other estimation methods (Step 4) or 
work further on the input-output data (Steps 1 and 2).

The System Identification Toolbox offers several functions for each of these 
steps. 
0



For Step 2 there are routines to plot data, filter data, and remove trends in 
data.

For Step 3 the System Identification Toolbox offers a variety of nonparametric 
models, as well as all the most common black-box input-output and state-space 
structures, and also general tailor-made linear state-space models in discrete 
and continuous time.

For Step 4 general prediction error (maximum likelihood) methods as well as  
instrumental variable methods and sub-space methods are offered for 
parametric models, while basic correlation and spectral analysis methods are 
used for nonparametric model structures.

To examine models in Step 5, many functions allow the computation and 
presentation of frequency functions and poles and zeros, as well as simulation 
and prediction using the model. Functions are also included for 
transformations between continuous-time and discrete-time model 
descriptions and to formats that are used in other MATLAB toolboxes, like the 
Control System Toolbox and the Signal Processing Toolbox.
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5. A Startup Identification Procedure
There are no standard and secure routes to good models in System 
Identification. Given the number of possibilities, it is easy to get confused about 
what to do, what model structures to test, and so on. This section describes one 
route that often works well, but there are no guarantees. The steps refer to 
functions within the GUI, but you ca6n also go through them in command 
mode. See Chapter for the basic commands.

Step 1 Looking at the Data 
Plot the data. Look at them carefully. Try to see the dynamics with your own 
eyes. Can you see the effects in the outputs of the changes in the input? Can 
you see nonlinear effects, like different responses at different levels, or 
different responses to a step up and a step down? Are there portions of the data 
that appear to be “messy” or carry no information. Use this insight to select 
portions of the data for estimation and validation purposes.

Do physical levels play a role in your model? If not, detrend the data by 
removing their mean values. The models will then describe how changes in the 
input give changes in output, but not explain the actual levels of the signals. 
This is the normal situation.

The default situation, with good data, is that you detrend by removing means, 
and then select the first half or so of the data record for estimation purposes, 
and use the remaining data for validation. This is what happens when you 
apply Quickstart under the pop-up menu Preprocess in the main ident 
window.

Step 2 Getting a Feel for the Difficulties
Apply Quickstart under pop-up menu Estimate in the main ident window. 
This will compute and display the spectral analysis estimate and the 
correlation analysis estimate, as well as a fourth order ARX model with a delay 
2



estimated from the correlation analysis and a default order state-space model 
computed by n4sid. This gives three plots. Look at the agreement between the 

• Spectral Analysis estimate and the ARX and state-space models’ frequency 
functions

• Correlation Analysis estimate and the ARX and state-space models’ 
transient responses

• Measured Validation Data output and the ARX and state-space models’ 
simulated outputs

If these agreements are reasonable, the problem is not so difficult, and a 
relatively simple linear model will do a good job. Some fine tuning of model 
orders, and noise models have to be made and you can proceed to Step 4. 
Otherwise go to Step 3.

Step 3 Examining the Difficulties
There may be several reasons why the comparisons in Step 2 did not look good. 
This section discusses the most common ones, and how they can be handled:

Model Unstable
The ARX or state-space model may turn out to be unstable, but could still be 
useful for control purposes. Change to a 5- or 10-step ahead prediction instead 
of simulation in the Model Output View.

Feedback in Data
If there is feedback from the output to the input, due to some regulator, then 
the spectral and correlations analysis estimates are not reliable. Discrepancies 
between these estimates and the ARX and state-space models can therefore be 
disregarded in this case. In the Model Residuals View of the parametric 
models, feedback in data can also be visible as correlation between residuals 
and input for negative lags.

Noise Model
If the state-space model is clearly better than the ARX model at reproducing 
the measured output, this is an indication that the disturbances have a 
substantial influence, and it will be necessary to model them carefully.
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Model Order
If a fourth order model does not give a good Model Output plot, try eighth 
order. If the fit clearly improves, it follows that higher order models will be 
required, but that linear models could be sufficient.

Additional Inputs 
If the Model Output fit has not significantly improved by the tests so far, 
think over the physics of the application. Are there more signals that have 
been, or could be, measured that might influence the output? If so, include 
these among the inputs and try again a fourth order ARX model from all the 
inputs. (Note that the inputs need not at all be control signals, anything 
measurable, including disturbances, should be treated as inputs).

Nonlinear Effects 
If the fit between measured and model output is still bad, consider the physics 
of the application. Are there nonlinear effects in the system? In that case, form 
the nonlinearities from the measured data. This could be as simple as forming 
the product of voltage and current measurements, if you realize that it is the 
electrical power that is the driving stimulus in, say, a heating process, and 
temperature is the output. This is of course application dependent. It does not 
take very much work, however, to form a number of additional inputs by 
reasonable nonlinear transformations of the measured ones, and just test if 
inclusion of them improves the fit.

Still Problems?
If none of these tests leads to a model that is able to reproduce the Validation 
Data reasonably well, the conclusion might be that a sufficiently good model 
cannot be produced from the data. There may be many reasons for this. The 
most important one is that the data simply do not contain sufficient 
information, e.g., due to bad signal to noise ratios, large and nonstationary 
disturbances, varying system properties, etc. The reason may also be that the 
system has some quite complicated nonlinearities, which cannot be realized on 
physical grounds. In such cases, nonlinear, black box models could be a 
solution. Among the most used models of this character are the Artificial 
Neural Networks (ANN).

Otherwise, use the insights of which inputs to use and which model orders to 
expect and proceed to Step 4.
4



Step 4 Fine Tuning Orders and Noise Structures 
For real data there is no such thing as a “correct model structure.” However, 
different structures can give quite different model quality. The only way to find 
this out is to try out a number of different structures and compare the 
properties of the obtained models. There are a few things to look for in these 
comparisons:

Fit Between Simulated and Measured Output 
Keep the Model Output View open and look at the fit between the model’s 
simulated output and the measured one for the Validation Data. Formally, you 
could pick that model, for which this number is the lowest. In practice, it is 
better to be more pragmatic, and also take into account the model complexity, 
and whether the important features of the output response are captured.

Residual Analysis Test 
You should require of a good model, that the cross correlation function between 
residuals and input does not go significantly outside the confidence region. A 
clear peak at lag k shows that the effect from input u(t-k) on y(t) is not properly 
described. A rule of thumb is that a slowly varying cross correlation function 
outside the confidence region is an indication of too few poles, while sharper 
peaks indicate too few zeros or wrong delays.

Pole Zero Cancellations 
If the pole-zero plot (including confidence intervals) indicates pole-zero 
cancellations in the dynamics, this suggests that lower order models can be 
used. In particular, if it turns out that the orders of ARX models have to be 
increased to get a good fit, but that pole-zero cancellations are indicated, then 
the extra poles are just introduced to describe the noise. Then try ARMAX, OE, 
or BJ model structures with an A or F polynomial of an order equal to that of 
the number of noncanceled poles.

What Model Structures Should be Tested? 
Well, you can spend any amount of time to check out a very large number of 
structures. It often takes just a few seconds to compute and evaluate a model 
in a certain structure, so that you should have a generous attitude to the 
testing. However, experience shows that when the basic properties of the 
system’s behavior have been picked up, it is not much use to fine tune orders 
in absurdum just to press the fit by fractions of percents.
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Many ARX models: There is a very cheap way of testing many ARX structures 
simultaneously. Enter in the Orders text field many combinations of orders, 
using the colon (“:”) notation. When you select Estimate, models for all 
combinations (easily several hundreds) are computed and their (prediction 
error) fit to Validation Data is shown in a special plot. By clicking in this plot 
the best models with any chosen number of parameters will be inserted into the 
Model Board, and evaluated as desired.

Many State-space models: A similar feature is also available for black-box 
state-space models, estimated using n4sid. When a good order has been found, 
try the PEM estimation method, which often improves on the accuracy.

ARMAX, OE, and BJ models: Once you have a feel for suitable delays and 
dynamics orders, if is often useful to try out ARMAX, OE, and/or BJ with these 
orders and test some different orders for the noise transfer functions (C and D). 
Especially for poorly damped systems, the OE structure is suitable.

There is a quite extensive literature on order and structure selection, and 
anyone who would like to know more should consult the references.

Multivariable Systems 
Systems with many input signals and/or many output signals are called 
multivariable. Such systems are often more challenging to model. In particular 
systems with several outputs could be difficult. A basic reason for the 
difficulties is that the couplings between several inputs and outputs lead to 
more complex models. The structures involved are richer and more parameters 
will be required to obtain a good fit.

Available Models
The System Identification Toolbox as well as the GUI handles general, linear 
multivariable models. All earlier mentioned models are supported in the single 
output, multiple input case. For multiple outputs ARX models and state-space 
models are covered. Multi-output ARMAX and OE models are covered via 
state-space representations: ARMAX corresponds to estimating the K-matrix, 
while OE corresponds to fixing K to zero. (These are pop-up options in the GUI 
model order editor.)

Generally speaking, it is preferable to work with state-space models in the 
multivariable case, since the model structure complexity is easier to deal with. 
It is essentially just a matter of choosing the model order.
6



Working with Subsets of the Input Output Channels
In the process of identifying good models of a system, it is often useful to select 
subsets of the input and output channels. Partial models of the system’s 
behavior will then be constructed. It might not, for example, be clear if all 
measured inputs have a significant influence on the outputs. That is most 
easily tested by removing an input channel from the data, building a model for 
how the output(s) depends on the remaining input channels, and checking if 
there is a significant deterioration in the model output’s fit to the measured 
one. See also the discussion under Step 3 above.

Generally speaking, the fit gets better when more inputs are included and 
worse when more outputs are included. To understand the latter fact, you 
should realize that a model that has to explain the behavior of several outputs 
has a tougher job than one that just must account for a single output. If you 
have difficulties obtaining good models for a multi-output system, it might be 
wise to model one output at a time, to find out which are the difficult ones to 
handle. 

Models that are just to be used for simulations could very well be built up from 
single-output models, for one output at a time. However, models for prediction 
and control will be able to produce better results if constructed for all outputs 
simultaneously. This follows from the fact that knowing the set of all previous 
output channels gives a better basis for prediction, than just knowing the past 
outputs in one channel. 

Some Practical Advice
The GUI is particularly suited for dealing with multivariable systems since it 
will do useful bookkeeping for you, handling different channels. You could 
follow the steps of this agenda:

• Import data and create a data set with all input and output channels of 
interest. Do the necessary preprocessing of this set in terms of detrending, 
prefiltering, etc., and then select a Validation Data set with all channels.

• Then select a Working Data set with all channels, and estimate state-space 
models of different orders using n4sid for these data. Examine the resulting 
model primarily using the Model Output view.

• If it is difficult to get a good fit in all output channels or you would like to 
investigate how important the different input channels are, construct new 
data sets using subsets of the original input/output channels. Use the pop-up 
menu Preprocess > Select Channels for this. Don’t change the Validation 
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Data. The GUI will keep track of the input and output channel numbers. It 
will “do the right thing” when evaluating the channel-restricted models 
using the Validation Data. It might also be appropriate to see if 
improvements in the fit are obtained for various model types, built for one 
output at a time.

• If you decide for a multi-output model, it is often easiest to use state-space 
models. Use n4sid as a primary tool and try out pem when a good order has 
been found. Note that n4sid does not provide confidence intervals for the 
model views.
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Reading More About System Identification
Reading More About System Identification
There is substantial literature on System Identification. The following 
textbook deals with identification methods from a similar perspective as this 
toolbox, and also describes methods for physical modeling.

• Ljung L. and T. Glad. Modeling of Dynamic Systems, Prentice Hall, Englewood 
Cliffs, N.J. 1994.

For more details about the algorithms and theories of identification:

• Ljung L.. System Identification - Theory for the User, Prentice Hall, Englewood 
Cliffs, N.J. 1987.

• Söderström T. and P. Stoica. System Identification, Prentice Hall International, 
London. 1989.

For more about system and signals:

• Oppenheim J.  and A.S. Willsky. Signals and Systems, Prentice Hall, Englewood 
Cliffs, N.J. 1985.

The following textbook deals with the underlying numerical techniques for 
parameter estimation.

• Dennis, J.E. Jr. and R.B. Schnabel. Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, N.J. 
1983.
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1. The Big Picture
The System Identification Toolbox provides a graphical user interface (GUI) . 
The GUI covers most of the toolbox’s functions and gives easy access to all 
variables that are created during a session. It is started by typing

ident

in the MATLAB command window.

Figure 2-1:  The Main ident Information Window

The Model and Data Boards
System Identification is about data and models and creating models from data. 
The main information and communication window ident, is therefore 
dominated by two tables:

• A table over available data sets, each represented by an icon.

• A table over created models, each represented by an icon.



These tables will  be referred to as  the “Model Board” and the “Data Board” in 
this chapter. You enter data sets into the Data Board by

• Opening earlier saved sessions.

• Importing them from the MATLAB workspace.
• Creating them by detrending, filtering, selecting subsets, etc., of another 

data set in the Data Board. 

Imports are handled under the pop-up menu Data while creation of new data 
sets is handled under the pop-up menu Preprocess. “Handling Data” on page 
2-7 deals with this in more detail.

The models are entered into the summary board by

• Opening earlier saved sessions.

• Importing them from the MATLAB workspace.
• Estimating them from data.

Imports are handled under the pop-up menu Models, while all the different 
estimation schemes are reached under the pop-up menu Estimate. More about 
this in “Estimating Models” on page 2-14.

The Data and Model Boards can be rearranged  by dragging and dropping. 
More boards open automatically when necessary or when asked for (under 
menu Options).

The Working Data
All data sets and models are created from the Working Data set. This is the 
data that is given in the center of the ident window. To change the Working 
Data set drag and drop any data set from the Data Board on the Working Data 
icon.

The Views
Below the Data and Model Boards are buttons for different views. These 
control what aspects of the data sets and models you would like to examine, and 
are described in more detail in “Handling Data” on page 2-7 and in “Examining 
Models” on page 2-27. To select a data set or a model, so that its properties are 
displayed, click on its icon. A selected object is marked by a thicker line in the 
icon. To deselect, click again. An arbitrary number of data/model objects can be 
examined simultaneously. To have more information about an object, 
double-click on its icon. 
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The Validation Data
The two model views Model Output and Model Residuals illustrate model 
properties when applied to the Validation Data set. This is the set marked in 
the box below these two views. To change the Validation Data, drag and drop 
any data set from the Data Board on the Validation Data icon.

It is good and common practice in identification to evaluate an estimated 
model’s properties using a “fresh” data set, that is, one that was not used for 
the estimation. It is thus good advice to let the Validation Data be different 
from the Working Data, but they should of course be compatible with these.

The Work Flow
You start by importing data (under pop-up menu Data); you examine the data 
set using the Data Views. You probably remove the means from the data and 
select subsets of data for estimation and validation purposes using the items in 
the pop-up menu Preprocess. You then continue to estimate models, using the 
possibilities under the pop-up menu Estimate, perhaps first doing a 
quickstart. You examine the obtained models with respect to your favorite 
aspects using the different Model Views. The basic idea is that any checked 
view shows the properties of all selected models at any time. This function is 
“live” so models and views can be checked in and out at will in an online 
fashion. You select/deselect a model by clicking on its icon.

Inspired by the information you gain from the plots, you continue to try out 
different model structures (model orders) until you find a model you are 
satisfied with.

Management Aspects
Diary: It is easy to forget what you have been doing. By double-clicking on a 
data/model icon, a complete diary will be given of how this object was created, 
along with other key information. At this point you can also add comments and 
change the name of the object and its color.

Layout: To have a good overview of the created models and data sets, it is good 
practice to try rearranging the icons by dragging and dropping. In this way 
models corresponding to a particular data set can be grouped together, etc. You 
can also open new boards (Options menu Extra model/data boards) to 
further rearrange the icons. These can be dragged across the screen between 
different windows. The extra boards are also equipped with notepads for your 
comments.



Sessions: The Model and Data Boards with all models and data sets together 
with their diaries can be saved (under menu item File) at any point, and 
reloaded later. This is the counterpart of save/load workspace in the 
command-driven MATLAB. The four most recent sessions are listed under File 
for immediate open.

Cleanliness:  The boards will hold an arbitrary number of models and data 
sets (by creating clones of the board when necessary). It is however advisable 
to clear (delete) models and data sets that no longer are of interest. Do that by 
dragging the object to the Trash Can. (Double-clicking on the trash can will 
open it up, and its contents can be retrieved.) 

Window Culture: Dialog and plot windows are best managed by the GUI’s 
close function (submenu item under File menu, or select Close, or check/
uncheck the corresponding View box). They may also be”quitted” by the specific 
window system’s quit/close function. This does no harm, but “quit” will not be 
properly acknowledged by the GUI, and the window will have to be re-created 
next time it is to be used.

It is generally not suitable to iconify the windows – the GUI’s handling and 
window management system is usually a better alternative.

Workspace Variables
The models and data sets created within the GUI are normally not available in 
the MATLAB workspace. Indeed, the workspace is not at all littered with 
variables during the sessions with the GUI. The variables can however be 
exported at any time to the workspace, by dragging and dropping the object 
icon on the To Workspace box. They will then carry the name in the 
workspace that marked the object icon at the time of export. You can work with 
the variables in the workspace, using any MATLAB commands, and then 
perhaps import modified versions back into the GUI. Note that models have a 
specific internal structure and should be dealt with using the MATLAB 
commands present, th2ff, th2ss, etc. See “Model Conversions” on page 4-5 of 
the "Command Reference" chapter.

The GUI’s names of data sets and models are suggested by default procedures. 
Normally, you can enter any other name of your choice at the time of creation 
of the variable. Names can be changed (after double-clicking on the icon) at any 
time. Unlike the workspace situation, two GUI objects can carry the same 
name (i.e., the same string in their icons).
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The GUI produces a handful of global workspace variables for management 
purposes. They all start with the prefix XID. 

NOTE: Do not clear all or clear global during a GUI session! This would 
mean that you lose control over the objects that you have created. The same 
disaster occurs if you do clg or quit the main ident window. It is however 
safe to clear (without adding all or global) the workspace at any time.

Help Texts
The GUI contains some 100 help texts that are accessible in a nested fashion, 
when required. The main ident window contains general help topics under the 
Help menu. This is also the case for the various plot windows. In addition, 
every dialog box has a Help push button for current help and advice.



2. Handling Data

Data Representation 
In the System Identification Toolbox (SITB), signals and observed data are 
represented as column vectors, e.g.,

The entry in row number k, i.e., u(k), will then be the signal’s value at sampling 
instant number k. It is generally assumed in the toolbox that data are sampled 
at equidistant sampling times, and the sampling interval T is supplied as a 
specific argument.

We generally denote the input to a system by the letter u and the output by y. 
If the system has several input channels, the input data is represented by a 
matrix, where the columns are the input signals in the different channels:

The same holds for systems with several output channels.

The observed input-output data record is represented in the SITB by a matrix, 
where the first column(s) is the output, followed by the input column(s):

z = [y u];

When you work with the GUI, you only need to think of these representation 
issues when you insert the data set into the summary board. The GUI will then 
handle the data representation automatically.

u

u 1( )
u 2( )
…
…

u N( )

=

u u1 u2 … um=
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Getting Data into the GUI
The information about a data set that should be supplied to the GUI is as 
follows:

1 The input and output signals

2 The name you give to the data set 

3 The starting time

4 The sampling interval

5 Data notes

NOTE: Items 3 and 4 are used only to ensure correct time and frequency scales 
when you plot data and model characteristics. 

These are notes for your own information and bookkeeping that will follow the 
data and all models created from them.



As you select the pop-up menu Data and choose the item Import..., a dialog 
box will open, where you can enter the information items 1 - 5, just listed. This 
box has six fields for you to fill in:

Figure 2-2:  The Dialog for Importing Data into the GUI

Input and Output: Enter the variable names of the input and output 
respectively. These should be variables in your MATLAB workspace, so you 
may have to load some disk files first.

Actually, you can enter any MATLAB expressions in these fields, and they will 
be evaluated to compute the input and the output before inserting the data into 
the GUI.

Data name: Enter the name of the data set to be used by the GUI. This name 
can be changed later on.

Starting time and Sampling interval: Fill these out for correct time and 
frequency scales in the plots.

Note that you can enter any text you want to accompany the data for 
bookkeeping purposes.
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Finally, select Import to insert the data into the GUI. When no more data sets 
are to be inserted, select Close to close the dialog box. Reset will empty all the 
fields of the box.

Taking a Look at the Data
The first thing to do after having inserted the data set into the Data Board is 
to examine it. By checking the Data View item Plot Data, a plot of the input 
and output signals will be shown for the data sets that are selected. You select/
deselect the data sets by clicking on them. For multivariable data, the different 
combinations of input and output signals are chosen under menu item 
Channel in the plot window. Using the zoom function (drawing rectangles with 
the left mouse button down) different portions of the data can be examined in 
more detail.

To examine the frequency contents of the data, check the Data View item 
Data Spectra. The function is analogous to Plot Data, but the signals’ spectra 
are shown instead. By default the periodograms of the data are shown, i.e., the 
absolute square of the Fourier transforms of the data. The plot can be changed 
to any chosen frequency range and a number of different ways of estimating 
spectra, by the Options menu item in the spectra window.

The purpose of examining the data in these ways is to find out if there are 
portions of the data that are not suitable for identification, if the information 
contents of the data is suitable in the interesting frequency regions, and if the 
data have to be preprocessed in some way, before using them for estimation.

Preprocessing Data

Detrending
Detrending the data involves removing the mean values or linear trends from 
the signals (the means and the linear trends are then computed and removed 
from each signal individually). This function is accessed under the pop-up 
menu Preprocess, by selecting item Remove Means or Remove Trends. 
More advanced detrending, such as removing piecewise linear trends or 
seasonal variations cannot be accessed within the GUI. It is generally 
recommended that you always remove at least the mean values of the data 
before the estimation phase, unless physical insight involving actual signal 
levels is built into the models.
0



Selecting Data Ranges
It is often the case that the whole data record is not suitable for identification, 
due to various undesired features (missing or “bad” data, outbursts of 
disturbances, level changes etc.), so that only portions of the data can be used. 
In any case, it is advisable to select one portion of the measured data for 
estimation purposes and another portion for validation purposes. The pop-up 
menu item Preprocess > Select Range... opens a dialog box, which facilitates 
the selection of different data portions, by typing in the ranges, or marking 
them by drawing rectangles with the mouse button down.

For multivariable data it is often advantageous to start by working with just 
some of the input and output signals. The menu item Preprocess > Select 
Channels... allows you to select subsets of the inputs and outputs. This is done 
in such a way that the input/output numbering remains consistent when you 
evaluate data and model properties, for models covering different subsets of the 
data. 

Prefiltering
By filtering the input and output signals through a linear filter (the same filter 
for all signals) you can focus the model’s fit to the system to specific frequency 
ranges. This is done by selecting the pop-up menu item Preprocess > Filter... 
in the main window. The dialog is quite analogous to that of selecting data 
ranges in the time domain. You mark with a rectangle in the spectral plots the 
intended passband or stop band of the filter, you select a button to check if the 
filtering has the desired effect, and then you insert the filtered data into the 
GUI’s Data Board.

Prefiltering is a good way of removing high frequency noise in the data, and 
also a good alternative to detrending (by cutting out low frequencies from the 
pass band). Depending on the intended model use, you can also make sure that 
the model concentrates on the important frequency ranges. For a model that  
will be used for control design, for example, the frequency band around the 
intended closed-loop bandwidth is of special importance.

Resampling
If the data turn out to be sampled too fast, they can be decimated, i.e., every 
k-th value is picked, after proper prefiltering (antialias filtering). This is 
obtained from menu item Preprocess > Resample.
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You can also resample at a faster sampling rate by interpolation, using the 
same command, and giving a resampling factor less than one.

Quickstart
The pop-up menu item Preprocess > Quickstart performs the following 
sequence of actions: It opens the Time plot Data view, removes the means from 
the signals, and it splits these detrended data into two halves. The first one is 
made Working Data and the second one becomes Validation Data. All the three 
created data sets are inserted into the Data Board.

Checklist for Data Handling
• Insert data into the GUI’s Data Board.

• Plot the data and examine it carefully.

• Typically detrend the data by removing mean values.

• Possibly prefilter the data to enhance and suppress various frequency bands.

• Select portions of the data for Estimation and for Validation. Drag and drop 
these data sets to the corresponding boxes in the GUI. 

Simulating Data
The GUI is intended primarily for working with real data sets, and does not 
itself provide functions for simulating synthetic data. That has to be done in 
command mode, and you can use your favorite procedure in SIMULINK, the 
Signal Processing Toolbox, or any other toolbox for simulation and then insert 
the simulated data into the GUI as described above. 

The System Identification Toolbox also has several commands for simulation. 
You should check idinput, idsim, poly2th, modstruc, and ms2th in Chapter 4, 
"Command Reference," for details. The following example shows how the 
ARMAX model

y (t )-1.5y (t -1)+0.7y( t-2)=u(t -1)+0.5u( t-2)+e (t )-e( t-1)+0.2e (t -2)

is simulated with a binary random input u:

model1 = poly2th([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);
u = idinput(400,’rbs’,[0 0.3]); 
e = randn(400,1);
y = idsim([u e],model1);
2



The input, u, and the output, y, can now be imported into the Graphical User 
Interface as data, and the various estimation routines can be applied to them. 
By also importing the simulation model, model1, into the GUI, its properties 
can be compared to those of the different estimated models.

To simulate a continuous-time state-space model: 

y=Cx+e

with the same input, and a sampling interval of 0.1 seconds, do the following 
in the System Identification Toolbox:

A=[-1 1;-0.5 0]; B=[1; 0.5]; C=[1 0]; D=0; K=[0.5;0.5]; 
model2=ms2th(modstruc(A,B,C,D,K),'c');
model2=sett(model2,0.1);
y=idsim([u e],model2); 

x· Ax Bu Ke+ +=
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3. Estimating Models

The Basics 
Estimating models from data is the central activity in the System 
Identification Toolbox. It is also the one that offers the most variety of 
possibilities and thus is the most demanding one for the user. 

All estimation routines are accessed from the pop-up menu Estimate in the 
ident window. The models are always estimated using the data set that is 
currently in the Working Data box.

 One can distinguish between two different types of estimation methods:

• Direct estimation of the Impulse or the Frequency Response of the system. 
These methods are often also called nonparametric estimation methods, and 
do not impose any structure assumptions about the system, other than that 
it is linear.

• Parametric methods. A specific model structure is assumed, and the 
parameters in this structure are estimated using data. This opens up a large 
variety of possibilities, corresponding to different ways of describing the 
system. Dominating ways are state-space and several variants of difference 
equation descriptions.

Direct Estimation of the Impulse Response 
A linear system can be described by the impulse response gt, with the property 
that

The name derives from the fact that if the input u(t) is an impulse, i.e., u(t)=1 
when t=0 and 0 when t>0 then the output y(t) will be y(t)=gt. For a 
multivariable system, the impulse response gk will be a p by m matrix, where 
p is the number of outputs and m is the number of inputs. Its i-j element thus 
described the behavior of the i-th output after an impulse in the j-th input.

By choosing menu item Estimate > Correlation Model and then selecting 
Estimate in the dialog window that opens, impulse response coefficients are 
estimated directly from the input/output data using so called correlation 

y t( ) gku t k–( )
k 1=

∞

∑=
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analysis. The actual method is described under the command cra in the 
Command Reference chapter. An option that determines the order of a 
prewhitening filter can also be set in the dialog window. It is not very sensitive 
in most cases, and the default choice is often good enough. To obtain the default 
choice without opening the dialog window, you can also just type the letter c in 
the ident window. This is the “hotkey” for correlation analysis.

The resulting impulse response estimate is placed in the Model Board, under 
the default name cra_d. (The name can be changed by double-clicking on the 
model icon and then typing in the desired name in the dialog box that opens.) 

The best way to examine the result is to select the Model View Transient 
Response. This gives a graph of the estimated response. This view offers a 
choice between displaying the Impulse or the Step response. For a 
multivariable system, the different channels, i.e., the responses from a certain 
input to a certain output, are selected under menu item Channel.

The number of lags for which the impulse response is estimated, i.e., the length 
of the estimated response, is determined as one of the options in the Transient 
Response View.

Direct Estimation of the Frequency Response
The frequency response of a linear system is the Fourier transform of its 
impulse response. This description of the system gives considerable 
engineering insight into its properties. The relation between input and output 
is often written

y ( t)=G (z)u( t)+v( t)

where G is the transfer function and v is the additive disturbance. The function

as a function of (angular) frequency ω is then the frequency response or 
frequency function. T is the sampling interval. If you need more details on the 
different interpretations of the frequency response, consult See “The System 
Identification Problem” on page 3-8. in the Tutorial or any textbook on linear 
systems. 

The system’s frequency response is directly estimated using Spectral Analysis 
by the menu item Estimate > Spectral Model, and then selecting the 
Estimate button in the dialog box that opens. The result is placed on the Model 

G eiωT( )
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Board under the default name spa_d. The best way to examine it is to plot it 
using the Model View Frequency Response. This view offers a number of 
different options on how to graph the curves. The frequencies for which to 
estimate the response can also be selected as an option under the Options 
menu in this View window.

The Spectral Analysis command also estimates the spectrum of the additive 
disturbance v(t) in the system description. This estimated disturbance 
spectrum is examined under the Model View item Noise Spectrum.

The Spectral Analysis estimate is stored in the SITB’s freqfunc format. If you 
need to further work with the estimates, you can export the model to the 
MATLAB workspace and retrieve the responses by the command getff. See 
freqfunc and getff in Chapter 4, "Command Reference," for more 
information. (A model is exported by dragging and dropping it over the To 
Workspace icon.)

Two options that affect the spectral analysis estimate can be set in the dialog 
box. The most important choice is a number, M, (the size of the lag window) 
that affects the frequency resolution of the estimates. Essentially, the 
frequency resolution is about 2 /M radians/(sampling interval). The choice of 
M is a trade-off between frequency resolution and variance (fluctuations). A 
large value of M gives good resolution but fluctuating and less reliable 
estimates. The default choice of M is good for systems that do not have very 
sharp resonances and may have to be adjusted for more resonant systems.

The options also offer a choice between the Blackman-Tukey windowing 
method spa (which is default) and a method based on smoothing direct Fourier 
transforms, etfe. etfe has an advantage for highly resonant systems, in that 
it is more efficient for large values of M. It however has the drawbacks that it 
requires linearly spaced frequency values, does not estimate the disturbance 
spectrum, and does not provide confidence intervals. The actual methods are 
described in more detail in Chapter 4, "Command Reference," under spa and 
etfe. To obtain the spectral analysis model for the current settings of the 
options, you can just type the hotkey s in the ident window. 

π
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Estimation of Parametric Models 
The SITB supports a wide range of model structures for linear systems. They 
are all accessed by the menu item Estimate  > Parametric Models... in the 
ident window. This opens up a dialog box Parametric Models, which 
contains the basic dialog for all parametric estimation as shown on the 
following page

Figure 2-3:  The Dialog Box for Estimating Parametric Models

The basic function of this box is as follows:

As you select Estimate, a model is estimated from the Working Data. The 
structure of this model is defined by the pop-up menu Structure together with 
the edit box Orders. It is given a name, which is written in the edit box Name.

The GUI will always suggest a default model name in the Name box, but you 
can change it to any string before selecting the Estimate button. (If you intend 
to export the model later, avoid spaces in the name.)
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The interpretation of the model structure information (typically integers) in 
the Order box, depends on the selected Structure in the pop-up menu. This 
covers, typically, six choices:

• ARX models 

• ARMAX model

• Output-Error (OE) models

• Box-Jenkins (BJ) models 

• State-space models 

• Model structure defined by Initial Model (User defined structures)

These are dealt with one by one shortly.

You can fill out the Order box yourself at any time, but for assistance you can 
select Order Editor... This will open up another dialog box, depending on the 
chosen Structure, in which the desired model order and structure information 
can be entered in a simpler fashion.

You can also enter a name of a MATLAB workspace variable in the order edit 
box. This variable should then have a value that is consistent with the 
necessary orders for the chosen structure.

NOTE: For the state-space structure and the ARX structure, several orders 
and combination of orders can be entered. Then all corresponding models will 
be compared and displayed in a special dialog window for you to select 
suitable ones. This could be a useful tool to select good model orders. This 
option is described in more detail later in this section. When it is available, a 
button Order selection is visible.

Estimation Method  
A common and general method of estimating the parameters is the prediction 
error approach, where simply the parameters of the model are chosen so that 
the difference between the model’s (predicted) output and the measured output 
is minimized. This method is available for all model structures. Except for the 
ARX case, the estimation involves an iterative, numerical search for the best 
fit. 
8



To obtain information from and interact with this search, select Iteration 
control... This also gives access to a number of options that govern the search 
process. (See auxvar in the Chapter 4, "Command Reference,".)

For some model structures (the ARX model, and black-box state-space models) 
methods based on correlation are also available: Instrumental Variable (IV)  
and Sub-space (N4SID) methods. The choice between methods is made in the 
Parametric Models dialog box.

Resulting Models 
The estimated model is inserted into the GUI’s Model Board. You can then 
examine its various properties and compare them with other models’ properties 
using the Model View plots. More about that in “Examining Models” on page 
2-27. 

To take a look at the model itself, double-click on the model’s icon (middle/right 
mouse button or alt- double-click). The Data/Model Info window that then 
opens gives you information about how the model was estimated. You can then 
also select Present button, which will list the model, and its parameters with 
estimated standard deviations in the MATLAB command window. 

If you need to work further with the model, you can export it by dragging and 
dropping it over the To Workspace icon, and then apply any MATLAB and 
toolbox commands to it. (See, in particular, the commands th2ss, th2tf, 
th2par, and thd2thc in Chapter 4, "Command Reference,".)

How to Know Which Structure and Method to Use 
There is no simple way to find out “the best model structure”; in fact, for real 
data, there is no such thing as a “best” structure. Some routes to find good and 
acceptable model are described in “A Startup Identification Procedure” on page 
1-12 in the introductory chapter. It is best to be generous at this point. It often 
takes just a few seconds to estimate a model, and by the different validation 
tools described in the next section, you can quickly find out if the new model is 
any better than the ones you had before. There is often a significant amount of 
work behind the data collection, and spending a few extra minutes trying out 
several different structures is usually worth while. 
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ARX Models

The Structure 
The most used model structure is the simple linear difference equation

which relates the current output y(t) to a finite number of past outputs y(t-k) 
and inputs u(t-k).

The structure is thus entirely defined by the three integers na, nb, and nk. na 
is equal to the number of poles and nb–1 is the number of zeros, while nk is the 
pure time-delay (the dead-time) in the system. For a system under 
sampled-data control, typically nk is equal to 1 if there is no dead-time.

For multi-input systems nb and nk are row vectors, where the i-th element 
gives the order/delay associated with the i-th input.

Entering the Order Parameters 
The orders na, nb, and nk can either be directly entered into the edit box 
Orders in the Parametric Models  window, or selected using the pop-up 
menus in the Order Editor.

Estimating Many Models Simultaneously 
By entering any or all of the structure parameters as vectors, using MATLAB’s 
colon notation, like na=1:10, etc., you define many different structures that 
correspond to all combinations of orders. When selecting Estimate, models 
corresponding to all of these structures are computed. A special plot window 
will then open that shows the fit of these models to Validation Data. By clicking 
in this plot, you can then enter any models of your choice into the Model Board. 

Multi-input models: For multi-input models you can of course enter each of 
the input orders and delays as a vector. The number of models resulting from 
all combinations of orders and delays can however be very large. As an 
alternative, you may enter one vector (like nb=1:10) for all inputs and one 
vector for all delays. Then only such models are computed that have the same 
orders and delays from all inputs.

y t( ) a1y t 1–( ) … anay t na–( )+ + + b1u t nk–( ) … bnbu t nk– nb– 1+( )+ +=
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Estimation Methods
There are two methods to estimate the coefficients a and b in the ARX model 
structure:
Least Squares: Minimizes the sum of squares of the right-hand side minus 
the left-hand side of the expression above, with respect to a and b. This is 
obtained by selecting ARX as the Method. 

Instrumental Variables: Determines a and b so that the error between the 
right- and left- hand sides becomes uncorrelated with certain linear 
combinations of the inputs. This is obtained by selecting IV in the Method box.

The methods are described in more detail in Chapter 4, "Command Reference," 
under arx and iv4.

Multi-Output Models 
For a multi-output ARX structure with NY outputs and NU inputs, the 
difference equation above is still valid. The only change is that the coefficients 
a are NY by NY matrices and the coefficients b are NY by NU matrices. 

The orders [NA NB NK] define the model structure as follows:

NA: an NY by NY matrix whose i-j entry is the order of the polynomial (in the 
delay operator) that relates the j-th output to the i-th output

NB: an NY by NU matrix whose i-j entry is the order of the polynomial that 
relates the j-th input to the i-th output 

NK: an NY by NU matrix whose i-j entry is the delay from the j-th input to the 
i-th output

The Order Editor dialog box allows the choices 

  NA = na∗ones(NY,NY)
  NB = nb∗ones(NY,NU)
  NK = nk∗ones(NY,NU)

 where na, nb, and nk are chosen by the pop-up menus.

For tailor-made order choices, construct a matrix [NA NB NK] in the MATLAB 
command window and enter the name of this matrix in the Order edit box in 
the Parametric Models window.

Note that the possibility to estimate many models simultaneously is not 
available for multi-output ARX models.

See “Defining Model Structures” on page 3-29 for more information on 
multi-output ARX models. 
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ARMAX, Output-Error and Box-Jenkins Models
There are several elaborations of the basic ARX model, where different noise 
models are introduced. These include well known model types, such as 
ARMAX, Output-Error, and Box-Jenkins.

The General Structure
A general input-output linear model for a single-output system with input u 
and output y  can be written:

Here ui denotes input #i, and A, Bi, C, D, and Fi, are polynomials in the shift 
operator (z or q). (Don’t get intimidated by this: It is just a compact way of 
writing difference equations; see below.)

The general structure is defined by giving the time-delays nk and the orders of 
these polynomials (i.e., the number of poles and zeros of the dynamic model 
from u to y, as well as of the noise model from e to y).

The Special Cases 
Most often the choices are confined to one of the following special cases:

ARX:   A(q) y(t) = B(q) u(t-nk) + e(t)

ARMAX: A(q) y(t) = B(q) u(t-nk) + C(q) e(t)

OE:    y(t) = [B(q)/F(q)] u(t-nk) + e(t)    (Output-Error)

BJ:    y(t) = [B(q)/F(q)] u(t-nk) + [C(q)/D(q)] e(t)  (Box-Jenkins)

The “shift operator polynomials” are just compact ways of writing difference 
equations. For example the ARMAX model in longhand would be:

y( t)+a1( t-1)+. ..+anay ( t-na )=b1u( t-nk )+. ..bnbu (t -nk-nb+1)+e(t )
+c1e(t -1)
+...+ence (t -nc )

Note that A(q) corresponds to poles that are common between the dynamic 
model and the noise model (useful if noise enters the system “close to” the 
input). Likewise F(q) determines the poles that are unique for the dynamics 
from input # i, and D(q) the poles that are unique for the noise. 

A q( )y t( ) Bi q( ) Fi q( ) ]⁄ ui t nk1–( ) C q( ) D q( ) ]⁄ e t( )[+[
i 1=

nu

∑=
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The motivation for introducing all these model variants is to provide for 
flexibility in the noise description and to allow for common or different poles 
(dynamics) for the different inputs.

Entering the Model Structure  
Use the Structure pop-up menu in the Parametric Models dialog to choose 
between the ARX, ARMAX, Output-Error, and Box-Jenkins structures. Note 
that if the Working Data set has several outputs, only the first choice is 
available. For time series (data with no input signal) only AR and ARMA are 
available among these choices. These are the time series counterparts of ARX 
and ARMAX.

The orders of the polynomials are selected by the pop-up menus in the Order 
Editor dialog window, or by directly entering them in the edit box Orders in 
the Parametric Models window. When the order editor is open, the default 
orders, entered as you change the model structure, are based on previously 
used orders.

Estimation Method 
The coefficients of the polynomials are estimated using a prediction error/
Maximum Likelihood method, by minimizing the size of the error term “e” in 
the expression above. Several options govern the minimization procedure. 
These are accessed by activating Iteration Control in the Parametric 
Models window, and selecting Option.

The algorithms are further described in Chapter 4, "Command Reference," 
under armax, auxvar, bj, oe, and pem. See also “Parametric Model Estimation” 
on page 3-22 and “Defining Model Structures” on page 3-29.

NOTE: These model structures are available only for the scalar output case. 
For multi-output models, the state-space structures offer the same flexibility. 
Also note that it is not possible to estimate many different structures 
simultaneously for the input-output models.
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State-Space Models

The Model Structure 
The basic state-space model in innovations form can be written

               x ( t+1)  = A x( t)   +  B u (t )  +  K e(t ) 

               y( t)  = C x( t)   + D u (t )  +  e(t )

The SITB supports two kinds of parametrizations of state-space models: 
black-box, free parametrizations, and parametrizations tailor-made to the 
application. The latter is discussed below under the heading “User Defined 
Model Structures.” First we will discuss the black-box case.

Entering Black-Box State-Space Model Structures 
The most important structure index is the model order, i.e., the dimension of 
the state vector x.

Use the pop-up menu in the Order Editor to choose the model order, or enter 
it directly into the Orders edit box in the Parametric Models window. Using 
the other pop-up menus in the Order Editor, you can further affect the chosen 
model structure:

• Fixing K to zero gives an Output-Error method, i.e., the difference between 
the model’s simulated output and the measured one is minimized. Formally, 
this corresponds to an assumption that the output disturbance is white 
noise. 

• Fixing D to zero means that there is a delay of (at least) one sample from the 
input to the output. For physical systems that are driven by piece-wise 
constant inputs, this is a natural assumption.

• Fixing the initial value x(0) to zero means that the initial state is not 
estimated. Otherwise this initial state is estimated from the data. (Note that 
the estimated value of x(0) is something that relates to the Working Data, 
and is not necessarily a good value of x(0) for the Validation Data.)

Estimating Many Models Simultaneously 
By entering a vector for the model order, using MATLAB’s colon notation, (such 
as “1:10”) all indicated orders will be computed using a preliminary method. 
You can then enter models of different orders into the Model Board by clicking 
in a special graph that contains information about the models. 
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Estimation Methods 
There are two basic methods for the estimation:

PEM: Is a standard prediction error/maximum likelihood method, based on 
iterative minimization of a criterion. The iterations are started up at 
parameter values that are computed from n4sid. The parametrization of the 
matrices A, B, C, D, and K follows a default canonical form. The search for 
minimum is controlled by a number of options. These are accessed from the 
Option button in the Iteration Control window.

N4SID: Is a subspace-based method that does not use iterative search. The 
quality of the resulting estimates may significantly depend on an auxiliary 
order (like a prediction horizon). This auxiliary order can be given within 
parenthesis after the order in the edit box Orders (like “4 (9)”). If the auxiliary 
order is not given, a default value is used.

If the auxiliary order is given as a vector (like “4 (5:17)”), models for all these 
auxiliary orders are computed and evaluated using the Working Data set. The 
model that gives the best fit is chosen. A figure is shown that illustrates the fit 
as a function of auxiliary order. (The fit is a simulation error fit if K=0 is 
chosen, otherwise a one-step ahead prediction error fit.)

See n4sid and pem in Chapter 4, "Command Reference," for more information.

User Defined Model Structures

State-Space Structures 
The SITB supports user-defined linear state-space models of arbitrary 
structure. Using the command ms2th, known and unknown parameters in the 
A, B, C, D, K, and X0 matrices can be easily defined both for discrete- and 
continuous-time models. The command mf2th allows you to use a completely 
arbitrary structure, defined by an M-file. fixpar and unfixpar can be used to 
manipulate structures. See Chapter 4, "Command Reference," and “Defining 
Model Structures” on page 3-29

To use these structures in conjunction with the GUI, just define the 
appropriate structure in the MATLAB command window. Then use the 
Structure pop-up menu to select By Initial Model and enter the variable 
name of the structure in the edit box Initial Model in the Parametric 
Models window and select Estimate.
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Any Model Structure 
Arbitrary model structures can be defined using several commands in the 
System Identification Toolbox:

• poly2th: Creates Input-output structures for single-output models

• ms2th:   Creates Linear State-space models with arbitrary, free parameters 

• mf2th:   Creates completely arbitrary parametrizations of linear systems 

• arx2th: Creates multivariable ARX structures 

• fixpar/unfixpar: Modifies structures by fixing or unfixing parameters

In addition, all estimation commands create model structures in terms of the 
resulting models.

Enter the name of any model structure in the box Orders (or Initial model) 
in the window Parametric Models and then select Estimate. Then the 
parameters of the model structure are adjusted to the chosen Working Data 
set. The method is a standard prediction error/maximum likelihood approach 
that iteratively searches for the minimum of a criterion. Options that govern 
this search are accessed by the Option button in the Iteration Control 
window.

The name of the initial model must be a variable either in the workspace or in 
the Model Board. In the latter case you can just drag and drop it over the 
Orders/Initial model edit box.
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4. Examining Models
Having estimated a model is just a first step. It must now be examined, 
compared with other models, and tested with new data sets. This is primarily 
done using the six Model View functions, at the bottom of the main ident 
window:

• Frequency response

• Transient response

• Zeros and poles

• Noise spectrum

• Model output

• Model residuals  

In addition, you can double-click on the model’s icon to get Text Information 
about the model. Finally, you can export the model to the MATLAB workspace 
and use any commands for further analysis and model use.

Views and Models 
The basic idea is that if a certain View window is open (checked), then all 
models in the Model Summary Board that are selected will be represented in 
the window. The curves in the View window can be clicked in and out by 
selecting and deselecting the models in an online fashion. You select and 
deselect a model by clicking on its icon. An selected model is marked with a 
thicker line in its icon. 

On color screens, the curves are color coded along with the model icons in the 
Model Board. Before printing a plot it might be a good idea to separate the line 
styles (menu item under Style). This could also be helpful on black and white 
screens.

Note that models that are obtained by spectral analysis only can be 
represented as frequency response and  noise spectra, and that models 
estimated by correlation analysis only can be represented as transient 
response.
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The Plot Windows 
The six views all give similar plot windows, with several common features. 
They have a common menu bar, which covers some basic functions.

First of all, note that there is a zoom function in the plot window. By dragging 
with the left mouse button down, you can draw rectangles, which will be 
enlarged when the mouse button is released. By double-clicking, the original 
axis scales are restored. For plots with two axes, the x-axes scales are locked to 
each other. A single click on the left mouse button zooms in by a factor of two, 
while the middle button zooms out. The zoom function can be deactivated if 
desired. Just select the menu item Zoom under Style.

Second, by pointing to any curve in the plot, and pressing the right mouse 
button, the curve will be identified with model name and present coordinates.

The common menu bar covers the following functions:

File
File allows you to copy the current figure to another, standard MATLAB figure 
window. This might be useful, e.g., when you intend to print a customized plot. 
Other File items cover printing the current plot and closing the plot window.

Options
Options first of all covers actions for setting the axes scaling. This menu item 
also gives a number of choices that are specific for the plot window in question, 
like a choice between step response or impulse response in the Transient 
response window.

A most important option is the possibility to show confidence intervals. Each 
model property has some uncertainty. This can also be estimated from data. By 
checking Show confidence intervals, a confidence region around the 
nominal curve (model property) will be marked (by dash-dotted lines). The level 
of confidence can also be set under this menu item. 

NOTE: Confidence intervals are supported for most models and properties, 
except models estimated using n4sid and etfe, and the k-step ahead 
prediction-property.
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Style
The style menu gives access to various ways of affecting the plot. You can add 
gridlines, turn the zoom on and off, and change the linestyles. The menu also 
covers a number of other options, like choice of units and scale for the axis.

Channel
For multivariate systems, you can choose which input-output channel to 
examine. The current choice is marked in the figure title.

Help
The Help menu has a number of items, which explain the plot and its options.

Frequency Response and Disturbance Spectra 
All linear models that are estimated can be written in the form

y ( t)=G (z)u( t)+v( t)

where G(z) is the (discrete-time) transfer function of the system and v(t) is an 
additive disturbance. The frequency response or frequency function of the 
system is the complex-valued function G(eiωT) viewed as a function of angular 
frequency ω. 

This function is often graphed as a Bode diagram, i.e., the logarithm of the 
amplitude (the absolute value) G(eiωT) as well as the phase arg (the argument) 
G(eiωT) are plotted against the logarithm of frequency ω in two separate plots. 
These plots are obtained by checking the Model View Frequency Response 
in the main ident window.

The estimated spectrum of the disturbance v is plotted as a power spectrum by 
choosing the Model View Noise Spectrum.

If the data is a time series y (with no input u), then the spectrum of y is plotted 
under Noise Spectrum, and no frequency functions are given.

Transient Response
Good and simple insight into a model’s dynamic properties is obtained by 
looking at its step response or impulse response. This is the output of the model 
when the input is a step or an impulse. These responses are plotted when the 
Model View Transient Response is checked.
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It is quite informative to compare the transient response of a parametric 
model, with the one that was estimated using correlation analysis. If there is 
good agreement between the two, you can be quite confident that some 
essentially correct features have been picked up. It is useful to check the 
confidence intervals around the responses to see what “good agreement” could 
mean quantitatively.

Many models provide a description of the additive disturbance v(t):

v( t)=H(z)e (t )

Here H(z) is a transfer function that describes how the disturbance v(t) can be 
thought of as generated by sending white noise e(t) through it. To display the 
properties of H, you can choose channels (in the Channel menu) that have 
noise components as inputs.

Poles and Zeros
The poles of a system are the roots of the denominator of the transfer function 
G(z), while the zeros are the roots of the numerator. In particular the poles 
have a direct influence on the dynamic properties of the system.

The poles and zeros of G (and H ) are plotted by choosing the Model View 
Poles and Zeros.

It is useful to turn on the confidence intervals in this case. They will clearly 
reveal which poles and zeros could cancel (their confidence regions overlap). 
That is an indication that a lower order dynamic model could be used.

For multivariable systems it is the poles and zeros of the individual input/
output channels that are displayed. To obtain the so called transmission zeros, 
you will have to export the model, extract a state-space description by th2ss, 
and then apply the command tzero from the Control System Toolbox.

Compare Measured and Model Output 
A very good way of obtaining insight into the quality of a model is to simulate 
it with the input from a fresh data set, and compare the simulated output with 
the measured one. This gives a good feel for which properties of the system 
have been picked up by the model, and which haven’t.

This test is obtained by checking the Model View Model Output. Then the 
data set currently in the Validation Data box will be used for the comparison. 
0



The fit will also be displayed. This is computed as the root of the mean square 
value of the difference between measured and simulated output.

If the model is unstable, or has integration or very slow time constants, the 
levels of the simulated and the measured output may drift apart, even for a 
model that is quite good (at least for control purposes). It is then a good idea to 
evaluate the model’s predicted output rather than the simulated one. With a 
prediction horizon of k, the k-step ahead predicted output is then obtained as 
follows:

The predicted value y(t) is computed from all available inputs  (used 
according to the model) and all available outputs up to time t-k,  . 
The simulation case, where no past outputs at all are used, thus formally 
corresponds to k=∞. To check if the model has picked up interesting dynamic 
properties, it is wise to let the predicted time horizon (kT, T being the sampling 
interval) be larger than the important time constants.

Note here that different models use the information in past output data in their 
predictors in different ways. This depends on the noise model. For example, so 
called Output-Error models (obtained by fixing K to zero for state-space models 
and setting na=nc=nd=0 for input output models, see the previous section) do 
not use past outputs at all. The simulated and the predicted outputs, for any 
value of k, thus coincide.

Residual Analysis 
In a model

the noise source e(t) represents that part of the output that the model could not 
reproduce. It gives the “left-overs” or, in Latin, the residuals. For a good model, 
the residuals should be independent of the input. Otherwise, there would be 
more in the output that originates from the input and that the model has not 
picked up.

To test this independence, the cross-correlation function between input and 
residuals is computed by checking the Model View Model Residuals. It is 
wise to also display the confidence region for this function. For an ideal model 
the correlation function should lie entirely between the confidence lines for 
positive lags. If, for example, there is a peak outside the confidence region for 
lag k, this means that there is something in the output y(t) that originates from 
u(t-k) and that has not been properly described by the model. The test is carried 

u s( ) s t≤( )
y s( ) s t k–≤( )

y t( ) G z( )u t( ) H z( )e t( )+=
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out using the Validation Data. If these were not used to estimate the model, the 
test is quite tough. See also “Model Structure Selection and Validation” on page 
3-49.

For a model also to give a correct description of the noise properties (i.e., the 
transfer function H), the residuals should be mutually independent. This test 
is also carried out by the view Model Residuals, by displaying the 
auto-correlation function of the residuals (excluding lag zero, for which this 
function by definition is one). For an ideal model, the correlation function 
should be entirely inside the confidence region.

Text Information
By double-clicking (middle/right mouse button or alt-double-click) on the model 
icon, a Data/model Info dialog box opens, which contains some basic 
information about the model. It also gives a diary of how the model was created, 
along with the notes that originally were associated with the estimation data 
set. At this point you can do a number of things:

Present
Selecting the Present button displays details of the model in the MATLAB 
command window. The model’s parameters along with estimated standard 
deviations are displayed, as well as some other notes.

Modify
You can simply type in any text you want anywhere in the Diary and Notes 
editable text field of the dialog box. You can also change the name of the model 
just by editing the text field with the model name. The color, which the model 
is associated with in all plots, can also be edited. Enter RGB-values or a color 
name (like 'y') in the corresponding box. 

Further Analysis in the MATLAB Workspace
Any model and data object can be exported to the MATLAB workspace by 
dragging and dropping its icon over the To Workspace box in the ident 
window.
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Once you have exported the model to the workspace, there are lots of 
commands by which you can further transform it, examine it, and convert it to 
other formats for use in other toolboxes. Some examples of such commands are

Also, if you need to prepare specialized plots that are not covered by the Views, 
all the SITB commands for computing and extracting simulations, frequency 
functions, zeros and poles, etc., are available. See Chapter 3, "Tutorial," and 
Chapter 4, "Command Reference,".

thd2thc Transform to continuous time.

th2ss Convert to state-space representation.

th2tf Convert to transfer function form.

th2poly Convert to polynomial input/output form.
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5. Some Further GUI Topics
This section discusses a number of different topics.

Mouse Buttons and Hotkeys
The GUI uses three mouse buttons. If you have fewer buttons on your mouse, 
the actions associated with the middle and right mouse buttons are obtained 
by shift-click, alt-click or control-click, depending on the computer.

The Main ident Window
In the main ident window the mouse buttons are used to drag and drop, to 
select/deselect models and data sets, and to double-click to get text information 
about the object. You can use the left mouse button for all of this. A certain 
speed-up is obtained if you use the left button for dragging and dropping, the 
right one for selecting models and data sets, and the middle one for 
double-clicking. On a slow machine a double-click from the left button might 
not be recognized.

The ident window also has a number of hotkeys. By pressing a  keyboard letter 
when it is the current window, some  functions can be quickly activated. These 
are

• s: Computes Spectral Analysis Model using the current options settings. 
(These can be changed in the dialog window that opens when you choose 
Spectral Model in the Estimate pop-up menu.)

• c: Computes Correlation Analysis Model using the current options 
settings. (These can be changed in the dialog window that opens when you 
choose Correlation Model in the Estimate pop-up menu.)

• q: Computes the models associated with the Quickstart.

• d: Opens a dialog window for importing Data that are in the SITB data 
format.

Plot Windows
In the various plot windows the action of the mouse buttons depends on 
whether the zoom is activated or not:

Zoom Active: Then the left and middle mouse buttons are associated with the 
zoom functions as in the standard MATLAB zoom. Left button zooms in and the 
middle one zooms out. In addition, you can draw rectangles with the left 
4



button, to define the area to be zoomed. Double-clicking restores the original 
plot. The right mouse button is associated with special GUI actions that depend 
on the window. In the View plots, the right mouse button is used to identify 
the curves. Point and click on a curve, and a box will display the name of the 
model/data set that the curve is associated with, and also the current 
coordinate values for the curve. In the Model Selection plots the right mouse 
button is used to inspect and select the various models. In the Prefilter and 
Data Range plots, rectangles are drawn with this mouse button down, to 
define the selected range.

Zoom not active: The special GUI functions just mentioned are obtained by 
any mouse button.

The zoom is activated and deactivated under the menu item Style. The default 
setting differs between the plots. Don’t activate the zoom from the command 
line! That will destroy the special GUI functions. (If you happen to do so 
anyway, “quit” the window and open it again.)

Troubleshooting in Plots
The function Auto-range, which is found under the menu item Options, sets 
automatic scales to the plots. It is also a good function to invoke when you think 
that you have lost control over the curves in the plot. (This may happen, for 
example, if you have zoom in a portion of a plot and then change the data of the 
plot).

If the view plots don’t respond the way you expect them to, you can always 
“quit” the window and open it again. By quit here we mean using the 
underlying window system’s own quitting mechanism, which is called different 
things in the different platforms. This action will not be acknowledged by the 
corresponding check box in the ident window, so you will have to first uncheck, 
and then check it. The normal way to close a window is to use the Close 
function under the menu item File, or to uncheck the corresponding check box.

 Layout Questions and idprefs.mat
The GUI comes with a number of preset defaults. These include the window 
sizes and positions, the colors of the different models, and the default options 
in the different View windows.

The window sizes and positions, as well as the options in the plot windows, can 
of course be changed during the session in the standard way. If you want the 
2-35



2 The Graphical User Interface

2-3
GUI to start with your current window layout and current plot options, select 
menu item

Options > Save preferences

in the main ident window. This saves the information in a file idprefs.mat. 
This file also stores information about the four most recent sessions with 
ident. This allows the session File menu to be correctly initialized. The session 
information is automatically stored upon exit. The layout and preference 
information is only saved when the indicated option is selected.

The file idprefs.mat is created the first time you open the GUI. It is by default 
stored in the same directory as your startup.m file. If this default does not 
work, a warning is issued. This can be ignored, but then session and preference 
information cannot be stored.

To change or select a directory for idprefs.mat, use the command midprefs. 
See Chapter 4, "Command Reference," for details.

To change model colors and default options to your own customized choice, 
make a copy of the M-file idlayout.m to your own directory (which should be 
before the basic ident directory in the MATLABPATH), and edit it according to its 
instructions.

Customized Plots
If you need to prepare hardcopies of your plots with specialized texts, titles and 
so on, make a copy of the figure first, using Copy Figure under the File menu 
item. This produces a copy of the current figure in a standard MATLAB figure 
format.

For plots that are not covered by the View windows, (like, e.g., Nyquist plots), 
you have to export the model to the MATLAB workspace and construct the plots 
there.

Import from and Export to Workspace
As you export a model or a data set to the MATLAB workspace by dropping its 
icon over the To Workspace icon, it will become a workspace variable with the 
same name as in ident, say mymodel. At the same time another workspace 
variable will be created with the name mymodel_info. This contains all diary 
and note information. This will be quite useful if you want to manipulate the 
6



model using MATLAB commands and then import it back into ident. The use is 
illustrated by the following example:

Export model with name mymodel to workspace. Execute the following at the 
MATLAB command line:

mymodelc=thd2thc(mymodel); 
% converting the model to continuous time

mymodelc_info=str2mat(mymodel_info,...
'mymodelc=thd2thc(mymodel)');
% adding the info of how the new variable was created

Now select pop-up menu Model>Import, enter the variable name mymodelc, 
and select Import.

This will enter the continuous-time model into ident along with the relevant 
information.

What Cannot be Done Using the GUI
The GUI covers primarily everything you would like to do to examine data, 
estimate models and evaluate and compare models. It does not cover

• Generation (simulation) of data sets

• Model creation (other than by estimation)

• Model manipulation and conversions

• Recursive (on-line) estimation algorithms

Check Chapter 3, "Tutorial," as well as the headings Simulation and 
Prediction, Model Structure Creation, Manipulating Model 
Structures, Model Conversions, and Recursive Parameter Estimation 
in the beginning of Chapter 4, "Command Reference," to see what M-files are 
available in the toolbox for these functions.

Note that at any point you can export a data set or a model to the MATLAB 
workspace (by dragging and dropping its icon on the To Workspace icon). 
There you can modify and manipulate it any way you want and then import it 
back into ident. You can, for example, construct a continuous-time model from 
an estimated discrete-time one (using thd2thc) and then use the model views 
to compare the two.
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This chapter has two purposes. It describes the commands of the System 
Identification Toolbox, their syntax and use. If you use the graphical user 
interface (GUI), you will not have to bother about these aspects. The chapter 
also describes the underlying methods and algorithms used. The commands 
that are not reached from the GUI, i.e., the recursive algorithms and more 
advanced model structure definitions, are also treated here.



1. The Toolbox Commands
It may be useful to recognize several layers of the System Identification 
Toolbox. Initially concentrate on the first layer of basic tools, which contains 
the commands from the System Identification Toolbox that any user must 
master. You can proceed to the next levels whenever an interest or the need 
from the applications warrants it. The layers are described in the following 
paragraphs:

Layer 1: Basic Tools. The first layer contains the basic tools for correlation and 
spectral analysis, and the estimation of so-called ARX models using the 
least-squares method. It also contains the basic tools for examining the 
obtained models. The commands are:

ar, arx, bodeplot, compare, cra, dtrend, ffplot
idsim, present, resid, spa, th2arx, th2ff, th2zp, zpplot

The corresponding background is given in the following sections: 3,4,5,6,7 and 
8 of this chapter.

Layer 2:  Model Structure Selection. The second layer of the toolbox contains 
some useful techniques to select orders and delays, and to estimate more 
general input-output model structures. The commands are:

armax, arxstruc, bj, etfe, idfilt, iv4, n4sid
oe, poly2th, selstruc, th2poly

Note that the commands arx and iv4 also apply to multi-input, multi-output 
systems. The corresponding background is given in the sections 3, 5, 6 ,8 and 9 
of this chapter.

Layer 3:   More Methods To Examine Models and Multi-Input Systems .
This third layer contains transformations between continuous and discrete 
time, and functions for estimating completely general multi-input model 
structures. The commands are:

pe, pem, predict, th2ss, th2tf, thc2thd, thd2thc 

The corresponding background is given in section 7 of this chapter.
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Layer 4:  Recursive Identification. Recursive (adaptive, online) methods of 
parameter estimation are covered by the commands:

rarmax, rarx, rbj, roe, rpem, rplr

The corresponding background is given “Recursive Parameter Estimation” on 
page 3-61.

Layer 5:  State-Space Modeling. To build models in state-space form (both 
continuous and discrete time), and to handle more advanced multi-output 
structures, there are the commands:

canstart, fixpar, mf2th, modstruc, ms2th, unfixpar

The corresponding theory is covered in sections 3, 5, 6, and 8 of this chapter.

(See the beginning of the Chapter 4, "Command Reference," for a complete list 
of available functions.)



2. An Introductory Example to Command Mode
A demonstration M-file called iddemo.m provides several examples of what 
might be typical sessions with the System Identification Toolbox. To start the 
demo, execute iddemo from inside MATLAB.

Before giving a formal treatment of the capabilities and possibilities of the 
toolbox, this example is designed to get you using the software quickly. This 
example is essentially the same as demo #2 in iddemo. You may want to invoke 
MATLAB at this time, execute iddemo1, and follow along.

Data have been collected from a laboratory scale process. (Feedback’s Process 
Trainer PT326; see page 440 in Ljung, 1987 and “Reading More About System 
Identification” on page 1-18 for references.) The process operates much like a 
common hand-held hair dryer. Air is blown through a tube after being heated 
at the inlet to the tube. The input to the process is the power applied to a mesh 
of resistor wires that constitutes the heating device. The output of the process 
is the air temperature at the outlet measured in volts by a thermocouple 
sensor. 

One thousand input-output data points were collected from the process as the 
input was changed in a random fashion between two levels. The sampling 
interval is 80 ms. The data were loaded into MATLAB in ASCII form and are 
now stored as the vectors y2 (output) and u2 (input) in the file dryer2.mat.

First load the data:

load dryer2

This example selects the first 300 data points for building a model. For 
convenience, the input-output vectors are merged into a matrix:

z2 = [y2(1:300) u2(1:300)];

Take a look at the data,

idplot(z2)

The toolbox makes frequent use of default arguments. Default values are used 
when trailing arguments are omitted. In the case above, by default, all data 
points are graphed and the sampling interval is one time unit.
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You can select the values between sample numbers 200 and 300 for a close-up, 
and at the same time obtain correct time scales, with 

idplot(z2,200:300,0.08)

Remove the constant levels and make the data zero mean with

z2 = dtrend(z2);

Now, fit to the data a model of the form:

where T is the sampling interval (here 0.08 seconds). This model, known as an 
ARX model, tries to explain or compute the value of the output at time t, given 
previous values of y and u. Later on, especially in Section 8, are discussions of 
how to decide upon suitable model orders (structures).

The best values of the coefficients  and  can be computed with

th = arx(z2,[2 2 3]);

The numbers in the second argument tell arx to find a model (2.1) with two 
a-parameters, two b-parameters, and three delays. The result is stored in the 
matrix th in a somewhat coded form. To specify the actual sampling interval, 
enter

th = sett(th,0.08);

There are several ways to display and illustrate the computed model. With

present(th)

the coefficient values of (2.1) and their estimated standard deviations are 
presented on the screen. 

Next, you might ask how to evaluate how well the model fits the data. A simple 
test is to run a simulation whereby real input data is fed into the model, and 
compare the simulated output with the actual measured output. For this, select 
a portion of the data that was not used to build the model, for example, from 
sample 700 to 900:

u = dtrend(u2(700:900));
y = dtrend(y2(700:900));

y t( ) a1y t T–( ) a2y t 2T–( )+ + b1u t 3T–( ) b2u t 4T–( )+= (2.1)

a1 a2 b1, , b2



ysim = idsim(u,th);
plot([y(100:200) ysim(100:200)])

Note that the function compare does this sequence of commands more 
efficiently.

You see that the model is quite capable of describing the system, even for data 
that were not used in calculating the fit.

To compute and graph the poles and zeros of the model, use

zpth = th2zp(th);
zpplot(zpth)

If you want to know the frequency response, you can compute the frequency 
function of the model and present it as a Bode plot by entering

gth = th2ff(th);
bodeplot(gth)

Compare this transfer function with a transfer function obtained from a 
nonparametric, spectral analysis method. Such an estimate is obtained directly 
from the data

gs = spa(z2);
gs = sett(gs,0.08);

The sampling interval, 0.08, is set by the second command in order to obtain 
correct frequency scales. The function spa also allows you to select window 
sizes, frequency ranges, etc. All these have here been given default values.

You can compare the estimate of the transfer function obtained by spectral 
analysis and the one obtained from the model (2.1) with

bodeplot([gs gth])

The agreement is quite good.

Finally, plot the step response of the model. The model comes with an estimate 
of its own uncertainty. Ten different step responses are computed and graphed. 
They correspond to “possible” models, drawn from the distribution of the true 
system (according to our model):

step = ones(30,1);
idsimsd(step,th)
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3. The System Identification Problem
This section discusses different basic ways to describe linear dynamic systems 
and also the most important methods for estimating such models.

Impulse Responses, Frequency Functions, and 
Spectra

The basic input-output configuration is depicted in the figure above. Assuming 
unit sampling interval, there is an input signal

u( t) ;  t=1,2, . . . . . . . . ,N

and an output signal

y( t) ;  t=1,2, . . . . . . . , .N

Assuming the signals are related by a linear system, the relationship can be 
written

where q is the shift operator and is short for

u

e

y

y t( ) G q( )u t( ) v t( )+= (3.1)

G q( )u t( )

G q( )u t( ) g k( )u t k–( )
k 1=

∞

∑= (3.2)

and

G q( ) g k( )q k–
;

k 1=

∞

∑= q
1–
u t( ) u t 1–( )= (3.3)



The numbers are called the impulse response of the system. Clearly, 
is the output of the system at time k if the input is a single (im)pulse at 

time zero. The function is called the transfer function of the system. This 
function evaluated on the unit circle gives the frequency function

In (3.1)  is an additional, unmeasurable disturbance (noise). Its properties 
can be expressed in terms of its (auto) spectrum 

which is defined by

where is the covariance function of :

and E denotes mathematical expectation. Alternatively, the disturbance  
can be described as filtered white noise:

where is white noise with variance  and

Equations (3.1) and (3.8) together give a time domain description of the system:

g k( ){ }
g k( )

G q( )
q( e

i ω )=

G e
i ω( ) (3.4)

v t( )

Φv ω( ) (3.5)

Φv ω( ) Rv τ( )e
iwt–

τ ∞–=

∞

∑= (3.6)

Rv τ( ) v t( )

Rv τ( ) Ev t( )v t τ–( )= (3.7)

v t( )

v t( ) H q( )e t( )= (3.8)

e t( ) λ

                     (3.9)Φv ω( ) λ H e
i ω( )

2
=

y t( ) G q( )u t( ) H q( )e t( )+= (3.10)
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while (3.4) and (3.5) constitute a frequency domain description:

The impulse response (3.3) and the frequency domain description (3.11) are 
called nonparametric model descriptions since they are not defined in terms of 
a finite number of parameters. The basic description (3.10) also applies to the 
multivariable case; i.e., to systems with several (say nu) input signals and 
several (say ny) output signals. In that case is an ny by nu matrix while 

and are ny by ny matrices.

Polynomial Representation of Transfer Functions
Rather than specifying the functions G and H in (3.10) in terms of functions of 
the frequency variable , you can describe them as rational functions of  
and specify the numerator and denominator coefficients in some way.

A commonly used parametric model is the ARX model that corresponds to

where B and A are polynomials in the delay operator :

Here, the numbers na and nb are the orders of the respective polynomials. The 
number nk is the number of delays from input to output. The model is usually 
written

G e
i ω( ); Φv ω( ) (3.11)

G q( )
H q( ) Φv ω( )

ω q
1–

G q( ) q
nk–

=
B q( )
A q( )
-----------; H q( ) 1

A q( )
-----------= (3.12)

q
1–

A q( ) 1 a1q
1– …… anaq

na–
+ + +=

B q( ) b1 b2q
1– …… bnbq

nb– 1+
+ + +=

(3.14)

(3.13)

A q( )y t( ) B q( )u t nk–( ) e t( )+= (3.15)
0



or explicitly

Note that (3.15) -(3.16) apply also to the multivariable case, where  and 
the coefficients  become ny by ny matrices, and the coefficients  
become ny by nu matrices. 

Another very common, and more general, model structure is the ARMAX 
structure

Here, and are as in (3.13)-(3.14), while

An Output-Error (OE) structure is obtained as

with

The so-called Box-Jenkins (BJ) model structure is given by

with

y t( ) a1y t 1–( ) …… anay t na–( )+ + + =

b1u t nk–( ) b2u t nk– 1–( ) …… bnbu t nk– nb– 1+( ) e t( )+ + + +

(3.16)

A q( )
ai B q( ) bi

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+= (3.17)

A q( ) B q( )

C q( ) 1 c1q
1– … cncq

nc–
+ + += (3.18)

y t( ) B q( )
F q( )
-----------u t nk–( ) e t( )+= (3.19)

F q( ) 1 f1q
1– … fnfq

nf–
+ + += (3.20)

y t( ) B q( )
F q( )
-----------u t nk–( ) C q( )

D q( )
------------e t( )+= (3.21)

D q( ) 1 d1q
1– … dndq

nd–
+ + += (3.22)
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All these models are special cases of the general parametric model structure:

The variance of the white noise  is assumed to be .

Within the structure of (3.23), virtually all of the usual linear black-box model 
structures are obtained as special cases. The ARX structure is obviously 
obtained for . The ARMAX structure corresponds to 

. The ARARX structure (or the “generalized least-squares model”) 
is obtained for , while the ARARMAX structure (or “extended 
matrix model”) corresponds to . The Output-Error model is obtained 
with , while the Box-Jenkins model corresponds to . 
(See Section 4.2 in Ljung (1987) for a detailed discussion.)

The same type of models can be defined for systems with an arbitrary number 
of inputs. They have the form

A q( )y t( ) B q( )
F q( )
-----------u t nk–( ) C q( )

D q( )
------------e t( )+= (3.23)

e t( ){ } λ

nc nd nf 0= = =
nf nd 0= =

nc nf 0= =
nf 0=

na nc nd 0= = = na 0=

A q( )y t( )
B1 q( )
F1 q( )
--------------u1 t nk1–( ) ...+

Bnu q( )
Fnu q( )
-----------------

·

unu t nknu–( ) C q( )
D q( )
------------e t( )++=
2



State-Space Representation of Transfer Functions
A common way of describing linear systems is to use the state-space form:

Here the relationship between the input  and the output  is defined via 
the nx-dimensional state vector . In transfer function form (3.24) 
corresponds to (3.1) with

Here  is the nx by nx identity matrix. Clearly (3.24) can be viewed as one 
way of parametrizing the transfer function: Via (3.25) becomes a function 
of the elements of the matrices A, B, C, and D.

To further describe the character of the noise term  in (3.24) a more flexible 
innovations form of the state-space model can be used:

This is equivalent to (3.10) with given by (3.25) and by

Here ny is the dimension of  and . 

It is often possible to set up a system description directly in the innovations 
form (3.26). In other cases, it might be preferable to describe first the nature of 
disturbances that act on the system. That leads to a stochastic state-space 
model:

x t 1+( ) Ax t( ) Bu t( )+=

y t( ) Cx t( ) Du t( ) v t( )+ +=

(3.24a)

(3.24b)

u t( ) y t( )
x t( )

G q( ) C qInx A–( ) 1–
B D+= (3.25)

I nx
G q( )

v t( )

x t 1+( ) Ax t( ) Bu t( ) Ke t( )+ +=

y t( ) Cx t( ) Du t( ) e t( )+ += (3.26b)

(3.26a)

G q( ) H q( )

H q( ) C qInx A–( ) 1–
K Iny+= (3.27)

y t( ) e t( )

x t 1+( ) Ax t( ) Bu t( ) w t( )+ +=

y t( ) Cx t( ) Du t( ) e t( )+ +=

(3.28a)

(3.28b)
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where  and are stochastic processes with certain covariance 
properties. In stationarity and from an input-output view, (3.28) is equivalent 
to (3.26) if the matrix K is chosen as the steady-state Kalman gain. How to 
compute K from (3.28) is described in the Control System Toolbox.

Continuous-Time State-Space Models
It is often easier to describe a system from physical modeling in terms of a 
continuous-time model. The reason is that most physical laws are expressed in 
continuous time as differential equations. Therefore, physical modeling 
typically leads to state-space descriptions like

Here,  means the time derivative of . If the input is piece-wise constant over 
time intervals , then the relationship between  
and  can be exactly expressed by (3.24) by taking

and associate y(t) with y[t], etc. 

If you start with a continuous-time innovations form

the discrete-time counterpart is given by (3.26) where still the relationships 
(3.30) hold. The exact connection between  and K is somewhat more 
complicated, though. An ad hoc solution is to use 

in analogy with G and B. This is a good approximation for short sampling 
intervals T.

w t( ) e t( )

(3.29a)

(3.29b)

x· t( ) Fx t( ) Gu t( )+=

y t( ) Hx t( ) Du t( ) v t( )+ +=

x· x
kT t k 1+( )T<≤ u k[ ] u kT( )=

y k[ ] y kT( )=

A e
FT

= B e
Fτ

τ 0=

T

∫=; Gdτ C H=; (3.30)

x· t( ) Fx= t( ) Gu+ t( ) K̃+ e t( )

y t( ) Hx= t( ) Du+ t( ) e+ t( )

(3.31a)

(3.31b)

K̃

K e
Fτ

τ 0=

T

∫= K̃dτ; (3.32)
4



Estimating Impulse Responses
Consider the description (3.1). Suppose that the input  is white noise; i.e., 
its covariance function is

Then, the cross covariance function between the input and the output is

where g(τ) is the impulse response of the system. In this case, it can easily be 
estimated as

based on the observed input-output data.

If the input is not white,  a whitening filter L(q) can be determined for it, so 
that the filtered sequence 

is approximately white. By filtering the output sequence through the same 
filter and computing (3.33) based on the filtered data, a natural estimate of the 
impulse response coefficients g(k) is obtained. This procedure is known as 
correlation analysis.

u t( )

Ru τ( ) Eu= t τ+( )u t( ) λ if τ 0=

0 else



=

Ryu τ( ) Ey t τ+( )u t( ) λg τ( )= =

ĝ τ( ) 1
λN
-------= y

t 1=

N

∑ t τ+( )u t( ) (3.33)

uF t( ) L= q( )u t( ) (3.34)
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Estimating Spectra and Frequency Functions
This section describes methods that estimate the frequency functions and 
spectra (3.11) directly. The cross-covariance function  between y(t) and 
u(t) was defined above. Its Fourier transform, the cross spectrum,   is 
defined analogously to (3.6). Provided that the input is independent of , 
the relationship (3.1)  implies the following relationships between the spectra:

By estimating the various spectra involved, the frequency function and the 
disturbance spectrum can be estimated as follows:

Form estimates of the covariance functions (as defined in (3.7)) , , 
and , using 

and analog expressions for the others. Then, form estimates of the 
corresponding spectra

and analogously for  and . Here  is the so-called lag window and 
M is the width of the lag window. The estimates are then formed as 

This procedure is known as spectral analysis. (See Chapter 6 in Ljung (1987).)

Ryu τ( )
Φyu ω( )

u t( ) v t( )

Φy ω( ) G e
i ω( )

2
Φu ω( ) Φv ω( )+=

Φyu ω( ) G e
i ω( )Φu ω( )=

R
ˆ

y τ( ) R
ˆ

yu τ( )
R̂u τ( )

R
ˆ

yu τ( ) 1
N
---- y t τ+( )u t( )

t 1=

N

∑= (3.35)

Φ
ˆ

y ω( ) R
ˆ

y

τ M–=

M

∑= τ( )WM τ( )e i ωτ–
(3.36)

Φu Φyu WM τ( )

G
ˆ

N e
i ω( ) Φ

ˆ
yu ω( )

Φ
ˆ

u ω( )
-------------------;= Φ

ˆ
v ω( ) Φ

ˆ
y ω( ) Φ

ˆ
yu ω( )

2

Φ
ˆ

u ω( )
------------------------–= (3.37)



Estimating Parametric Models
Given a description (3.10) and having observed the input-output data u, y, the 
(prediction) errors  in (3.10) can be computed as:

These errors are, for given data y and u,  functions of G and H. These in turn 
are parametrized by the polynomials in (3.15)-(3.23) or by entries in the 
state-space matrices defined in (3.29)–(3.32). The most common parametric 
identification method is to determine estimates of G and H by minimizing

that is

This is called a prediction error method. For Gaussian disturbances it coincides 
with the maximum likelihood method. (See Chapter 7 in Ljung (1987).)

A somewhat different philosophy can be applied to the ARX model (3.15). By 
forming filtered versions of the input

and by multiplying (3.15) with , , 2, , na and , 
, 2, , nb and summing over t, the noise in (3.15) can be correlated out 

and solved for the dynamics. This gives the instrumental variable method, and 
 are called the instruments. (See Section 7.6 in Ljung (1987).)

e t( )

e t( ) H
1–

q( ) y t( ) G q( )u t( )–[ ]= (3.38)

VN G H,( ) e
2

t( )
t 1=

N

∑= (3.39)

G
ˆ

N H
ˆ

N,[ ] argmin e
2

t( )
t 1=

N

∑= (3.40)

N q( )s t( ) M q( )u t( )= (3.41)

s t k–( ) k 1= … u t nk– 1 k–+( )
k 1= …

s t( )
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Subspace Methods for Estimating State-Space 
Models
The state-space matrices A, B, C, D, and K in (3.26) can be estimated directly, 
without first specifying any particular parametrization by efficient subspace 
methods. The idea behind this can be explained as follows: If the sequence of 
state vectors x(t) were known, together with y(t) and u(t), eq (3.26b) would be a 
linear regression, and C and D could be estimated by the least squares method. 
Then e(t) could be determined, and treated as a known signal in (3.26a), which 
then would be another linear regression model for A, B and K. (One could also 
treat (3.24) as a linear regression for A, B, C, and D with y(t) and x(t+1) as 
simultaneous outputs, and find the joint process and measurement noises as 
the residuals from this regression. The Kalman gain K could then be computed 
from the Riccati equation.) Thus, once the states are known, the estimation of 
the state-space matrices is easy.

How to find the states x(t)? Appendix 4.A of Ljung(1987) shows that all states 
in representations like (3.26) can be formed as linear combinations of the 
k-step ahead predicted outputs (k=1,2,...,n). It is thus a matter of finding these 
predictors, and then selecting a basis among them. The subspace methods form 
an efficient and numerically reliable way of determining the predictors by 
projections directly on the observed data sequences. For more details, see the 
references under n4sid in Chapter 4, "Command Reference" .
8



4. Nonparametric Model Estimation
This and the following sections give an introduction to the basic functions in 
the System Identification Toolbox. Not all of the options available when using 
the functions are described here; see the Command Reference chapter and the 
online Help facility.

Data Representation
The observed output and input signals,  and , are represented in the 
System Identification Toolbox as column vectors y and u. Row k  corresponds to 
sample number k. For multivariable systems, each input (output) component 
is represented as a column vector, so that u becomes an N by nu matrix (N  = 
number of sampled observations, nu = number of input signals). The 
output-input data is collectively represented as a matrix whose first column(s) 
is the output and next column(s) is the input:

z = [y u]

The data can be graphed by the command idplot:

idplot(z)

This gives plots of all combinations of inputs and outputs for visual inspection.

Some of the functions in the System Identification Toolbox apply only to single 
output data ( ) and some only to single-input-single-output data 
( , ). Chapter 4, "Command Reference" gives details about this. 

y t( ) u t( )

ny 1=
ny 1= nu 1=
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Correlation Analysis
The correlation analysis procedure described in “The System Identification 
Problem” in Chapter 3 is implemented in the function cra:

ir = cra(z)

This function returns the estimated impulse response in the vector ir. It also 
optionally plots the estimated covariance functions for y and u, so that the 
success of the whitening filter (3.34) can be checked. From the estimated 
impulse response it is easy to form the step response:

ir = cra(z)
sr = cumsum(ir)
plot(sr)

Spectral Analysis
The function spa performs spectral analysis according to the procedure in 
(3.35)–(3.37).

[G,PHIV] = spa(z)

Here z contains the output-input data as above. G and PHIV are matrices that 
contain the estimated frequency function  and the estimated disturbance 
spectrum  in (3.37). They are coded into a special format, the  freqfunc 
format, which allows you to plot them using the function bodeplot or ffplot:  

[G,PHIV] = spa(z)
bodeplot(G)
bodeplot(PHIV)

bodeplot gives logarithmic amplitude and frequency scales (in rad/sec) and 
linear phase scale, while ffplot gives linear frequency scales (in Hz). The 
details of the freqfunc format are given in Chapter 4, "Command Reference" 
and by typing help freqfunc. To obtain correct frequency scales you can 
operate with the command sett on G or give the sampling interval as an 
optional argument to spa. 

By omitting the argument PHIV, only the transfer function estimate G is 
computed:

G = spa(z)

GN

Φv
0



When PHIV is included, the estimated standard deviations of G and PHIV are 
also returned by spa and included in the freqfunc format.

If z = y is a time series, spa returns an estimate of the spectrum of that signal:

PHIY = spa(y)
ffplot(PHIY)

In the computations (3.35)-(3.37), spa uses a Hamming window for  with 
a default length M equal to the minimum of 30 and a tenth of the number of 
data points. This window size M can be changed to an arbitrary number by

[G,PHIV] = spa(z,M)

The rule is that as M increases, the estimated frequency functions show sharper 
details, but are also more affected by random disturbances. A typical sequence 
of commands that test different window sizes is 

g10 = spa(z,10)
g25 = spa(z,25)
g50 = spa(z,50)
bodeplot([g10 g25 g50])

An empirical transfer function estimate is obtained as the ratio of the output 
and input Fourier transforms with

G = etfe(z)

This can also be interpreted as the spectral analysis estimate for a window size 
that is equal to the data length. For a single signal  etfe gives the periodogram 
as a spectral estimate. The function also allows some smoothing of the crude 
estimate; it can be a good alternative for signals and systems with sharp 
resonances. See Chapter 4, "Command Reference" for more information.

W τ( )
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5. Parametric Model Estimation
The System Identification Toolbox  contains several functions for parametric 
model estimation. They all share the same command structure

th = function([y u],ths)

Input variables y and u are column vectors that contain the output and input 
data sequences, while the matrix ths specifies the particular structure of the 
model to be estimated. The resulting estimated model is contained in th. It is 
coded into the theta format. This is the basic format for representing models in 
the System Identification Toolbox. It collects information about the model 
structure and the orders, delays, parameters, and estimated covariances of 
estimated parameters into a matrix. The details of this representation are 
found in Chapter 4, "Command Reference" or by typing help theta. The theta 
format can be translated to other useful model representations. To just display 
the model information, use the command present:

th = function(z,ths)
present(th)

The following sections assume that you have formed an array z that consists of 
the output y and the input u:

z = [y u]

ARX Models
To estimate the parameters  and  of the ARX model (3.15), use the function 
arx:

th = arx(z,[na nb nk])

Here na, nb, and nk are the corresponding orders and delays in (3.16) that 
define the exact  model structure. The function arx implements the 
least-squares estimation method, using the MATLAB “/” operator for 
overdetermined linear equations.

An alternative is to use the Instrumental Variable (IV) method described in 
connection with (3.41). This is obtained with

th = iv4(z,[na nb nk])

ai bi
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which gives an automatic (and approximately optimal) choice of the filters N 
and M in (3.41). (See the procedure (15.21)-(15.26) in Ljung (1987).)

Both arx and iv4 are applicable to arbitrary multivariable systems. If you have 
ny outputs and nu inputs, the orders are defined accordingly:  na is an 
ny by ny matrix whose i -j entry gives the order of the polynomial that relates 
past values of  to the current value of  (i.e., past values of  up to 

are used when predicting . Similarly the i -j entries of the 
ny by nu matrices nu and nk, respectively, give the order and delay from input 
number j when predicting output number i. (See “Defining Model Structures” 
on page 3-29 and Chapter 4, "Command Reference" for exact details.)

AR Models
For a single signal  the counterpart of the ARX model is the AR model:

The arx command also covers this special case

th = arx(y,na)

but for scalar signals more options are offered by the command

th = ar(y,na)

which has an option that allows you to choose the algorithm from a group of 
several popular techniques for computing the least-squares AR model. Among 
these  are Burg’s method, a geometric lattice method, the Yule-Walker 
approach, and a modified covariance method. (See Chapter 4, "Command 
Reference" for details.) The counterpart of the iv4 command is

th = ivar(y,na)

which uses an instrumental variable technique to compute the AR part of a 
time series.

General Polynomial Black-Box Models
Based on the prediction error method (3.40), you can construct models of 
basically any structure. For the general model (3.23), there is the function 

th = pem(z,nn)

yj yi yj
yj t na i j,( )–( ) yi t )( )

y t( )

A q( )y t( ) e t( )= (5.1)
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where nn gives all the orders and delays

nn = [na nb nc nd nf nk]

The pem command covers all cases of black-box linear system models. More 
efficient routines are available, however, for the common special cases

th = armax(z,[na nb nc nk])
th = oe(z,[nb nf nk])
th = bj(z,[nb nc nd nf nk])

These handle the model structures  (3.17), (3.19) and (3.21), respectively.

All the routines also cover single-output, multi-input systems of the type

where nb, nf, and nk are row vectors of the same lengths as the number of input 
channels containing each of the orders and delays

nb = [nb1 ...  nbnu];
nf = [nf1 ...  nfnu];
nk = [nk1 ...  nknu];

These parameter estimation routines require an iterative search for the 
minimum of the function (3.39). This search uses a special start-up procedure 
based on least squares and instrumental variables (the details are given as 
equation (10.75) in Ljung (1987)). From the initial estimate, a Gauss-Newton 
minimization procedure is carried out until the norm of the Gauss-Newton 
direction is less than a certain tolerance. See Ljung (1987), Section 11.2 or 
Dennis and Schnabel(1983) for details. See also the entry on optional variables 
associated with the search at the end of this section.

The routines pem, armax, oe,  and bj can also be started at any initial value thi 
specified in the theta format by replacing nn by thi. For example

th = pem(z,thi)

While the search is typically initialized using the built-in start-up procedure 
giving just orders and delays (as described above), the ability to force a specific 
initial condition is useful in several contexts. Some examples are mentioned in 
“Some Special Topics” on page 3-68.

A q( )y t( )
B1 q( )
F1 q( )
--------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
-----------------unu t nknu–( ) C q( )

D q( )
------------e t( )+ + += (5.2)
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If a last argument ’trace’ is added, as in

th = armax(z,nn,’trace’)

these routines give status reports to the screen during the minimization, 
containing current and previous estimates, the associated loss functions, and 
the Gauss-Newton update vector and its norm. The estimates are then 
represented by a column vector, listing the parameters in alphabetical order. 

The number then flickering in the upper left corner shows how many times the 
suggested update direction has been bisected during the search. It is a healthy 
sign if this number is small.

These routines return the estimated covariance matrix of the estimated 
parameter vector as part of th. This reflects the reliability of the estimates. The 
covariance matrix estimate is computed under the assumption that it is 
possible to obtain a “true” description in the given structure.

State-Space Models

Black-box, discrete-time, parametrizations. Suppose first that there is no 
particular knowledge about the internal structure of the discrete-time 
state-space model (3.16). Any linear model of a given order is sought. Then 
there are essentially two different ways to estimate state-space models, like 
(3.26). The simplest one is to use n4sid:

th = n4sid(z,order);

which creates a model in state-space form (coded as usual in the theta format) 
in a realization that is automatically chosen to be reasonably well conditioned. 
The basic idea behind this subspace algorithm was described in “The System 
Identification Problem” on page 3-8.

The other alternative is to use a prediction error method, minimizing the 
criterion (5.3) below. Initializing the search at the n4sid model is then a good 
idea. This is obtained by

thi = canstart(z,order,nu)
th = pem(z,thi)
3-25



3 Tutorial

3-2
Arbitrarily parameterized models in discrete and continuous time. For 
state-space models of given structure, most of the effort involved relates to 
defining and manipulating the structure. This is discussed in “Defining Model 
Structures” on page 3-29. Once the structure is defined in the theta format as 
ths, you can estimate its parameters with

th = pem(z,ths)

When the systems are multi-output, the following criterion is used for the 
minimization:

which is the maximum likelihood criterion for Gaussian noise with unknown 
covariance matrix.

The numerical minimization of the prediction error criterion (3.39) or (5.3) can 
be a difficult problem for general model parametrizations. The criterion, as a 
function of the free parameters, can define a complicated surface with many 
local  minima, narrow valleys and so on. This may require substantial 
interaction from the user, in providing reasonable initial parameter values, 
and also by freezing certain parameter values while allowing others to be free. 
Note that pem easily allows the freezing of any parameters to their nominal 
values. The functions fixpar and unfixpar are also useful. A procedure that is 
often used for state-space models is to allow the noise parameter in the K 
matrix free, only when a reasonable model of the dynamic part has been 
obtained. See also “Some Special Topics” on page 3-68.

Optional Variables
The functions pem, armax, oe, and bj can accept three additional input options 
that affect the minimization, as well as one extra output argument. For 
example,

[th, iter_info] = bj(z,nn,maxiter,tol,lim)

The format is the same for the other functions. If these variables are not given, 
default values are assigned to them.

det e t( )eT
t( )

t 1=

N

∑min (5.3)
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maxiter:  This variable determines the maximum number of iterations 
performed in the search for the minimum. The default value is 10. Setting the 
value of maxiter to zero  results in the return of the estimate from the start-up 
procedure.

tol:  The iterations are continued until the norm of the Gauss-Newton update 
vector is less than tol. The default value is 0.01. The iterations also terminate 
when maxiter is reached or when no decrease in the criterion can be found along 
the search direction after it has been bisected 10 times. (After the 10 first 
bisections, the search direction is changed to the gradient one, and 10 new 
bisections are tried.)

The parameters associated with the noise dynamics, (C and D), are often more 
difficult to estimate than the dynamics parameters, A, B, and F. Major 
contributions to the norm of the update direction then come from the  entries 
corresponding to the noise parameters. The Gauss-Newton vector can be 
monitored to see if it is reasonable to increase tol on this ground.

lim:  The quadratic criterion (3.39) gives a considerable relative weight to large 
prediction errors. You may want to limit their influence, using robust 
estimation techniques. In the estimation functions ar, bj, max, oe, and pem, a 
prediction error that is larger than lim* (estimated standard deviation of e) 
carries a linear, rather than a quadratic, weight.

The default value of lim is 1.6. lim=0 disables the robust estimation  and 
applies a purely quadratic criterion. The standard deviation is estimated 
robustly as the median of the absolute deviations from the median, divided by 
0.7. (See eq (15.9)-(15.10) in Ljung (1987).)

Note that the loss function displayed by present(th) is quadratic and that the 
data-dependent delimiter is computed only once, before the minimization 
starts.

iter_info: This a a row vector with three entries that give information about 
the iteration process. The first entry is the number of used iterations. The 
second one is the improvement of the fit over the last iteration, and the third 
variable is the norm of the Gauss-Newton search vector. If the number of used 
iterations is less than maxiter, at the same time as this norm is larger then 
tol, it means that the iterations have been aborted because no better fit could 
be obtained along the indicated search direction.
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For the spectral analysis estimate, you can compute the frequency functions at 
arbitrary frequencies.  If the frequencies are specified in a row vector w, then 

[G,PHIV] = spa(z,M,w)

results in G and PHIV being computed at these frequencies. This computation is 
somewhat slower, however, than using the default frequencies. 

You can generate logarithmically spaced frequencies using the MATLAB 
logspace function. For example

w = logspace(–3,pi,128)

The optional trailing arguments can  be omitted, in which case default values 
are used. Entering them as empty matrices, [ ], also causes functions to rely 
upon defaults.
8



6. Defining Model Structures
Since the System Identification Toolbox handles a wide variety of different 
model structures, it is important that these can be defined in a flexible way. In 
the previous section you saw how model structures that are special cases of the 
general model (3.23) can be defined by specifying the orders and delays in the 
various estimation routines arx, iv4, oe, bj, armax, and pem. This section 
describes how model structures and models can be directly defined. For 
black-box models (3.23) this may be required, for example, when creating a 
model for simulation. Commands for creating state-space model structures are 
discussed in this section.

The general way of representing models and model structures in the System 
Identification Toolbox is the theta format. This section introduces the 
commands (apart from the parametric estimation functions themselves) that 
create models in the theta format.

Polynomial Black-Box Models
The general input-output form (3.23):

is defined by the five polynomials A(q), B(q), C(q), D(q), and F(q). These are 
represented in the standard MATLAB format for polynomials. Polynomial 
coefficients are stored as row vectors ordered by descending powers. For 
example, the polynomial

is represented as 

A = [1 a1 a2 ... an]

Delays in the system are indicated by leading zeros in the polynomial. For 
example, the ARX model

A q( )y t( ) B q( )
F q( )
-----------u t nk–( ) C q( )

D q( )
------------e t( )+= (6.1)

A q( ) 1 a1q
1–

a2q
2– … anq

n–
+ + + +=

B q( )

y t( ) 1.5y t 1–( )– 0.7y t 2–( )+ 2.5u t 2–( ) 0.9u t 3–( )+= (6.2)
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is represented by the polynomials

A = [1 –1.5 0.7]
B = [0 0 2.5 0.9]

The theta format representation of (6.1) is now created by the command

th = poly2th(A,B,C,D,F,lam,T)

lam is here the variance of the white noise source  and T is the sampling 
interval. Trailing arguments can be omitted for default values. The system 
(6.2) can for example be represented by

th = poly2th([1 –1.5 0.7],[0 0 0.5 0.7])

In the multi-input case (5.2) B and F are matrices, whose row number k 
corresponds to the k-th input. The command poly2th can also be used to define 
time-continuous systems. See the Command Reference chapter for details.

Multivariable ARX Models
A multivariable ARX model is given by

Here  A(q) is an ny by ny matrix whose entries are polynomials in the delay 
operator q-1. You can represent it as

 as well as the matrix

e t( )

A q( )y t( ) B q( )u t( ) e t( )+= (6.3)

A q( ) Iny A1q
1– … Anaq

na–
+ + += (6.4)

a11(q) . . .

a21(q)

any1(q)

. .
 .

a12(q)

a22(q)

any2(q)

. .
 .

a1ny(q)

a2ny(q)

anyny(q)

. .
 .

. . .
. . .

. .
 .

A(q) =
0



where the entries  are polynomials in the delay operator :

This polynomial describes how old values of output number j affect output 
number k. Here is the Kronecker-delta; it equals 1 when , otherwise, 
it is 0. Similarly  is an ny by nu matrix

or

with

The delay from input number j to output number k is . To link with the 
structure definition in terms of [na nb nk] in the arx and iv4 commands, note 
that na is a matrix whose kj-element is , while the kj-elements of nb and nk 
are  and  respectively.

The theta format representation of the model (6.3) can be created by

 th = arx2th(A,B,ny,nu)

where ny and nu are the number of outputs and inputs, respectively, and A and 
B are matrices that define the matrix polynomials (6.4) and (6.7):

A = [eye(ny) A1 A2 .. Ana]
B = [B0 B1 .. Bnb]

akj q
1–

akj q( ) δkj akj
1

q
1– … akj

nakjq
nakj–

+ + += (6.6)

δkj k j=
B q( )

B q( ) B0 B1q
1– …Bnbq

nb–
+ += (6.7)

b11(q) . . .

b21(q)

bny1(q)

. .
 .

b12(q)

b22(q)

bny2(q)

. .
 .

b1nu(q)

b2nu(q)

bnynu(q)

. .
 .

. . .

. . .
. .

 .

B(q) =

bkjq b
1

kjq
nkkj–= bkj

nb–
q

nkij– nbi j– 1+
+

nkkj

nakj
nbkj nkkj
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Consider the following system with two outputs and three inputs:

This system is defined and simulated for a certain input u, and then estimated 
in the correct ARX structure by the following string of commands:

A0 = eye(2);
A1 = [–1.5 0.4; –0.2 0];
A2 = [0.7 0 ; 0.01 –0.7];
B0 = [0 0.4 0;1 0 0];
B1 = [0 –0.1 0;0 0 3];
B2 = [0 0.15 0;0 0 4];
B3 = [0 0 0;0 0 0];
B4 = [0.2 0 0;0 2 0];
B5 = [0.3 0 0;0 0 0];
A = [A0 A1 A2];
B = [B0 B1 B2 B3 B4 B5];
th0 = arx2th(A,B,2,3);
e = randn(200,2);
u = [idinput(200),idinput(200),idinput(200)]; 
y = idsim([u e],th0);
na = [2 1;2 1];
nb = [2 3 0;1 1 2];
nk = [4 0 0;0 4 1];
the = arx([y u],[na nb nk]);
[Ae, Be] = th2arx(the);

You can use the two commands fixpar and unfixpar to manipulate ARX 
structures, so that certain parameters in the structure are fixed to certain 
known values and not estimated. See Chapter 4, "Command Reference"for 
more information.

y1 t( ) 1.5y1 t 1–( )– 0.4y2 t 1–( ) 0.7y1 t 2–( )+ + 0.2u1 t 4–( ) +=

0.3u1 t 5–( ) 0.4u2 t( ) 0.1u2 t 1–( )– 0.15u2 t 2–( ) e1 t( )+ + +

2u2 t 4–( ) 3u3 t 1–( ) 4u3 t 2–( ) e2 t( )+ + +

y2 t( ) 0.2( )y1 t 1–( )– 0.7y2 t 2–( )– 0.01y1 t 2–( ) u1 t( ) +=+
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State-Space Models with Free Parameters
The basic state-space models are the following ones: (See also “The System 
Identification Problem” on page 3-8.)

Discrete-Time Innovations Form

Here T is the sampling interval,  is the input at time instant  and  
is the output at time . (See Ljung (1987) page 87.)

System Dynamics Expressed in Continuous Time

(See Ljung (1987) page 82.) It is often easier to define a parametrized 
state-space model in continuous time because physical laws are most often 
described in terms of differential equations. The matrices F, G, H, and D 
contain elements with physical significance (for example, material constants). 
The numerical values of these may or may not be known. To estimate unknown 
parameters based on sampled data (assuming T is the sampling interval) first 
transform (6.9) to (6.8) using the formulas (3.30). The value of the Kalman-gain 
matrix K in (6.8) or  in (6.9) depends on the assumed character of the additive 
noises  and  in (3.28), and its continuous-time counterpart. Disregard 
that link and view K in (6.8) (or  in (6.9)) as the basic tool to model the noise 
properties. This gives the directly parametrized innovations form. (See Ljung 
(1987) page 88.) If the internal noise structure is important, you could use 
user-defined structures as in Example 6.4.

The System Identification Toolbox allows you to define arbitrary 
parameterizations of the matrices in (6.8) or (6.9). When defining the structure, 
the known elements in the matrices are entered with their numerical  values, 

x kT T+( ) Ax kT( ) Bu kT( ) Ke kT( )+ +=

y kT( ) Cx kT( ) Du kT( ) e kT( )+ +=

x 0( ) x0=

(6.8a)

(6.8b)

(6.8c)

u kT( ) kT y kT( )
kT

x· t( ) Fx t( ) Gu t( ) K̃w t( )+ +=

y t( ) Hx t( ) Du t( ) w t( )+ +=

x 0( ) x0=

(6.9a)

(6.9b)

(6.9c)

K
~

w t( ) e t( )
K
~
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while the unknown elements are entered as NaN. Use the commands modstruc 
and ms2th.

The Black-Box, Discrete-Time Case
For a discrete-time model, like (6.8) without any particular internal structure, 
it is easier and more natural to use canstart or n4sid to estimate the model, 
without any prior specification of the parametrization.

Example 6.1:  A Discrete-Time Structure. Consider the discrete-time model

with five unknown parameters , i=1, ...,3. This structure is defined in the 
theta format by

A = [1 NaN; 0 1];
B = [NaN;NaN];
C = [1 0];
D = 0;
K = [NaN;NaN];
x0 = [0;0];
ms1 = modstruc(A,B,C,D,K,x0);
th1 = ms2th(ms1,'d')

The definition thus follows in two steps. First the actual structure (known and 
unknown parameter values) is coded in the matrix ms1 and then a theta format 
matrix is created by ms2th. The argument 'd' denotes that the structure is a 
discrete-time structure. Other optional arguments allow definition of guessed 
values of the unknown parameters, as well as specification of the covariance 
matrix of  and of the sampling interval T. You can also specify unknown 
elements in the initial value vector .

x t 1+( ) 1 θ1

0 1
x t( )

θ2

θ3

u t( )
θ4

θ5

e t( )+ +=

y t( ) 1 0 x t( ) e t( )+=

x 0( ) 0

0
=

θi

e t( )
x 0( )
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For models  that are parametrized as canonical forms, use canform instead of 
modstruc to define the model structure.

Example 6.2:  A Continuous-Time Model Structure. Consider the following 
model structure

This corresponds to an electrical motor, where  is the angular 
position of the motor shaft and  is the angular velocity. The 
parameter  is the  inverse time constant of the motor and  is the 
static gain from the input to the angular velocity. (See page 84 in Ljung (1987).) 
The motor is at rest at time 0 but at an unknown angular position. Suppose 
that  is around -1 and  is around 0.25. If you also know that the variance 
of the errors in the position measurement is 0.01 and in the angular velocity 
measurements is 0.1, you can then define a theta structure using

F = [0 1; 0 NaN]
G = [0 ;NaN]
H = eye(2)
D = zeros(2,1)
K = zeros(2,2)
x0 = [NaN;0]
ms2 = modstruc(F,G,H,D,K,x0);
thguess=[–1, 0.25, 0]
noisevar = [0.01 0; 0 0.1]
th2 = ms2th(ms2,'c',thguess,noisevar)

The structure th2 can now be used to estimate the unknown parameters  
from observed data z = [y1 y2 u] by

model = pem(z,th2)

x· t( ) 0 1

0 θ1

x t( ) 0

θ2

u t( )+=

y t( ) 1 0

0 1
x t( ) e t( )+=

x 0( ) θ3

0
=

y1 t( ) x1 t( )=
y2 t( ) x2 t( )=

θ1– θ2 θ1⁄–

θ1 θ2

θi
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The iterative search for minimum is then initialized at thguess. The structure 
can also be used to simulate the system above with sampling interval T=0.1 for 
input u and noise realization e:

e=randn(300,2)
u=idinput(300);
th2 = sett(th2,0.1) % setting the sampling interval
y = idsim([u e],th2)

The nominal parameter values thguess are then used, and the noise sequence 
is scaled according to the matrix noisevar.

When estimating models,  you can try a number of “neighboring” structures, 
like “what happens if I fix this parameter to a certain value” or “what happens 
if I let loose these parameters.” Rather than going through the whole procedure 
in redefining the structure, you can use the commands fixpar and unfixpar. 
For example, to free the parameter x2(0)  (perhaps the motor wasn’t at rest 
after all) you can use

th = unfixpar(th2,'x0',[2,1])

To manipulate initial conditions, the function thinit is also useful.

State-Space Models with Coupled Parameters
In some situations you may want the unknown parameters in the matrices in 
(6.8) or (6.9) to be linked to each other. Then the NaN feature is not sufficient to 
describe these links. Instead you need to write an M-file that describes the 
structure. The format is

[A,B,C,D,K,x0] = mymfile(par,T,aux);

where mymfile is the user-defined name for the M-file,  par contains the 
parameters, T is the sampling interval, and aux contains auxiliary variables. 
The latter variables are used to house options, so that some different cases can 
be tried out without having to edit the M-file. The matrices A, B, C, D, K, and x0 
refer to the discrete-time description (6.8). If the underlying parameterization 
is in continuous time, as in (6.9), it is desirable to write the M-file so that a 
negative value of T inhibits the sampling. This means that A, B, C and D should 
be returned  as the matrices in (6.9) when mymfile is called with a  negative T. 
To obtain the same structure as in the Example 6.2 , you can do the following:
6



function [A,B,C,D,K,x0] = mymfile(par,T,aux)
F = [0 1; 0 par(1)]; 
G = [0;par(2)];
C = eye(2);
D = zeros(2,2);
K = zeros(2,1);
x0 =[par(3);0];
if T>0, [A,B] = c2d(F,G,T); else A=F; B=G; end

Here c2d is the sampling function from the Control System Toolbox, which 
consequently is required to run this example.

Once the M-file has been written, the corresponding theta structure is defined 
by the command mf2th (M-file to theta):

th = mf2th('mymfile','c',par,aux);

where par contains the nominal (initial) values of the corresponding entries in 
the structure. 'c' signals that the underlying parametrization is continuous 
time, and that the M-file is equipped with sampling inhibition (for ). aux 
contains the values of the auxiliary parameters.

From here on, estimate models and evaluate results as for any other model 
structure. Note, though that the features fixpar and unfixpar are not 
available for these general structures. Some further examples of user-defined 
model structures are given below.

State-Space Structures: Initial Values and Numerical 
Derivatives
It is sometimes difficult to find good initial parameter values at which  to start 
the numerical search for a minimum of (3.38). It is always best to use physical 
insight, whenever possible, to suggest such values with thguess. For random 
initialization, the command thinit is a useful alternative and complement to 
thguess. Since there is always a risk that the numerical minimization may get 
stuck in a local minimum, it is advisable to try several different initialization 
values for .

In the search for the minimum, the gradient of the prediction errors  is 
computed by numerical differentiation. The step-size is determined by the 
M-file nuderst. In its default version the step-size is simply  times the 
absolute value of the parameter in question (or the number  if this is 

T 0<

θ

e t( )

10 4–

10 7–
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larger). When the model structure contains parameters with different orders of 
magnitude, try to scale the variables so that the parameters are all roughly the 
same magnitude. In any case, you may need to edit the M-file nuderst to 
address the problem of suitable step sizes for numerical differentiation. 

Some Examples of User-Defined Model Structures
With user-defined structures, you have complete freedom in the choice of 
models of linear systems. This section gives two examples of such structures.

Example 6.3:  Heat Diffusion. Consider a system driven by the heat-diffusion 
equation (see also Example 4.3 in Ljung (1987)). 

This is a metal rod with heat-diffusion coefficient  which is insulated at the 
near end and heated by the power u (W) at the far end. The output of the 
system is the temperature at the near end. This system is described by a partial 
differential equation in time and space. Replacing the space-second derivative 
by a corresponding difference approximation gives a time-continuous 
state-space model (6.9), where the dimension of x depends on the step-size in 
space used in the approximation. This is described by the following M-file:

function [A,B,C,D,K,x0] = heatd(pars,T,aux)
N = aux(1); % Number of points in the 

% space–discretization
L = aux(2); % Length of the rod
temp = aux(3); % Assuming uniform initial

 % temperature of the rod
deltaL = L/N; % Space interval
kappa = pars(1); % The heat–diffusion coefficient
K = pars(2); % Heat transfer coefficient at

% far end of rod
F=zeros(N,N);
for kk=2:N–1
F(kk,kk–1)=1;
F(kk,kk)=–2;
F(kk,kk+1)=1;
end
F(1,1)=–1; F(1,2)=1; % Near end of rod 
                     % insulated
F(N,N–1)=1; F(N,N)=–1;
F=F∗kappa/deltaL/deltaL;

κ
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G=zeros(N,1); 
G(N,1)=K/deltaL;
C=zeros(1,N);
C(1,1)=1;
D=0;
K=zeros(N,1);
x0=temp∗ones(N,1);
if T>0 [A,B]=c2d(F,G,T);else A=F;B=G;end

You can then get started with the theta format with

th = mf2th('heatd','c',[0.27 1],[10,1,22],[],10)

for a 10th order approximation of a heat rod one meter in length, with an initial 
temperature of 22 degrees and a sampling interval of 10 seconds. The initial 
estimate of the heat conductivity is 0.27, and of the heat transfer coefficient is 
1. The covariance matrix of the prediction errors is given a default value. 

Example 6.4:  Parametrized Noise Models. Consider a discrete-time model

x ( t+1)=Ax( t)+Bu(t )+w (t )

y (t )=Cx (t )+e (t )

where w and e are independent white noises with covariance matrices R1 and 
R2, respectively. Suppose that you know the variance of the measurement 
noise R2,  and that only the first component of  is nonzero. This can be 
handled by the following M-file:

function [A,B,C,D,K,x0] = mynoise(par,T,aux) 
R2 = aux(1); % The assumed known measurement 
              % noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C=[par(3) par(4)];
D=0;
R1= [par(5) 0;0 0];
K = A∗dlqe(A,eye(2),C,R1,R2); % from the
               % Control System Toolbox
x0=[0;0];

w t( )
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7. Examining Models
Once you have estimated a model, you need to investigate its properties. You 
have to simulate it, test its predictions, and compute its poles and zeros and so 
on. You thus have to transform the model from the theta format to other ways 
of representing and presenting it.

Theta Format: th
The basic format for representing models in the System Identification Toolbox 
is called the theta format. It stores all relevant information about the model 
structure used, including the values of the estimated parameters, the 
estimated covariances of the parameters, and the estimated innovations 
variance and so on. It also contains some information about how and when the 
model was created. The details of the representation can be found in the 
Chapter 4, "Command Reference" or by typing help theta (for state-space 
based structures type help thss). The representation should, however, be 
thought of as an internal one; unless you are an advanced user, you do not need 
to worry about the details. “Defining Model Structures” on page 3-29 describes 
how to create models in the theta format using several different commands.

The information in the theta format is displayed by the present command:

present(th)

This spells out the information in th. Depending on the character of the 
underlying model structure, the information is given in terms of the 
polynomials in (6.1), in terms of the matrices in (6.8) or (6.9), or in terms of the 
ARX polynomials in (6.3). Estimated standard deviations for the parameters 
are always supplied. For multivariable ARX models and for state-space 
matrices, the standard deviations are given as imaginary numbers added to the 
parameters. For the polynomials they are given as a second row. For example, 
the following printout from present

The polynomial coefficients and their standard deviations are
B =  
0.0000 0.0000 1.7345
0.0000 0.0000 0.0563

A =
1.0000 –1.5312 0.6983
0.0000 0.0214 0.0022
0



is interpreted as   and the standard deviation 
of “1” is zero (naturally enough , since it is not estimated). The standard 
deviation of  is 0.0214. Note that leading zeros in the B polynomial indicate 
the delay, as defined in “Defining Model Structures” on page 3-29.

The actual parameters can be extracted from the theta format by

[par,P] = th2par(th)

Here par is a row vector containing the parameters, and P is the estimated 
covariance matrix of the parameters. The parameters are listed in 
“alphabetical order.” See “Some Special Topics” on page 3-68. For the 
polynomial model (6.1) the coefficients of the A, B, C, D, and F polynomials are 
given in the order of increasing powers of . (See for example (6.2).) Note that 
leading 0’s of B and the leading 1 in the other polynomials are omitted since 
they do not correspond to estimated parameters. For the state-space model 
(6.8) the parameters are given in the order obtained as the matrix A is first 
searched for estimated parameters row by row, then B and then C, etc. The 
same is true for the continuous model (6.9). For user-defined structures, the 
ordering in par is the same as defined in the corresponding M-file. For 
multivariable ARX models, the ordering of parameters is somewhat tricky and 
it is safer use th2arx. (See “The ARX Format: arx” on page 3-45.)

The sampling interval can be extracted from the theta format by

T = gett(th)

A negative  T means that th represents a time-continuous system. Then system 
abs(T) indicates the sampling interval for the data for which the model was 
estimated. It is also the sampling interval that applies when th is used for 
simulation or prediction.

Frequency Function Format: ff
The frequency function and the disturbance spectrum corresponding to a model 
th in the theta format is computed by

[G,PHIV] = th2ff(th)

This gives G and  in (3.11) along with their estimated standard deviations, 
which are translated from the covariance matrix of the estimated parameters. 
If th corresponds to a time-continuous model, the frequency functions are 
computed accordingly.

A q( ) 1 1.5312q
1–

– 0.6983q
2–

+=

a1

q
1–

Φ̂v
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The resulting matrices G and PHIV are given in the freqfunc format. This format 
stores the frequency functions and spectra (3.11) and their standard deviations 
as column vectors. The first row is reserved for administrative information, 
giving details about input and output numbers. The frequency values can be 
chosen arbitrarily, but default to 128 values equally spaced between 0 
(excluded) and the Nyquist frequency. For time-continuous models, the default 
frequency range extends to a decade over the Nyquist frequency for the 
sampled data upon which the model is based. Typing help freqfunc describes 
the details of the format, which, however, is not important for basic use of the 
toolbox.

The function th2ff has options that allow the selection of specific input-output 
pairs, and the computation of  frequency functions and spectra at arbitrary 
frequencies.

If th corresponds to a model of a time series, its spectrum is obtained as

PHIY = th2ff(th)

Models in the freqfunc format are also obtained by the nonparametric 
estimation routines spa and etfe, as described in “Nonparametric Model 
Estimation” on page 3-19.

Three functions offer graphic display of the frequency functions and spectra:  
bodeplot, ffplot, and nyqplot. 

bodeplot(G)

plots the Bode diagram of G (logarithmic scales and frequencies in rad/sec). If G 
is a spectrum, only an amplitude plot is given. Several curves in the same 
diagram are obtained with

bodeplot([G1 G2 ... Gn])

If information about standard deviations is included in G, confidence intervals 
corresponding to sd standard deviations are graphed with

bodeplot(G,sd)

The command ffplot has the same syntax as bodeplot but works with linear 
frequency scales and Hertz as the unit. The command nyqplot also has the 
same syntax, but produces Nyquist plots; i.e., graphs of the frequency function 
in the complex plane.

For the creation of own frequency plots, the command getff extracts the 
relevant portions of the freqfunc format. (See Chapter 4, "Command 
Reference"for more information.)
2



Zero-Pole Format: zp
The command th2zp computes the zeros, poles,  and static gains of the system 
associated with th:

[zepo,K] = th2zp(th)

The matrix zepo now contains information about the zeros and the poles of the 
model, along with their estimated standard deviations. It also contains (in the 
first  row) administrative information about input and output numbers, which 
is used for plotting. Similarly, K contains the static gains and their standard 
deviations. The best way of using the information in zepo is to graph the zeros 
and poles by

zpplot(zepo)

Confidence regions (lines and ellipsoids) corresponding to sd standard 
deviations are illustrated by

zpplot(zepo,sd)

Comparisons between several models are obtained by

zp1 = th2zp(th1)
zp2 = th2zp(th2)
zpplot(zpform(zp1,zp2))

zpplot has several options that determine how information about different 
models and different input-output pairs is depicted. It also keeps track of 
whether the underlying model is in discrete or continuous time and draws the 
complex plane accordingly. The command th2zp also allows the selection of 
specific input-output subsystems in the case of multivariable models.

The function getzp allows you to extract the zeros and the poles explicitly from 
the zero-pole format.

State-Space Format: ss
The command

[A,B,C,D,K,X0] =  th2ss(th)

computes the matrices of a state-space representation of th. The 
representation is in discrete time as (6.8) or in continuous time as (6.9) 
depending on the status of th. If the underlying model structure is a 
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state-space one, the matrices A, B, etc. are given in the same basis as originally 
defined. If the underlying model is defined in terms of input-output 
polynomials, the state-space representation is in observer canonical form. The 
state-space matrices can be used for further analysis and design in the Control 
System Toolbox and the Signal Processing Toolbox. 

The command th2ss can also compute the standard deviations of the elements 
in state-space matrices.

Transfer Function Format: tf
The transfer functions associated with the model th are computed by

[NUM,DEN] = th2tf(th)

NUM and DEN are given in the same format that is used in the Control System 
Toolbox and the System Processing Toolbox. The common denominator DEN as 
a row matrix and the k-th row of NUM gives the numerator polynomial 
associated with output number k. If the model th has several inputs, specify 
the input number as an argument. The polynomials are represented as row 
vectors in descending powers of s (in continuous time) or z or q (in discrete 
time). It thus differs from the polynomial format. (See below.) For example, the 
continuous-time system

is represented as

NUM = [0 0 1] (or just 1)
DEN = [1 2 0]

while the discrete-time system

is represented as

NUM = 1
DEN = [1 –1.5 0.7 0]

1
s s 2+( )
-------------------

q
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Polynomial Format: poly
In the polynomial format, the polynomials A, B, C, D, and F in (3.23) are given 
as follows:  Polynomial coefficients are stored in row vectors, ordered by 
ascending powers in the delay operator , , 1, , always starting with 

. This means that (7.1) is represented by

B = [0 0 0 1]
A = [1 –1.5 0.7]

Delays are thus denoted by leading zeros in B. Note the difference with the 
transfer function representation, in that leading zeros must be explicitly given. 
Only when the lengths of A and B are the same do the formats coincide. See also 
Section 6. The polynomials corresponding to th are extracted by

[A,B,C,D,F] = th2poly(th)

This is consequently the “inverse” of poly2th described in “Defining Model 
Structures” on page 3-29.

Continuous-time systems can also be represented in the polynomial format. 
Then the polynomials are given as row vectors in descending powers of the 
Laplace variable s just as in the transfer function case.

The ARX Format: arx
To obtain an ARX description from a model th that corresponds to such a 
description (i.e., it has originally been generated by arx, iv4, or arx2th), use

[A,B] = th2arx(th)

The matrices A and B then contain the ARX polynomials as described in Section 
6. th2arx is thus an inverse of arx2th.

q k– k 0= …
k 0=
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Transformations Between Discrete and Continuous 
Models

Continuous-Time Models
A model in the theta format can be internally represented as a continuous-time 
model. This occurs if the structure was originally defined as a state-space 
structure with ms2th or mf2th using the argument 'c'. (See “Defining Model 
Structures” on page 3-29 and the Chapter 4, "Command Reference".) The model 
then remains a continuous-time one during the estimation phases with pem 
even though the estimation is performed using sampled data. A 
continuous-time model of the type (6.1) in polynomial form also results when 
poly2th is used with a negative value of the sampling interval. This structure 
cannot, however, be used for further estimation. Finally, continuous-time 
models are obtained by the command thd2thc. (See below.) 

Continuous-time models are indicated by a negative sampling interval. A quick 
check can thus be given by

 gett(th)<0

All the model transformations th2ff, th2zp, th2ss, th2tf, and th2poly result 
in the corresponding characteristics in continuous time for models th that are 
indicated as continuous. For simulation and prediction, however, the model is 
first transformed to discrete time. 

The absolute value of the sampling interval of a continuous-time model is the 
sampling interval of the data for which the model was estimated. It is also used 
to select suitable default frequency intervals in th2ff (the default being from 
zero up to 10 * π/  |T| rad/sec). The absolute value of T also applies when the 
model is used for simulation and prediction. 

Discrete-Time Models
These models are obtained from the estimation functions ar, armax, arx, bj, 
ivar, iv4, n4sid, and oe. They are also obtained from pem when applied to (6.1) 
and to state-space structures generated by ms2th and mf2th with the argument 
'd'. Discrete-time models also result from poly2th with positive or default 
values of the sampling interval. Finally discrete-time models are obtained with 
the command thc2thd. (See below.) 
6



The sampling interval T is obtained by T = gett(th). It  indicates the sampling 
interval of the model as well as of the data to which the model was adjusted. It 
is also used for appropriate frequency scales in the freqfunc format.

Transformations
Transformations between continuous-time and discrete-time model 
representations are achieved by thc2thd and thd2thc. The corresponding 
uncertainty measure (the estimated covariance matrix of the internal 
parameters) is also transformed in most cases. The syntax is 

thc = thd2thc(thd)
thd = thc2thd(thc,T)

If the discrete-time model has some pure time delays ( ) the default 
command removes them before forming the continuous-time model. They 
should then be appended as an extra dead time. This is done automatically  by 
th2ff. thd2thc offers as an option to approximate the dead time by a finite 
dimensional system. Note that the noise properties are translated by the 
somewhat questionable formula (3.32). The covariance matrix is translated by 
Gauss’ approximation formula using numerical derivatives. The M-file 
nuderst is then invoked. You may want to edit it for applications where the 
parameters have very different orders of magnitude. See the comments in 
“Defining Model Structures” on page 3-29.

Here is an example which compares the Bode plots of an estimated model and 
its continuous-time counterpart:

th = armax(z,[2 3 1 2]);
gd = th2ff(th);
thc = thd2thc(th);
gc = th2ff(thc);
bodeplot([gd gc])

Simulation and Prediction
Any model, when given in the theta format, can be simulated with 

y = idsim([u e],th)

where u and e are column vectors (or matrices) containing the input and noise 
sequences. The output is returned in a column vector y of the same length. 
Notice that th contains information about the noise variance so e should be a 

nk 1>
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zero-mean, unit-variance sequence. If e is omitted, a noise-free simulation is 
obtained. Here is a typical string of commands:

A = [1 –1.5 0.7];
B = [0 1 0.5];
th0 = poly2th(A,B,[1 –1 0.2]);
u = idinput(400,’rbs’,[0 0.3]); 
e = randn(400,1);
y = idsim([u e],th0);
plot(y)

The “inverse model” (3.38), which computes the prediction errors from given 
input-output data, is simulated with

e = pe([y u],th)

To compute the k-step ahead prediction of the output signal based on a model 
th, the procedure is as follows:

yhat = predict([y u],th,k)

The predicted value  is computed using the information in  up to 
time  and information in  up to time . The actual way that 
the information in past outputs is used depends on the noise model in th. For 
example, an output error model  maintains that there is no 
information in past outputs, therefore, predictions and simulations coincide.

predict can evaluate how well a time series model is capable of predicting 
future values of the data. Here is an example, where y is the original series of, 
say, monthly sales figures. A model is estimated based on the first half, and 
then its ability to predict half a year ahead is checked out on the second half of 
the observations:

idplot(y)
y1 = y(1:48), y2 = y(49:96)
th = ar(y1,4)
yhat = predict(y2,th4,6)
plot([y2 yhat])

The command compare is useful for any comparisons involving idsim and 
predict.

ŷ t t k–( ) u s( )
s t= y s( ) s t k–=

A C D 1= = =
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8. Model Structure Selection and Validation 
After you have been analyzing data for some time, you typically end up with a 
large collection of models with different orders and structures. You need to 
decide which one is best, and if the best description is an adequate model for 
your purposes. These are the problems of model validation.

Model validation is the heart of the identification problem, but there is no 
absolute procedure for approaching it. It is wise to be equipped with a variety 
of different tools with which to evaluate model qualities. This section describes 
the techniques you can use to evaluate model qualities using the System 
Identification Toolbox.

Comparing Different Structures
It is natural to  compare the results obtained from model structures with 
different orders. For state-space models this is easily obtained by using a vector 
argument for the order in n4sid:

th = n4sid(z,1:10)

This invokes a plot from which a “best” order is chosen.

For models of ARX type, various orders and delay can be efficiently studied 
with the command arxstruc. Collect in a matrix NN all of the ARX structures 
you want to investigate, so that each row of NN is of the type

[na nb nk]

With

V = arxstruc(ze,zv,NN)

an ARX model is fitted to the data set ze for each of the structures in NN. Next, 
for each of these models, the sum of squared prediction errors is computed, as 
they are applied to the data set zv. The resulting loss functions are stored in V 
together with the corresponding structures.

To select the structure that has the smallest loss function for the validation set 
zv, use

nn = selstruc(V,0)
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Such a procedure is known as cross validation and is a good way to approach 
the model selection problem.

It is usually a good idea to visually inspect how the fit changes with the number 
of estimated parameters. A graph of the fit versus the number of parameters is 
obtained with

nn = selstruc(V)

This routine prompts you to choose the number of parameters to estimate, 
based upon visual inspection of the graph, and then it selects the structure 
with the best fit for that number of parameters.

The command struc helps generate typical structure matrices NN for 
single-input systems. A typical sequence of commands is

V = arxstruc(ze,zv,struc(2,2,1:10));
nn = selstruc(V,0);
nk = nn(3);
V = arxstruc(ze,zv,struc(1:5,1:5,nk–1:nk+1));
nn = selstruc(V)

where you first establish a suitable value of the delay nk by testing second 
order models with delays between one and ten. The best fit selects the delay, 
and then all combinations of ARX models with up to five a and b parameters 
are tested with delays around the chosen value (a total of 75 models).

If the model is validated on the same data set from which it was estimated; i.e., 
if ze = zv, the fit always improves as the model structure increases. You need 
to compensate for this automatic decrease of the loss functions. There are 
several approaches for this. Probably the best known technique is Akaike’s 
Final Prediction Error (FPE) criterion and his closely related Information 
Theoretic Criterion (AIC). Both simulate the cross validation situation, where 
the model is tested on another data set.

The FPE is formed as

FPE 1 n+ N⁄
1 n– N⁄
--------------------= * V
0



where n is the total number of estimated parameters and N is the length of the 
data record. V is the loss function (quadratic fit) for the structure in question. 
The AIC is formed as

(See Section 16.4 in Ljung (1987).)

According to Akaike’s theory, in a collection of different models, choose the one 
with the smallest FPE (or AIC). The FPE values are displayed by the present 
command and are also given as the entry (2,1) of the th matrix. The structure 
that minimizes the AIC is obtained with 

nn = selstruc(V,'AIC')

where V was generated by arxstruc.

A related criterion is Rissanen’s minimum description length (MDL) approach, 
which selects the structure that allows the shortest over-all description of the 
observed data. This is obtained with

nn = selstruc(V,'MDL')

If substantial noise is present,  the ARX models may need to be of high order to 
describe simultaneously the noise characteristics and the system dynamics. 
(For ARX models the noise model 1/A(q) is directly coupled to the dynamics 
model B(q)/A(q).) An alternative is to compute the dynamics model only, using 
an IV technique, and to compute the fit between the model’s simulated output 
and the output in the validation data set zv. This is accomplished with

V = ivstruc(ze,zv,NN)

The information in V can then be handled as described above. In this case, V 
also contains the condition number of the matrix from which the IV estimates 
are solved. Poor conditioning of this matrix indicates unnecessarily high model 
orders. (See page 415 in Ljung, 1987).

Checking Pole-Zero Cancellations
A near pole-zero cancellation in the dynamics model is an indication that the 
model order may be too high. To judge if a “near” cancellation is a real 
cancellation, take the uncertainties in the pole- and zero-locations into 

AIC log 1 2n+ N⁄( )* V[ ]≈
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consideration. The function th2zp computes confidence regions for the poles 
and zeros, which are graphed by

zpplot(th2zp(th),1)

where the 1 indicates how many standard-deviations wide the confidence 
interval is. If the confidence regions overlap, try lower model orders.

This check is especially useful when the models have been generated by arx. As 
mentioned under “Comparing Different Structures,” the orders can be pushed 
up due to the requirement that 1/A(q) describe the noise characteristics. 
Checking cancellations in B(q)/A(q) then gives a good indication of which orders 
to chose from model structures like armax, oe, and bj.

Residual Analysis
The residuals associated with the data and a given model, as in (3.38),  are 
ideally white and independent of the input for the model to correctly describe 
the system. The function

e = resid(z,th)

computes the residuals e and performs whiteness and independence analyses. 
The auto correlation function of e and the cross correlation function between  e 
and u are computed and displayed for up to lag 25. Also displayed are 99% 
confidence intervals for these variables, assuming that e is indeed white and 
independent of u.

The rule is that if the correlation functions go significantly outside these 
confidence intervals, do not accept the corresponding model as a good 
description of the system. Some qualifications of this statement are necessary:

• Model  structures like the OE structure (3.19) and methods like the IV 
method (3.41) focus on the dynamics G and less about the noise properties H. 
If you are interested primarily in G, focus on the independence of e and u 
rather than the whiteness of e.

• Correlation between e and u for negative lags, or current  affecting 
future , is an indication of output feedback. This is not a reason to reject 
the model. Correlation at negative lags is of interest, since certain methods 
do not work well when feedback is present in the input-output data, (see 

e t( )
u t( )
2



“Dealing with Data” on page 3-58), but concentrate on the positive lags in the 
cross-correlation plot for model validation purposes. 

• When using the ARX model (3.15), the least-squares procedure 
automatically makes the correlation between  and  zero for 

, , , for the data used for the estimation.

As part of the validation process, you can graph the residuals using

 plot(e)

for a simple visual inspection of irregularities and outliers. (See also “Dealing 
with Data” on page 3-58.)

Noise-Free Simulations
To check whether a model is capable of reproducing the observed output when 
driven by the actual input, you can run a simulation:

yh = idsim(u,th)
plot([y yh])

The same result is obtained by

compare([y,u],th)

It is a much tougher and revealing test to perform this simulation, as well as 
the residual tests, on a fresh data set [y u] that was not used for the estimation 
of the model th. This is called cross validation. (Note that ivstruc forms the 
squared difference of  y and yh for IV-computed models th.)

Assessing the Model Uncertainty
The estimated model is always uncertain, due to disturbances in the observed 
data, and due to the lack of an absolutely correct model structure. The 
variability of the model that is due to the random disturbances in the output is 
estimated by most of the estimation procedures, and it can be displayed and 
illuminated in a number of ways. This variability answers the question of how 
different can the model be if I repeat the identification procedure, using the 
same model structure, but with a different data set that uses the same input 
sequence. It does not account for systematic errors due to an inadequate choice 
of model structure. There is no guarantee that the “true system” lies in the 
confidence interval.

e t( ) u t k–( )
k nk= nk 1+ …nk nb 1–+
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The uncertainty in the frequency response is calculated with

[g,phiv] = th2ff(th)

and can subsequently be graphed with bodeplot. The uncertainty in the time 
response is displayed by

idsimsd(u,th)

Ten possible models are drawn from the asymptotic distribution of the model 
th. The response of each of them to the input u is graphed on the same diagram.

The uncertainty of these responses concerns the external, input-output 
properties of the model. It reflects the effects of inadequate excitation and the 
presence of disturbances.

You can also directly get the standard deviation of the simulated result by 

[ysim,ysimsd] = idsim(u,th)

The uncertainty in internal representations is manifested in the covariance 
matrix of the estimated parameters,

present(th)

and in the standard deviations of the pole- and zero-locations, which are 
computed with

zepo = th2zp(th)

and displayed using zpplot. Large uncertainties in these representations are 
caused by excessively high model orders, inadequate excitation, or bad 
signal-to-noise ratios.

Comparing Different Models
It is a good idea to display the model properties in terms of quantities that have 
more physical meaning than the parameters themselves. Bode plots, zero-pole 
plots, and model simulations all give a sense of the properties of the system 
that have been picked up by the model.

If several models of different characters give very similar Bode plots in the 
frequency range of interest, you can be fairly confident that these must reflect 
features of the true, unknown system. You can then choose the simplest model 
among these.
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A typical identification session includes estimation in several different 
structures, and comparisons of the model properties. Here is an example:

a1 = arx(z,[1 1]);
[gs,nss] = spa(z);
[ga1,nsa1] = th2ff(a1);
bodeplot([gs ga1])
bodeplot([nss nsa1])
zpa1 = th2zp(a1);
am2 = armax(z,[2 2 2 1]);
[gam2,nsam2] = th2ff(am2);
bodeplot([gs gam2])
zpam2 = th2zp(am2);
zpplot(zpform(zpa1,zpam2))

Conditioning of the Prediction Error Gradient
When the model orders in (3.23) are overestimated, so that a pole-zero 
cancellation can take place in the model, the prediction error gradient 
theoretically becomes rank deficient. The matrix that is inverted when 
estimating the covariance matrix becomes singular, and the Gauss-Newton 
search direction becomes ambiguous.

Due to the high numeric precision in MATLAB, you are unlikely to encounter 
messages about singular and rank deficient matrices. Instead, overestimated 
model orders usually show up as large estimated parameter variances and 
large norms of the Gauss-Newton vector (although only minor decreases in the 
criterion value result). Consequently, these are good indicators that you have 
gone too far in increasing the model orders. See also “Some Special Topics” on 
page 3-68.

Selecting Model Structures for Multivariable 
Systems
Multivariable systems are often more difficult to model. Some basic aspects 
and advice were given in “The Basic Steps of System Identification” on page 
1-10. The graphical user interface (GUI) offers particularly useful support for 
the multivariable case. In this section we give some more technical comments 
about the identification of multivariable systems.
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The basic comments given so far in this section also apply to such systems. 
There are, however, a large number of possible structures for systems with 
several outputs, and systematic tests of the many possibilities are impractical. 
This problem is a difficult one, and for a more comprehensive treatment, refer 
to Appendix 4.A of Ljung (1987).

First of all, physical insight is more important than anything else. Whenever 
there is prior knowledge sufficient to form  physically parametrized state-space 
models, you should test that. Even lacking more precise knowledge, some 
physical insight might help you to come up with first suggestions of orders and 
delays.

For multi-output black-box models, it is easiest to first try state-space models 
using n4sid for the model estimation. 

Multivariable ARX models are also easy to deal with. When building such 
models, a simple start-up procedure is to try arx with a structure that is filled 
with parameters. Then consider those estimates that are of the same 
magnitude as their standard deviations, and try orders and  delays that 
automatically set them to zero. Note that for arx each row is estimated 
independently of the others. Changing orders and delays associated with 
output number i (i.e. the i-th row of na, nb, and nk) does not change the 
parameter estimates associated with the other rows. When a reasonable 
structure has been found, try iv4 with it and evaluate the models in the usual 
ways.

If the signal to noise level is not good, and it is important to have models that 
describe the noise characteristics, try state-space models. (These are 
equivalent to multivariable ARMAX models.)  Again, it is easier to estimate 
state-space models directly without specifying the particular structure. This is 
done using n4sid.

An alternative is to apply the prediction error method using canonical 
state-space forms. These are obtained by the command canstart. This defines 
a canonical form structure from the pseudo-observability indices. These indices 
form a vector with the same number of entries as the number of outputs. 
Loosely speaking, index number k describes how many delayed values of yk 
affect the current value of yk. The sum of the indices is equal to the order of the 
6



system. The number of possible pseudo-observability indices for a system of 
order n with p outputs is

It is, however, reassuring to know that almost every system of order n can be 
described in a structure corresponding to any set of pseudo-observability 
indices whose sum is n. You can estimate the order of the system (or, rather, 
try several different orders) and pick any set of pseudo-observability indices 
corresponding to that order. A default choice of indices can be made by 
canstart if only the order is specified. Only if the minimization in pem shows 
signs of poor conditioning of the involved matrices do you need to try other 
indices.

Note that the canonical form parametrizations cannot handle input delays. To 
deal with specific delays from the input(s), shift the input sequences 
accordingly.

Also note that with fixpar any canonical form parameterization can be 
transformed to a corresponding output-error structure, by fixing the matrix K 
to zero.

n
p 

 
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9. Dealing with Data
Extracting information from data is not an entirely straightforward task. In 
addition to the decisions required for model structure selection and validation, 
the data may need to be handled carefully. This section gives some advice on 
handling several common situations.

Offset Levels
When the data have been collected from a physical plant, they are typically 
measured in physical units. The levels in these raw inputs and outputs may not 
match in any consistent way. This will force the models to waste some 
parameters correcting the levels.

Offsets are easily dealt with; always subtract the mean levels from the input 
and output sequences before the estimation. It is best if the mean levels 
correspond to a physical equilibrium, but if such values are not known, use the 
sample means:

z = dtrend(z);

Section 14.6 in Ljung (1987) discusses this in more detail. With the dtrend 
command, you can also remove piece-wise linear trends. 

Outliers
Real data are also subject to possible bad disturbances; an unusually large 
disturbance, a temporary sensor or transmitter failure, etc. It is important that 
such outliers are not allowed to affect the models too strongly.

The robustification of the error criterion (described under lim in “Optional 
Variables” on page 3-26) helps here, but it is always good practice to examine 
the residuals for unusually large values, and to go back and critically evaluate 
the original data responsible for the large values. If the raw data are obviously 
in error, they can be smoothed, and the estimation procedure repeated.

Filtering Data
Depending upon the application, interest in the model can be focused on 
specific frequency bands. Filtering the data before the estimation, through 
filters that enhance these bands, improves the fit in the interesting regions. 
This is used in the System Identification Toolbox function idfilt. For 
8



example, to enhance the data in the frequency band between 0.02 * π and 
0.1 * π, execute

zf = idfilt(z,5,[0.02 0.1]);

This computes and uses a fifth order Butterworth bandpass filter with 
passband between the indicated frequencies. Chapter 13 in Ljung (1987) 
discusses the role of filtering in more detail.

The SITB contains other useful commands for related problems. For example, 
if you want to lower the sampling rate by a factor of 5, use

z5 = idresamp(z,5);

Feedback in Data
If the system was operating in closed loop (feedback from the past outputs to 
the current input) when the data were collected, some care has to be exercised.

Basically, all the prediction error methods work equally well for closed-loop 
data. Note, however, that the Output-Error model (3.19) and the Box-Jenkins 
model (3.21) are normally capable of giving a correct description of the 
dynamics G, even if H (which equals 1 for the output error model) does not 
allow a correct description of the noise properties. This is no longer true for 
closed-loop data. You then need to model the noise properties carefully.

The spectral analysis method and the instrumental variable techniques (with 
default instruments) give unreliable results when applied to closed-loop data. 
These techniques should be avoided when feedback is present.

To detect if feedback is present, use the basic method of applying cra to 
estimate the impulse response. Significant values of the impulse response at 
negative lags is a clear indication of feedback. When a parametric model has 
been estimated and the resid command is applied, a graph of the correlation 
between residuals and inputs is given. Significant correlation at negative lags 
again indicates output feedback in the generation of the input. Testing for 
feedback is, therefore, a natural part of model validation.

Delays
The selection of the delay nk in the model structure is a very important step in 
obtaining good identification results. You can get an idea about the delays in 
the system by the impulse response estimate from cra.
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Incorrect delays are also visible in parametric models. Underestimated delays 
(nk too small) show up as small values of leading  estimates, compared to 
their standard deviations. Overestimated delays (nk too large) are usually 
visible as a significant correlation between the residuals and the input at the 
lags corresponding to the missing  terms.

A good procedure is to start by using arxstruc to test all feasible delays 
together with a second-order model. Use the delay that gives the best fit for 
further modeling. When you have found an otherwise satisfactory structure, 
vary nk around the nominal value within the structure, and evaluate the 
results.

bk

bk
0



10. Recursive Parameter Estimation
In many cases it may be necessary to estimate a model on line at the same time 
as the input-output data is received. You may need the model to make some 
decision on line, as in adaptive control, adaptive filtering, or adaptive 
prediction. It may be necessary to investigate possible time variation in the 
system’s (or signal’s) properties during the collection of data. Terms like 
recursive identification, adaptive parameter estimation, sequential estimation, 
and online algorithms are used for such algorithms. Chapter 11 in Ljung (1987) 
deals with such algorithms in some detail.

The Basic Algorithm
A typical recursive identification algorithm is

Here  is the parameter estimate at time t, and is the observed output 
at time t. Moreover, is a prediction of  the value based on observations 
up to time  and also based on the current model (and possibly also earlier 
ones) at time . The gain determines in what way the current 
prediction error affects the update of the parameter estimate. It is 
typically chosen as

where is (an approximation of) the gradient with respect to  of  . 
The latter symbol is the prediction of according the model  described by . 
Note that model structures like AR and ARX that correspond to linear 
regressions can be written as

where the regression vector  contains old values of observed inputs and 
outputs, and  represents the true description of the system. Moreover, 

 is the noise source (the innovations). Compare with (3.15). The natural 
prediction is  and its gradient with respect to  becomes 
exactly .

θˆ t( ) θˆ t 1–( ) K t( ) y t( ) ŷ t( )–( )+= (10.1)

θ
ˆ

t( ) y t( )
ŷ t( ) y t( )

t 1–
t 1– K t( )

y t( ) ŷ t( )–

K t( ) Q t( )ψ t( )= (10.2)

ψ t( ) θ ŷ t θ( )
y t( ) θ

y t( ) ψT
t( )θ0 t( ) e t( )+= (10.3)

ψ t( )
θ0 t( )

e t( )
ŷ t( ) ψT

t( )θ t 1–( )= θ
ψ t( )
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For models that cannot be written as linear regressions, you cannot recursively 
compute the exact prediction and its gradient for the current estimate . 
Then approximations  and  must be used instead. Section 11.4 in 
Ljung (1987) describes suitable ways of computing such approximations for 
general model structures.

The matrix  that affects both the adaptation gain and the direction in 
which the updates are made, can be chosen in several different ways. This is 
discussed in the following section.

Choosing an Adaptation Mechanism and Gain
The most logical approach to the adaptation problem is to assume a certain 
model for how the “true” parameters  change. A typical choice is to describe 
these parameters as a random walk:

Here  is assumed to be white Gaussian noise with covariance matrix

θˆ t 1–( )
ŷ t( ) ψ t( )

Q t( )

θ0

θ0 t( ) θ0 t 1–( ) w t( )+= (10.4)

w t( )

Ew t( )wT
t( ) R1= (10.5)
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Suppose that the underlying  description of the observations is a linear 
regression (10.3). An optimal choice of  in (10.1)-(10.2) can then be 
computed from the Kalman filter, and the complete algorithm becomes

Here  is the variance of the innovations  in (10.3):  (a scalar). 
The algorithm (10.6) will be called the Kalman Filter (KF) Approach to 
adaptation, with  drift matrix  . See eq (11.66)-(11.67) in Ljung (1987). The 
algorithm is entirely specified by , , , , and the sequence of data 

, , , 2,…. Even though the algorithm was motivated for a linear 
regression model structure,  it can also be applied in the general case where 

 is computed in a different way from (10.6b).

Another approach is to discount old measurements exponentially, so that an 
observation that is  samples old carries a weight that is  of the weight of 
the most recent observation. This means that the following function is 
minimized rather than (3.39):  

at time t. Here  is clearly is a positive number ≤ 1. The  measurements that 
are older than  carry a weight in (10.7) that is less than about 0.3. 
Think of  as the memory horizon of the approach. Typical values 
of  are in the range 0.97– 0.995. 

Q t( )

θ̂ t( ) θ̂ t 1–( ) K t( ) y t( ) ŷ t( )–( )+=

ŷ t( ) ψT
t( )θ̂ t 1–( )=

K t( ) Q t( )ψ t( )=

Q t( ) P t 1–( )

R2 ψ t( )T
P t 1–( )ψ t( )+

---------------------------------------------------------=

P t( ) P t 1–( ) R1
P t 1–( )ψ t( )ψ t( )T

P t 1–( )

R2 ψ t( )T
P t 1–( )ψ t( )+

-----------------------------------------------------------------–+=
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The criterion (10.7) can be minimized exactly in the linear regression case 
giving the algorithm (10.6abc) with the following choice of :

This algorithm will be called the Forgetting Factor (FF) Approach to 
adaptation, with the forgetting factor . See eq (11.63) in Ljung (1987). The 
algorithm is also known as RLS, recursive least squares in the linear regression 
case. Note that  in this approach gives the same algorithm as 

 in the Kalman filter approach. 

A third approach is to allow the matrix  to be a multiple of the  identity 
matrix:

It can also be normalized with respect to the size of :

See eqs (11.45) and (11.46), respectively in Ljung (1987). These choices of  
move the updates of  in (10.1) in the negative gradient direction (with respect 
to ) of the criterion (3.39). Therefore, (10.9) will be called  the Unnormalized 
Gradient (UG) Approach and (10.10) the Normalized Gradient (NG) Approach 
to adaptation, with gain . The gradient methods are also known as LMS, least 
mean squares in the linear regression case.

Q t( )

Q t( ) P t( ) P t 1–( )

λ ψ t( )T
P t 1–( )ψ t( )+

------------------------------------------------------= =

P t( ) P t 1–( ) P t 1–( )ψ t( )ψ t( )T
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 
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Q t( )
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Available Algorithms
The System Identification Toolbox  provides the following functions that 
implement all common recursive identification algorithms for model structures 
in the family (6.1): rarmax, rarx, rbj, rpem, rplr, and roe. They all share the 
following basic syntax:

[thm,yh] = rfcn(z,nn,adm,adg)

Here z contains the output-input data as usual. nn specifies the model 
structure, exactly as for the corresponding offline algorithm. The arguments 
adm and adg select the adaptation mechanism and adaptation gain listed above.

 adm = 'ff'; adg = lam

gives the forgetting factor algorithm (10.8), with forgetting factor lam.

adm = 'ug'; adg = gam

gives the unnormalized gradient approach (10.9) with gain gam. Similarly,

adm = 'ng'; adg = gam

gives the normalized gain approach (10.10). To obtain the Kalman filter 
approach (10.6) with drift matrix R1 enter

adm = 'kf'; adg = R1

The value of  is always 1. Note that the estimates  in (10.6) are not affected 
if all the matrices  and  are scaled by  the same number. You can 
therefore always scale the original problem so that  becomes 1.

The output argument thm is a matrix that contains the current models at the 
different samples. Row k of thm contains the model parameters, in alphabetical 
order at sample time k, corresponding to row k in the data matrix z. The 
ordering of the parameters is the same as th2par would give when applied to 
the theta format of a corresponding offline model. 

The output argument yh is a column vector that contains, in row k, the 
predicted value of , based on past observations and current model. The 
vector yh thus contains the adaptive predictions of the outputs, and is useful 
also for noise cancelling and other adaptive filtering applications.

The functions also have optional input arguments that allow the specification 
of , and . Optional output arguments include the last value of 
the matrix P and of the vector .

R2 θ̂
R1 R2, P 0( )

R2

y k( )

θ 0( ) P 0( ), ψ 0( )
ψ

3-65



3 Tutorial

3-6
Now, rarx is a recursive variant of arx; similarly rarmax is the recursive 
counterpart of armax and so on. Note, though that rarx does not handle 
multi-output systems, and rpem does not handle state-space structures.

The function rplr is a variant of rpem, and uses a different approximation of 
the gradient . It is known as the recursive pseudo-linear regression approach, 
and contains some well known special cases. See equation (11.57) in Ljung 
(1987). When applied to the output error model (nn=[0 nb 0 0 nf nk]) it 
results in methods known as HARF ('ff'–case) and SHARF ('ng'–case). The 
common extended least squares (ELS) method is an rplr algorithm for the 
ARMAX model (nn=[na nb nc 0 0 nk]).

The following  example shows a second order output error model, which is built 
recursively and its time varying parameter estimates plotted as functions of 
time:

thm = roe(z,[2 2 1],'ff',0.98);
plot(thm)

A second order ARMAX model is recursively estimated by the ELS method, 
using Kalman filter adaptation. The resulting  static gains of the estimated 
models are then plotted as a function of time:

[N,dum]=size(z);
thm = rplr(z,[2 2 2 0 0 1],'kf',0.01∗eye(6));
nums = sum(thm(:,3:4)')';
dens = ones(N,1)+sum(thm(:,1:2)')';
stg = nums./dens;
plot(stg)

So far, the examples of applications where a batch of data is examined cover 
studies of the variability of the system. The algorithms are, however, also 
prepared for true online applications, where the computed model is used for 
some online decision. This is accomplished by storing the update information 
in  and information about past data in   (and ) 
and using that information as initial data for the next time step. The following 
example shows the recursive least-squares algorithm being used on line (just 
to plot one current parameter estimate):

%Initialization, first i/o pair y,u (scalars)
[th,yh,P,phi] = rarx([y u],[2 2 1],'ff',0.98);
axis([1 50 –2 2])
plot(1,th(1),'∗'),hold

ψ

θ t 1–( ) P t 1–( ), φ t 1–( ) ψ t 1–( )
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%The online loop:
for k = 2:50
% At time k receive y,u 
[th,yh,P,phi] = ...
rarx([y u],[2 2 1],'ff',0.98,th',P,phi);
plot(k,th(1),'∗')
end

Executing iddemo 6 illustrates the recursive algorithms.

Segmentation of Data
Sometimes the system or signal exhibits abrupt changes during the time when 
the data is collected. It may be important in certain applications to find the 
time instants when the changes occur and to develop models for the different 
segments during which the system does not change. This is the segmentation 
problem. Fault detection in systems and detection of trend breaks in time 
series can serve as two examples of typical problems.

The System Identification Toolbox  offers the function segment to deal with the 
segmentation problem. The basic syntax is

thm = segment(z,nn)

with a format like rarx or rarmax. The matrix thm contains the piecewise 
constant models in the same format as for the algorithms described earlier in 
this section. 

The algorithm that is implemented in segment is based on a model description 
like (10.4), where the change term  is zero most of the time, but now and 
then it abruptly changes the system parameters . Several Kalman filters 
that estimate these parameters are run in parallel, each of them corresponding 
to a particular assumption about when the system actually changed. The 
relative reliability of these assumed system behaviors is constantly judged, and 
unlikely hypotheses are replaced by new ones. Optional arguments allow the 
specification of the measurement noise variance  in (10.3), of the probability 
of a jump, of the number of parallel models in use, and also of the guaranteed 
lifespan of each hypothesis. See iddemo 7 in Chapter 4, "Command Reference" 
also.

w t( )
θ0 t( )

R2
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11. Some Special Topics
This section describes a number of miscellaneous topics. Most of the 
information here is also covered in other parts of the manual, but since 
manuals seldom are read from the beginning, you can also check if a particular 
topic is brought up here.

Time Series Modeling
When there is no input present, the general model (6.1) reduces to the ARMA 
model structure:

With  you have an AR model structure.

Basically all commands still apply to these time series models, but with natural 
modifications. They are listed as follows:

th = poly2th(A,[],C,1,[],lam)
y = idsim(e,th)

Spectral analysis (etfe and spa) and the th2ff function now return the 
spectral estimate of y as their first output arguments:

PHIY = th2ff(th)
PHIY = spa(y)
PERIOD = etfe(y)

Note that etfe gives the periodogram estimate of the spectrum. 

armax and arx work the same way, but need no specification of nb and nk:

th = arx(y,na)
th = armax(y,[na nc])

Note that arx also handles multivariate signals. State-space models of time 
series can be built simply by specifying B = [], D = [] in modstruc, mf2th, and 
ms2th. resid works the same way for time series models, but does not provide 
any input-residual correlation plots:

e = resid(y,th)

A q( )y t( ) C q( )e t( )= (11.1)

C q( ) 1=
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In addition there are two commands that are specifically constructed for 
building scalar AR models of time series. One is

th = ar(y,na)

which has an option that allows you to choose the algorithm from a group of 
several popular techniques for computing the least-squares AR model. Among 
these are Burg’s method, a geometric lattice method, the Yule-Walker 
approach, and a modified covariance method. See Chapter 4, "Command 
Reference" for details. The other command is

th = ivar(y,na)

which uses an instrumental variables technique to compute the AR part of a 
time series.

Finally, when no input is present, the functions bj, iv, iv4, and oe are not 
defined.

Here is an example where you can simulate a time series, compare spectral 
estimates and covariance function estimates, and also the predictions of the 
model.

ts0 = poly2th([1 –1.5 0.7],[]);
  % The true spectrum:
spe0 = th2ff(ts0);
ir = idsim([1;zeros(24,1)],ts0);
  % The true covariance function:
Ry0 = conv(ir,ir(25:–1:1));
e = randn(200,1);
y = idsim(e,ts0);
plot(y)
per = etfe(y);
speh = spa(y);
ffplot([per,speh,spe0])
  % A second order AR model:
ts2 = ar(y,2);
sp2 = th2ff(ts2);
ffplot([speh,sp2,spe0,3])
  % The covariance function estimates:
Ryh = covf(y,24);
ir2 = idsim([1;zeros(24,1)],ts2);
Ry2 = conv(ir2,ir2(25:–1:1));
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plot([–24:24]∗ones(1,3),[Ryh,Ry2,Ry0])
  % The prediction ability of the model:
compare(y,th2,5)

The Sampling Interval
The System Identification Toolbox assumes a normalized sampling interval of 

, unless you specify otherwise. This means that the frequency unit 
becomes “radians per sampling interval,” and that all the transformations 
between continuous- and discrete-time models give numerical parameter 
values corresponding to the unit “... per sampling interval” rather than “... per 
second.” To obtain correct physical units in these cases, the sampling interval 
must be specified accordingly.

All models in the theta format contain the sampling interval T as the (1,2) 
element. It can be read by 

T = gett(th)

 and it is changed by

thnew = sett(thold,T)

Note that the value of T is just changed; no transformation of parameters is 
carried out by sett.

A negative value of T indicates that the corresponding model is given in 
continuous time. The absolute value of T denotes, in that case, the sampling 
interval of the data, for which this model was estimated. This is also the 
sampling interval used when the model is used for simulation or prediction. All 
other transformations (to the frequency function, to poles and zeros, to transfer 
functions and to state-space matrices) will be in terms of the continuous-time 
model. In the case of th2ff, abs(T) is used for the default choice of frequency 
range.

You can specify the sampling interval as an optional argument in all the 
functions that create theta structures. It is generally the last argument. Note 
that in ms2th and mf2th, it is the sampling interval of the data that you need 
to specify, even if the model itself in parametrized in continuous time. If the 
initial  structure in pem, armax, bj, and oe is given by a matrix th in the theta 
format, the default value of T is the one given by th. An explicitly given 
sampling interval (as an argument to pem, for example) overrides the default 
value in th.

T 1=
0



The sampling interval T is also used by etfe, spa, and th2ff to determine 
default frequency ranges. For discrete-time systems, this default is [1:128]/
128*pi/T and for continuous-time systems, it is

logspace(log10(pi/abs(T)/100),log10(10*pi/abs(T)),128).

Discrete-time default frequency ranges can be changed by sett, like in

g = spa(z);
g = sett(g,T);

Out of Memory 
If you run out of memory on computers with memory limitations, clear 
unnecessary variables and use the pack function. When you are using the 
iterative  procedures armax, bj, oe, and pem, it is a good idea to use pack to 
clean up after the start-up estimation procedure using, for example

th = armax(z,nn,0);
pack
th = armax(z,th);

All the relevant System Identification Toolbox functions have an optional 
variable MAXSIZE that controls the memory/speed trade-off and is set 
automatically, based upon the best values for the machine you are using. The 
routines do not allow any matrix of size larger than MAXSIZE to form. Instead 
they go into for-loops to handle the situation.

The default value of MAXSIZE is set in the M-file idmsize. Theoretically, 
MAXSIZE is 8188 on the smaller machines, but since many matrices may form, 
it best to set the default value for these machines to  MAXSIZE = 4096.

If you have memory problems, you can use the argument MAXSIZE, or edit 
idmsize, with values lower than the default.

If you have a large amount of input-output data, so that the memory delimiter 
gives you a slower response,  use a portion of the data to calculate a good initial 
condition for the minimization, for example 

th = armax(z(1:500,:),[na nb nc],10,0.1);
th = armax(z,th);
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On a small machine, if you have collected more than 8188 data points so that 
you cannot form z=[y u], no memory help is offered. You then have to build 
separate models for separate parts of the data and reconcile the models.

Memory-Speed Trade-Offs
On machines with no formal memory limitations, it is still of interest to 
monitor the sizes of the matrices that are formed. The typical situation is when 
an overdetermined set of linear equations is solved for the least-squares 
solution. The solution time depends, of course, on the dimensions of the 
corresponding matrix. The number of rows corresponds to the number of 
observed data, while the number of columns corresponds to the number of 
estimated parameters. The argument MAXSIZE used with all the relevant 
M-files, guarantees that no matrix with more than MAXSIZE elements is formed. 
Larger data sets and/or higher order models are handled by for-loops. For-loops 
give linear increase in time when the data record is increased, plus some 
overhead (and somewhat worse numerical properties).

If you regularly work with large data sets and/or high order models, it is 
advisable to tailor the memory and speed trade-off to your machine by choosing 
the default value of MAXSIZE in the M-file idmsize carefully. Note that this 
value is allowed to depend on the number of rows and columns of the matrices 
formed.

Regularization
The Gauss-Newton direction is usually defined as

where  is the  gradient matrix of the predictions with respect to the 
parameters, and e is the  vector of residuals.

When the inverted matrix is ill-conditioned, you can add a small fraction of the 
identity matrix to it. This is called regularization. See Ljung (1987), Section 
10.2. 

The routines in the System Identification Toolbox compute the Gauss-Newton 
direction with

g=psi\e

gn Ψ′Ψ( ) 1–
= * * Ψ′*e

Ψ N n×
N 1×
2



which uses the MATLAB mechanism for dealing with underdetermined, 
overdetermined systems of equations. An advanced version of regularization is 
thus automatically included.

Because of the high precision of MATLAB, regularization is not invoked easily. 
You may see some very large norm of gn–vector values before you see the 
MATLAB message that the matrix is rank deficient.

A large value for the gn–vector suggests that you decrease the model orders. 
However, if you are interested in how the regularization works, you can 
decrease the value of the machine epsilon. For example, set

eps = 0.000001

and run the identification again.

Local Minima
The iterative search procedures in  pem, armax, oe, and  bj lead to theta values 
corresponding to a local minimum of the criterion function (3.39). Nothing 
guarantees that this local minimum is also a global minimum. The start-up 
procedure for black-box models in these routines  is, however, reasonably 
efficient in giving initial estimates that lead to the global minimum.

If there is an indication that a minimum is not as good as you expected, try 
starting the minimization at several different initial conditions, to see if a 
smaller value of the loss function can be found.

Initial Parameter Values
When only orders and delays are specified, the functions armax, bj, oe, and pem 
use a start-up procedure to produce initial values. The start-up procedure goes 
through two to four least squares and instrumental variables steps. It is 
reasonably efficient in that it usually saves several iterations in the 
minimization phase. Sometimes it may, however, pay to use other initial 
conditions. For example, you can use an iv4 estimate computed earlier as an 
initial condition for estimating an output-error model of the same structure:

th1 = iv4(z,[na nb nk]);
[a,b] = th2poly(th1);
th2 = poly2th(1,b,1,1,a);
th3 = oe(z,th2);
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Another example is when you want to try a model with one more delay (for 
example, three instead of two) because the leading b-coefficient is quite small:

th1 = armax(z,[3 3 2 2]);
[a,b,c] = th2poly(th1);
b(3) = 0;
th2 = poly2th(a,b,c);
th3 = armax(z,th2); 

If you decrease the number of delays, remember that poly2th strips away 
leading zeros. Suppose you go from three to two delays in the above example:

th1 = armax(z,[3 3 2 3]);
[a,b,c] = th2poly(th1);
b(3) = 0.00001;
th2 = poly2th(a,b,c);
th3 = armax(z,th2);

Note that when constructing home-made initial conditions, the conditions  
must correspond to a stable predictor (C and F being Hurwitz polynomials), 
and that they should not contain any exact pole-zero cancellations.

For state-space and multi-output  models, you must provide the initial 
parameter values either when defining the structure in ms2th or mf2th, or with 
the special initialization function thinit. The basic approach is to use physical 
insight to choose initial values of the parameters with physical significance, 
and try some different (randomized) initial values for the others. For models 
parametrized in canonical state-space form, use canstart to get started.

Linear Regression Models
A linear regression model is of the type

where  and  are measured variables and  represents noise. Such 
models are very useful in most applications. They allow, for example, the 
inclusion of nonlinear effects in a simple way. The System Identification 
Toolbox function arx allows an arbitrary number of inputs. You can therefore 
handle arbitrary linear regression models with arx. For example, if you want 
to build a model of the type

y t( ) θTϕ t( ) e t( )+= (11.2)

y t( ) ϕ t( ) e t( )
4



call

z = [y ones(u) u u.^2 u.^3];
th = arx(z,[0 1 1 1 1 0 0 0 0])

This is formally a model with one output and four inputs, but all the model 
testing in terms of compare, idsim, and resid operate in the natural way for 
the model (11.2), once the data matrix z is defined as above.

Note that when pem is applied to linear regression structures, by default a 
robustified quadratic criterion is used. The search for a minimum of the 
criterion function is carried out by iterative search. Normally, use this 
robustified criterion. If you insist on a quadratic criterion, then set the 
argument lim in pem to zero. Then pem also converges in one step.

Spectrum Normalization and the Sampling Interval
In the function spa the spectrum estimate is normalized with the sampling 
interval T as  

where

(See also (3.3)). The normalization in etfe is consistent with (11.4). This 
normalization means that the unit of  is “power  per radians/time unit” 
and that the frequency scale is  “radians/time unit.” You then have

y t( ) b0 b1u t( ) b2u
2

t( ) b3u
3

t( )+ + += (11.3)

Φy ω( ) T R
ˆ

y

k M–=

M

∑= kT( )e i ωT–
WM k( ) (11.4)

R
ˆ

y kT( ) 1
N
---- y lT kT–( )y lT( )

l 1=

N

∑=

Φy ω( )

Ey
2

t( ) 1
2π
------ Φy w( ) wd

π T⁄–

π T⁄

∫= (11.5)
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In MATLAB language, therefore, you have  where

sp = spa(y); sp = sett(sp,T);
[om,PHIY] = getff(sp);
S1 = sum(PHIY)/length(PHIY)/T;
S2 = sum(y.^2)/length(y);

Note that PHIY contains  between  and  with a frequency 
step of π / T / (length(PHIY)). The sum  S1 is, therefore, the rectangular 
approximation of the integral in (11.5). The spectrum normalization differs 
from the one used by spectrum in the Signal Processing Toolbox, and the above 
example shows the nature of the difference.

The normalization with T in (11.4) also gives consistent results when time 
series are decimated. If the energy above the Nyquist frequency is removed 
before decimation (as is done in idresamp), the spectral estimates coincide; 
otherwise you see folding effects. 

Try the following sequence of commands:

th0 = poly2th(1,[],[1 1 1 1]);
       % 4th order MA–process
y = idsim(randn(2000,1),th0);
g1 = spa(y);
g2 = spa(y(1:4:2000));g2 = sett(g2,4);
ffplot([g1 g2]) % Folding effects
g3 = spa(idresamp(y,4)); % Prefilter applied
g3 = sett(g3,4);
ffplot([g1 g3]) % No folding

For a parametric noise (time series) model 

the spectrum is computed as

which is consistent with (11.4) and (11.5). Think of  as the spectral density 
of the white noise source .

When a parametric noise model is transformed between continuous time and 
discrete time and/or resampled at another sampling rate, the functions 

S1 S2≈

Φy ω( ) ω 0= ω π T⁄=

y t( ) H q( )e t( )= Ee
2

t( ) λ=

Φy w( ) λ T H e
iwt( )

2
⋅ ⋅=  (11.6)

λT
e t( )
6



thc2thd and thd2thc in the System Identification Toolbox use formulas that 
are formally correct only for piecewise constant inputs. (See (3.32)). This 
approximation is good when T is small compared to the bandwidth of the noise. 
During these transformations the variance  of the innovations  is 
changed so that the spectral density T . remains constant. This has two 
effects:  

• The spectrum scalings are consistent, so that the noise spectrum is 
essentially invariant (up to the Nyquist frequency) with respect to 
resampling. 

• Simulations with noise using idsim has a higher noise level when performed 
at faster sampling. 

This latter effect is well in line with the standard description that the 
underlying continuous-time model is subject to continuous-time white noise 
disturbances (which have infinite, instantaneous variance), and appropriate 
low-pass filtering is applied before sampling the measurements. If this effect is 
unwanted in a particular application, scale the noise source appropriately 
before applying idsim.

Note the following cautions relating to these transformations of noise models. 
Continuous-time noise models must have a white noise component. Otherwise 
the underlying state-space model, which is formed and used in thc2thd and 
thd2thc, is ill-defined. Warnings about this are issued by poly2th and these 
functions. Modify the C-polynomial  accordingly. Make the degree of the monic 
C-polynomial in continuous time equal to the sum of the degrees of the monic 
A- and D-polynomials; i.e., in continuous time

length(C)–1 = (length(A)–1)+(length(D)–1).

Interpretation of the Loss Function
The value of the quadratic loss function is given as element 1,1 in the theta 
format, and also displayed by present. For multi-output systems, this is equal 
to the determinant of the estimated covariance matrix of the innovations.

For most models the estimated covariance matrix of the innovations is obtained 
by forming the corresponding sample mean of the prediction errors, computed 
(using pe) from the model with the data for which the model was estimated. 

λ e t( )
λ
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Note the discrepancy between this value and the values shown during the 
minimization procedure (in pem, armax, bj, or oe, since these are the values of 
the robustified loss function (see under lim in Section 5).

Be careful when comparing loss function values between different structures 
that use very different noise models. An Output-Error model may have a better 
input-output fit, even though it displays a higher value of the loss function 
than, say, an ARX model.

Note that for ARX models computed using iv4, the covariance matrix of the 
innovations is estimated using the provisional noise model that is used to form 
the optimal instruments. The loss function therefore differs from what would 
be obtained if you computed the prediction errors using the model directly from 
the data. It is still the best available estimate of the innovations covariance. In 
particular, it is difficult to compare the loss function in an ARX model 
estimated using arx and one estimated using iv4. 

Enumeration of Estimated Parameters
In some cases the parameters of a model are given just as an ordered list. This 
is the case for th2par, and also when online information from the minimization 
routines are given. Furthermore, in ms2th, you are asked to give a list of 
nominal/initial parameter values. In these cases it is important to know in 
what order the parameter are listed. The basic three cases are as follows:

• For the input-output model (3.23) or its multi-input variant (5.2), you have 
the following alphabetical ordering

Here superscript refers to the input number.

• For a state-space structure, defined by ms2th, the parameters in pars are 
obtained in the following order. The A matrix is first scanned row by row for 
free parameters. Then the B matrix is scanned row by row, and so on for the 
C, D, K, and X0 matrices. (See ms2th in the Command Reference chapter.)

• For a state-space matrix that is defined by mf2th, the ordering of the 
parameters is the same as in the user-written M-file.

b1
nu … bnbnu

nu
c1 … cnc d1 … dnc, , , , , , , , ,

pars a1 … ana b1
1 … b, nb1

1
b1

2 …bnb2
2 …, , , , , , ,[=

f1
1 …fnf1

1 … f, 1
nu … fnfnu

nu ], , , ,
8



Multivariate ARX models are internally represented in state-space form. The 
parameter ordering follows the one described above. The ordering of the 
parameters may, however, not be transparent so it is better to use th2arx and 
arx2th instead of th2par and ms2th.

Complex-Valued Data
Some applications of system identification work with complex valued data, and 
thus create complex-valued models. Most of the routines in the SITB support 
complex data and models. This is true for the estimation routines ar, armax, 
arx, bj, covf, ivar, iv4, oe, pem, and spa, but (currently) not for canstart and 
n4sid. The transformation routines, like th2ff, th2zp, etc. also work for 
complex-valued models, but no pole-zero confidence regions are given. Note 
also that the parameter variance-covariance information then refers to the 
complex valued parameters, so no separate information about the accuracy of 
the real and imaginary parts will be given. Some display functions like compare 
and 
idplot do not work for the complex case. Use idsim and plot real and 
imaginary parts separately.

Strange Results
Strange results can of course be obtained in any number of ways. We only point 
out two cautions:  It is tempting in identification applications to call the 
residuals  “eps.” Don’t do that. This changes the machine , which certainly 
will give you strange results.

It is also natural to use names like step, phase, etc., for certain variables. Note 
though that these variables take precedence over M-files with the same name 
so be sure you don’t use variable names that also are names of M-files.

ε
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This chapter contains detailed descriptions of all of the functions in the System 
Identification Toolbox. It begins with a list of  functions grouped by subject area 
and continues with the entries in alphabetical order. Information is also 
available through the online Help facility.

By typing a function name without arguments, you also get immediate syntax 
help about its arguments.   

For ease of use, most functions have several default arguments. The Synopsis 
first lists the function with the necessary input arguments and then with all 
the possible input arguments. The functions can be used with any number of 
arguments between these extremes. The rule is that missing, trailing 
arguments are given default values, as defined in the manual. Default values 
are also obtained by entering the arguments as the empty matrix [ ].

MATLAB does not require that you specify all of the output arguments; those 
not specified are not returned. For functions with several output arguments in 
the System Identification Toolbox, missing arguments are, as a rule, not 
computed, in order to save time.

The Graphical User Interface

ident Open the interface.

midprefs Set directory where to store start-up information.

Simulation and Prediction

idinput Generate input signals.

idsim Simulate a general linear system.

pe Compute prediction errors.

poly2th Create a model structure for input-output models 
defined as numerator and denominator polynomials.

predict Compute predictions according to model.



Data Manipulation 

dtrend Remove trends from data.

idfilt Filter data.

idresamp Resample data.

Nonparametric Estimation 

covf Estimate covariance function.

cra Estimate impulse response and covariance functions 
using correlation analysis.

etfe Estimate spectra and transfer functions using direct 
Fourier techniques.

spa Estimate spectra and transfer functions using 
spectral analysis.

Parameter Estimation

ar Estimate AR model.

armax Estimate ARMAX model.

arx Estimate ARX model using least squares.

bj Estimate Box-Jenkins model.

canstart Estimate multivariate models in canonical 
state-space form.

ivar Estimate AR model using instrumental variable 
methods.

ivx Estimate ARX model using general instruments.

iv4 Estimate ARX model using four-stage instrumental 
variable method.
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oe Estimate Output-Error model.

n4sid Estimate state-space model using subspace method.

pem Estimate general linear model.

Model Structure Creation

arx2th Define (multivariate) ARX structures.

canform Generate canonical forms.

mf2th Create arbitrary linear model structure via an M-file 
that you write.

modstruc Define state-space models with known and unknown 
parameters.

ms2th Create model structure for linear state-space models 
with known and unknown parameters.

poly2th Create a model structure for input-output models 
defined as numerator and denominator polynomials.

Manipulating Model Structures

fixpar Fix parameters in structures to given values.

sett Set the sampling interval.

ss2th Transform a state-space model to a parametrized 
canonical form.

thinit Select or randomize initial parameter values.

unfixpar Allow certain earlier fixed parameters be estimated.

Parameter Estimation



Model Conversions

idmodred Reduce a model to lower order.

thc2thd Transform from continuous to discrete time.

thd2thc Transform from discrete to continuous time.

th2arx Theta to ARX parameters.

th2ff Theta to frequency functions and spectra.

th2par Theta to estimated parameters and variances.

th2poly Theta to transfer function polynomials.

th2ss Theta to state-space matrices.

th2tf Theta to transfer functions.

th2zp Theta to zeros, poles, and static gains.

Model Presentation

bodeplot Plot Bode diagrams.

ffplot Plot frequency functions and spectra.

idplot Display input-output data.

nyqplot Plot Nyquist diagrams.

present Display model on screen.

zpplot Plot zeros and poles.
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Information Extraction

getff Extract the frequency functions from the freqfunc 
format.

gett Extract the sampling interval from the theta format.

getmfth Extract the M-file name that defines the model 
structure.

getncap Extract from the theta format the number of data 
upon which model is based.

getzp Extract the zeros and poles from the zepo format.

th2par Extract estimated parameters and variances from 
the theta format.

Model Validation

compare Compare model’s simulated or predicted output with 
actual output.

idsim Simulate a model.

pe Compute prediction errors.

predict Predict future outputs.

resid Compute and test model residuals.

Assessing Model Uncertainty

idsimsd Simulate responses from several possible models.

th2ff Compute frequency function and its standard 
deviation.

th2zp Compute zeros, poles, static gains, and their 
standard deviations. 



Model Structure Selection

arxstruc Compute loss functions for sets of ARX model 
structure.

ivstruc Compute loss functions for sets of output error model 
structures. 

selstruc Select structure.

struc Generate sets of structures.

Recursive Parameter Estimation

rarmax Estimate ARMAX or ARMA models recursively.

rarx Estimate ARX or AR models recursively. 

rbj Estimate Box-Jenkins models recursively.

roe Estimate Output-Error models (IIR-filters) 
recursively.

rpem Estimate general input-output models using a 
recursive prediction error method.

rplr Estimate general input-output models using a 
recursive pseudo-linear regression method.

segment Segment data and estimate models for each segment.
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arPurpose Estimate the parameters of an AR model for scalar time series.

Syntax th = ar(y,n)
[th,refl] = ar(y,n,approach,win,maxsize,T)

Description The parameters of the AR model structure

are estimated using variants of the least-squares method.

Column vector y contains the time series data. Scalar n specifies the order of 
the model to be estimated (the number of A parameters in the AR model).

Note that the routine is for scalar time series only. For multivariate data use 
arx.

The estimate is returned in th and stored in theta format. For the two 
lattice-based approaches, 'burg' and 'gl' (see below), variable refl is 
returned containing the reflection coefficients in the first row, and the 
corresponding loss function values in the second. The first column is the zero-th 
order model, so that the (2,1) element of refl is the norm of the time series 
itself.

Variable approach allows you to choose an algorithm from a group of several 
popular techniques for computing the least-squares AR model. Available 
methods are as follows:

approach = 'fb':  The forward-backward approach. This is the default 
approach. The sum of a least-squares criterion for a forward model and the 
analogous criterion for a time-reversed model is minimized.

approach = 'ls':  The least-squares approach. The standard sum of squared 
forward prediction errors is minimized.

approach = 'yw':  The Yule-Walker approach. The Yule-Walker equations, 
formed from sample covariances, are solved.

approach = 'burg':  Burg’s lattice-based method. The lattice filter equations 
are solved, using the harmonic mean of forward and backward squared 
prediction errors.

A q( )y t( ) e t( )=
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approach = 'gl':  A geometric lattice approach. As in Burg’s method, but the 
geometric mean is used instead of the harmonic one. . 

The computation of the covariance matrix can be suppressed in any of the 
above methods by ending the approach argument with 0 (zero), for example, 
'burg0'.

Windowing, within the context of AR modeling, is a technique for dealing with 
the fact that information about past and future data is lacking. There are a 
number of variants available:

window = 'now':  No windowing. This is the default value, except when 
approach = 'yw'. Only actually measured data are used to form the regression 
vectors. The summation in the criteria starts only at time n.

window = 'prw':  Pre-windowing. Missing past data are replaced by zeros, so 
that the summation in the criteria can be started at time zero.

window = 'pow':  Post-windowing. Missing end data are replaced by zeros, so 
that the summation can be extended to time N + n. (N being the number of 
observations.)

window = 'ppw':  Pre- and post-windowing. This is used in the Yule-Walker 
approach.

The combinations of approaches and windowing have a variety of names. The 
least-squares approach with no windowing is also known as the covariance 
method. This is the same method that is used in the arx routine. The MATLAB 
default method, forward-backward with no windowing, is often called the 
modified covariance method. The Yule-Walker approach, least-squares plus 
pre- and post-windowing, is also known as the correlation method. 

ar only handles scalar time series. For multivariate series, use arx.

See auxvar for an explanation of the input arguments maxsize and T.
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Examples Compare the spectral estimates of Burg’s method with those found from the 
forward-backward nonwindowed method, given a sinusoid in noise signal: 

y = sin([1:300]') + 0.5*randn(300,1);
thb = ar(y,4,'burg');
thfb = ar(y,4);
sgb = th2ff(thb);
sfb = th2ff(thfb);
bodeplot([sgb sfb])

See Also auxvar, arx, etfe, ivar, spa, theta

References Marple, Jr., S. L. Digital Spectral Analysis with Applications, Prentice Hall, 
Englewood Cliffs, 1987, Chapter 8.
4-11



armax
armaxPurpose Estimate the parameters of an ARMAX or ARMA model. 

Syntax th = armax(z,nn)
th = armax(z,nn,’trace’)
[th, iter_info] = armax(z,nn,maxiter,tol,lim,maxsize,T,’trace’)

Description The parameters of the ARMAX model structure

are estimated using a prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors (u is a matrix in the multi-input case). nn can be given either as

nn = [na nb nc nk]

or as

nn = thi 

In the former case na, nb, and nc are the orders of the ARMAX model, and nk 
is the delay. In the latter case thi is an initial value, given in theta format. See 
Section 3 in the Tutorial for an exact definition of the orders.

For multi-input systems, nb and nk are row vectors, such that the k-th entry 
corresponds to the order and delay associated with the k-th input.

If z = y and nn = [na nc], armax calculates an ARMA model for y:

th is returned with the resulting parameter estimates, together with estimated 
covariances, stored in theta format.

armax does not support multi-output models. Use state-space model for this 
case (see canstart, n4sid, and pem)

If a last argument ‘trace’ is supplied, information about the progress of the 
iterative search for the model will be furnished to the MATLAB command 
window.

The optional auxiliary variables iter_info, lim, maxiter, tol, maxsize, and T 
are explained under auxvar.

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=

A q( )y t( ) C q( )e t( )=
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Algorithm A robustified quadratic prediction error criterion is minimized using an 
iterative Gauss-Newton algorithm. The Gauss-Newton vector is bisected up to 
10 times until a lower value of the criterion is found. If no such value is found, 
a gradient search direction is used instead, and the procedure is repeated. The 
iterations are terminated when maxiter is reached, when the Gauss-Newton 
vector has a norm less than tol, or when a lower value of the criterion cannot 
be found.

The initial conditions for the iterative search, if not specified in nn, are 
constructed in a special four-stage LS-IV algorithm.

The cut-off value for the robustification is based on the parameter lim as well 
as on the estimated standard deviation of the residuals from the initial 
parameter estimate. It is not recalculated during the minimization. The value 
returned in element th(1,1) is the nonrobustified, quadratic criterion.

A stability test of the predictor is performed, so as to assure that only models 
corresponding to stable predictors are tested. Generally, both  and  (if 
applicable) must have all their zeros inside the unit circle. Note that if an 
initial parameter estimate is given in nn, its predictor stability is taken for 
granted (not tested).

Information about the minimization is furnished to the screen in case the 
argument ‘trace’ is specified.. Current and previous parameter estimates (in 
column vector form, listing parameters in alphabetical order) as well as the 
values of the criterion function are given. The Gauss-Newton vector and its 
norm are also displayed. The number in the upper left corner is the number of 
times the search vector has been bisected.

See Also arx, auxvar, bj, oe, pem, theta 

References Ljung (1987), equations  (10.41), (10.42), (10.46), (10.75)

C q( ) Fi q( )
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arxPurpose Estimate the parameters of an ARX or AR model.

Syntax th = arx(z,nn)
th = arx(z,nn,maxsize,T)

Description The parameters of the ARX model structure

are estimated using the least-squares method.

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors. nn is given as

nn = [na nb nk]

defining the orders and delay of the ARX model. See Section 6 in the Tutorial 
for exact definitions of the orders and delays.

th is returned as the least-squares estimates of the parameters, stored in theta 
format.

With z = y and nn = na, an AR model of order na for y is computed:

Models with several inputs

are handled by allowing u to contain each input as a column vector,

 u = [u1 ... unu]

and by allowing nb and nk to be row vectors defining the orders and delays 
associated with each input.

Models with several inputs and several outputs are handled by allowing nn to 
contain one row for each output number. See “Defining Model Structures” on 
page 3-29 for exact definitions.

The optional auxiliary parameters maxsize and T are explained under 
auxvar.

A q( )y t( ) B q( )u t nk–( ) e t( )+=

A q( )y t( ) e t( )=

A q( )y t( ) B1 q( )u1 t nk1–( ) …Bnuunu t nknu–( ) e t( )+ +=
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When the true noise term  in the ARX model structure is not white noise 
and na is nonzero, the estimate does not give a correct model. It is then better 
to use armax, bj, iv4, or oe.

Examples Here is an example that generates and estimates an ARX model:

A = [1  –1.5  0.7]; B = [0 1 0.5];
th0 = poly2th(A,B);
u = idinput(300,'rbs');
y = idsim([u,randn(300,1)],th0);
z = [y,u];
th = arx(z,[2 2 1]);

Algorithm The least-squares estimation problem is an overdetermined set of linear 
equations that is solved using the MATLAB \ operator.

The regression matrix is formed so that only measured quantities are used (no 
fill-out with zeros). When the regression matrix is larger than maxsize, the 
normal equations are formed in a for-loop and subsequently solved.

See Also auxvar, ar, iv, iv4, theta

e t( )
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arxstrucPurpose Compute loss functions for a set of different model structures of single-output 
ARX type.

Syntax v = arxstruc(ze,zv,NN)
v = arxstruc(ze,zv,NN,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type. 
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy 
generation of typical NN matrices for single-input systems.

Each of ze and zv are matrices containing output-input data [y u]. For 
multi-input systems, u has the corresponding number of columns, while for 
time series, no u is present. Models for each of the model structures defined by 
NN are estimated using the data set ze. The loss functions (normalized sum of 
squared prediction errors) are then computed for these models when applied to 
the validation data set zv. The data sets, ze and zv, need not be of equal size. 
They could, however, be the same sets, in which case the computation is faster.

Note that arxstruc is intended for single-output systems only.

v is returned with the loss functions in its first row. The remaining rows of v 
contain the transpose of NN, so that the orders and delays are given just below 
the corresponding loss functions. The last column of v contains the number of 
data points in ze. The selection of a suitable model structure based on the 
information in v is best done using selstruc. See Section 8 in the Tutorial for 
advice on model structure selection, cross-validation, and the like.

See auxvar for an explanation of maxsize.

Examples Compare first to fifth order models with one delay using cross-validation on the 
second half of the data set, and then select the order that gives the best fit to 
the validation data set:

NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200,:),z(201:400,:),NN);
nn = selstruc(V,0);
th = arx(z,nn);

See Also arx, ivstruc, selstruc, struc 
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arx2thPurpose Construct theta format matrix from ARX polynomials.

Syntax th = arx2th(A,B,ny,nu)
th = arx2th(A,B,ny,nu,lam,T)

Description arx2th creates a matrix containing parameters that describe the general 
multi-input, multi-output model structure of ARX type:

Here  and  are matrices of dimensions ny by ny and ny by nu, respectively 
(ny is the number of outputs, i.e., the dimension of the vector  and nu is the 
number of inputs). “Defining Model Structures” on page 3-29.

The arguments A and B are matrices that contain the A matrices and the B 
matrices of the model:

A = [I A1 A2 ... Ana]
B = [B0 B1 ... Bnb]

Note that A always starts with the identity matrix, and that delays in the model 
are defined by setting the corresponding leading entries in B to zero. For a 
multivariate time series take B = [].

The arguments ny and nu denote the number of outputs and inputs, 
respectively. 

The optional argument lam sets the covariance matrix of the driving noise 
source  in the model above. The default value is the identity matrix.

The optional argument T defines the sampling interval (Default 1).

th is returned as a model structure in the theta format. See theta. 

The use of arx2th is twofold. You can use it to create models that are simulated 
(using idsim) or analyzed (using th2ff, th2zp, etc.). You  can also use it to 
define initial value models that are further adjusted to data (using pem). The 
free parameters in the structure are consistent with the structure of A and B, 
i.e., leading zeros in the rows of B are regarded as fixed delays, and trailing 
zeros in A and B are regarded as a definition of lower order polynomials. These 

y t( ) A1y t 1–( ) A2y t 2–( ) … Anay t na–( )+ + + + =

B0u t( ) B1u t 1–( ) … Bnbu t nb–( ) e t( )+ + + +

Ak Bk
y t( )

e t( )
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zeros are fixed, while all other parameters are free. The nominal values of these 
free parameters are set equal to the values in A and B. The free parameters can 
be changed by thinit and the structure can be manipulated by fixpar and 
unfixpar.

For a model with one output, arx2th is compatible with poly2th. The internal 
representation is however different, and only a model structure that has been 
defined by arx2th can be manipulated by fixpar and unfixpar.

Examples Simulate a second order ARX model with one input and two outputs, and then 
estimate a model using the simulated data :

A1 = [–1.5 0.1;–0.2 1.5];
A2 = [0.7 –0.3;0.1 0.7];
B1 = [1;–1];
B2 = [0.5;1.2];
th0 = arx2th([eye(2) A1 A2],[[0;0],B1 B2],2,1);
u = idinput(300);
e = randn(300,2);
y = idsim([u e],th0);
th = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

See Also arx, fixpar, poly2th, th2arx, unfixpar
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auxvarPurpose Describe auxiliary variables iter_info, lim, maxiter, maxsize, tol, and T.

Syntax help auxvar

Description Most of the functions have an optional argument maxsize that allows a 
trade-off between memory usage and speed. Several of the functions allow the 
sampling interval T to be specified. The iterative search procedures in armax, 
bj, oe, and pem are controlled by the three parameters lim, maxiter, and lim.

maxsize: No matrix formed by the function is allowed to contain more than 
maxsize elements. Instead, the algorithms split the calculations into for-loops, 
which are slower. The default value of maxsize is set in the M-file idmsize. On 
small machines, it is maxsize=4096. The main use of maxsize is to limit 
variable sizes when the algorithms run out of memory. See “Some Special 
Topics” on page 3-68 for more information.

T: Specifying the sampling interval T gives correct frequency scales on 
frequency function plots, and correct time scales when transforming to 
continuous time using thd2thc. The default value is T=1.

maxiter: This variable determines the maximum number of iterations 
performed during a search for a minimum. The default value is maxiter=10. 
maxiter=0 returns the results of the special startup procedure.

tol: The iterations are continued until the norm of the Gauss-Newton update 
vector is less than TOL. The iterations also terminate when the algorithm fails 
to find a lower value of the criterion and when the maximum number of 
iterations are reached. The default value is tol=0.01.

lim: This variable determines how the criterion is modified from quadratic to 
one that gives linear weight to large errors. See “Parametric Model Estimation” 
on page 3-22 for a more precise definition. The default value of lim is 1.6. lim=0 
disables the robustification and leads to a purely quadratic criterion.

Default values of these parameters are obtained either by omitting trailing 
arguments or by entering them as the empty matrix [ ].
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iter_info: This output argument from the iterative numerical search 
algorithms armax, bj, oe, and pem, supplies information about the iterations. It 
is a row vector

iter_info = [last_iteration#, last_fit_improvement, 
norm_of_last_search_vector]

containing the indicated information. If the norm of the last search vector is 
larger than tol, and the number of the last iteration is less than maxiter, then 
the iterations were stopped since no smaller value of the criterion could be 
found along the search direction.

See Also armax, bj, oe, pem
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bjPurpose Estimate the parameters of a Box-Jenkins model.

Syntax th = bj(z,nn)
th = bj(z,nn,’trace’)
[th, iter_info]= bj(z,nn,maxiter,tol,lim,maxsize,T,’trace’)

Description The parameters of the Box-Jenkins model structure

are estimated using a prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors. In the multi-input case, u is a matrix containing the different inputs as 
columns. nn can be given either as

nn = [nb nc nd nf nk] 

or as

nn = thi

In the former case, nb, nc, nd, and nf are the orders of the Box-Jenkins model 
and nk is the delay. In the latter case, thi is an initial value, given in theta 
format. See“The System Identification Problem” on page 3-8 for exact 
definitions of the model orders.

th is returned with the resulting parameter estimates and estimated 
covariances, stored in theta format.

The optional variables iter_info, lim, maxiter, maxsize, tol, and T are 
explained under auxvar.

For multi-input systems, nb, nf, and nk are row vectors with as many entries 
as there are input channels. Entry number i then described the orders and 
delays associated with the i-th input.

bj does not support multi-output models. Use state-space model for this case 
(see canstart, n4sid, and pem)

y t( ) B q( )
F q( )
-----------u t nk–( ) C q( )

D q( )
------------e t( )+=
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If a last argument ‘trace’ is supplied, information about the progress of the 
iterative search for the model will be furnished to the MATLAB command 
window.

Examples Here is an example that generates data and stores the results of the startup 
procedure separately:

B = [0 1 0.5];
C = [1 –1 0.2];
D = [1 1.5 0.7];
F = [1 –1.5 0.7];
th0 = poly2th(1,B,C,D,F,0.1);
e = randn(200,1);
u = idinput(200); 
y = idsim([u e],th0);
z = [y u];
thi = bj(z,[2 2 2 2 1],0);
th = bj(z,thi);
present(th)

Algorithm bj uses essentially the same algorithm as armax with modifications to the 
computation of prediction errors and gradients.

See Also armax, auxvar, oe, pem, theta
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bodeplotPurpose Plot frequency functions in Bode diagram form.

Syntax bodeplot(g)
bodeplot([g1 g2 ... gn])
bodeplot(g,sd,C,mode)

Description g contains the frequency data to be graphed. See freqfunc for the format. The 
frequency functions do not have to be specified at the same frequencies, but 
have to have the same number of values.

If the frequency functions are generated by th2ff or spa, and sd is specified as 
a number larger than zero, confidence intervals for the functions are added to 
the graph as dash-dotted curves (of the same color as the estimate curve). They 
indicate the confidence regions corresponding to sd standard deviations. 

On amplitude plots, the logarithm of the absolute value, plus and minus the 
standard deviation you indicate, is graphed. The latter value can sometimes be 
negative, which results in an error message from the plotting routine. The 
resulting plot is still meaningful, however. 

By default, amplitude and phase plots are shown simultaneously for each input 
(noise spectrum) present in g. For spectra, phase plots are omitted. Pressing 
the Return key advances the plot from one input to the next. 

To show amplitude plots only, use C = 'A'. For phase plots only, use 
C = 'P'. The default is C = 'B' for both plots. 

To obtain all plots on the same diagram use mode = 'same'.

Note that if  g contains information about several outputs, these plots are 
always given separately.

See Also etfe, ffplot, freqfunc, getff, nyqplot, spa, th2ff
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canformPurpose Define multivariable state-space canonical form model structures.

Syntax ms = canform(orders,nu)
ms = canform(orders,nu,dkx)

Description canform is, like modstruc, a function that defines model parameterizations in 
state-space form, which are used in ms2th to create model structures in the 
theta  format. The only use of the resulting matrix ms is as an input to ms2th. 

The model considered is in state-space form:

The function applies both to the continuous- and discrete-time cases; which one 
is determined only when the structure is formed with ms2th.

orders: The (pseudo-observability) indices orders define which matrix 
elements are fixed (to zero or one) and which are left free as parameters. 
orders is a row vector with as many entries as there are outputs. Element k of 
orders describes how many delayed values of the output are required to 
appropriately predict the k-th component of the output. The sum of the order 
indices is the order of the system (the dimension of x): 

n = sum(orders) 

The exact structure is defined in Appendix 4.A of Ljung (1987). Briefly, the A 
matrix  contains p ∗ n parameters, where p is the number of outputs and n is 
the number of states. The C matrix contains only zeros and ones, while the B 
matrix is filled with parameters.

nu: The number of inputs.

dkx: The argument dkx determines some additional structure of the matrices 
of the state-space model to be estimated. It is a row vector with three entries: 

dkx = [d, k, x]

The entries refer to the matrices K, D, and the initial state x(0) of the 
state-space model given above.

x· t( ) A θ( )x t( ) B θ( )u t( ) K θ( )e t( )+ +=

y t( ) C θ( )x t( ) D θ( )u t( ) e t( )+ +=
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k = 1 indicates that the K-matrix in the model (the Kalman Gain) will be fully 
parameterized, while k = 0 means that this matrix will be fixed to zero. This 
will give a so-called output error model.

d = 1 indicates that D-matrix in the model (the direct term from input to 
output) will be fully parametrized, while d = 0 means that this matrix will be 
fixed to zero. This also implies that there will be a delay of (at least) one sample 
between the input and the output.

x = 1 indicates that the initial state x(0) will be parameterized, while x = 0 
means that the initial state will be fixed to zero. 

Default is

dkx = [0, 1, 0]

An alternative to canform is the function canstart. It also provides good initial 
estimates for the free parameters.

Examples Write out the state-space matrices for a sixth order system with three outputs 
and two inputs with NaN denoting free parameters:

ps = [2 1 3];
ms = canform(ps,2);
th = ms2th(ms,'c',ones(1,18+12+18)∗NaN);
[A,B,C,D,K] = th2ss(th)

See Also canstart, fixpar, modstruc, ms2th, unfixpar

References Ljung (1987), Appendix 4.A.
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canstartPurpose Define and initialize state-space canonical form model structures.

Syntax th = canstart(z,orders,nu)
th = canstart(z,orders,nu,dkx)

Description orders,nu,dkx: These arguments define the state-space model 
parameterization exactly as for the function canform. In the present case 
orders can also be taken as a scalar, giving the model order (dimension of state 
vector). Then a default choice of parameterization is made.

The output th is a matrix in the theta format. It defines a state-space model 
parameterization according to the arguments orders, nu and dkx. The values 
of the parameters in th are estimated from the data matrix

z = [y u]

where y is the matrix of output signals, one column for each output, and  u is 
the matrix of input signals, again one column for each input.

Choosing the order indices for many systems is not critical in the sense that 
most n-th order systems can be described by any set of order 
(pseudo-observability) indices whose sum is n. See “Model Structure Selection 
and Validation” on page 3-49 for more information.

The model th could be further refined by using pem.

Algorithm The state-space model is first estimated using n4sid, and then transformed to 
the chosen canonical form using ss2th.

Examples A system with two inputs and two outputs is estimated with a third order 
model:

th = canstart(z,3,2);
th = pem(z,th);
resid(z,th);

See Also canform, pem
4-26



compare
comparePurpose Compare measured outputs with model outputs.

Syntax compare(z,th);
[yh,fit] = compare(z,th,k,sampnr,leveladj)

Description z is the output-input data in the usual format

z = [y u]

where y is a matrix whose r-th column is the r-th output signal and 
correspondingly for the input u. compare computes the output yh that results 
when the model th is simulated with the input u. The result is plotted (yellow/
solid) together with the corresponding measured output y (magenta/dashed). 
The mean square fit

fit = norm(yh – y)/sqrt(length(y))

is also computed and displayed. For multi-output systems this is done 
separately for each output. Pressing the Return key advances the plots. 

The argument k computes the k-step ahead prediction of y according to the 
model th instead of the simulated output. In the calculation of , the model 
can use outputs up to time : , ,  (and inputs up to 
the current time t). The default value of k is inf, which obtains a pure 
simulation from the input only.

The argument sampnr indicates that only the sample numbers in this row 
vector are plotted and used for the calculation of the fit. The whole data record 
is used for the simulation/prediction, though. If the optional argument 
leveladj is set to 'yes', the simulated/predicted output and the measured 
output are level adjusted so that they both start at level zero. (This applies also 
to the calculation of the fit.) This allows for discounting of drift phenomena in 
the data.

Examples Split the data record into two parts. Use the first one for estimating a model 
and the second one to check the model’s ability to predict six steps ahead:

ze = z(1:250,:);
zv = z(251:500,:);
th = armax(ze,[2 3 1 0]);
compare(zv,th,6);

See Also idsim, predict

yh t( )
t k– y s( ) s, t k–= t k– 1– …
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covfPurpose Estimate time series covariance functions.

Syntax R = covf(z,M)
R = covf(z,M,maxsize)

Description z is an N by nz matrix and M is the maximum delay -1 for which the covariance 
function is estimated. 

R is returned as an nz2 x M matrix with entries

where  is the j-th column of z and missing values in the sum are replaced by 
zero.

The optional argument maxsize controls the memory size as explained under 
auxvar.

The easiest way to describe and unpack the result is to use

reshape(R(:,k+1),nz,nz) = E z(t)∗z'(t+k)

Here ' is complex conjugate transpose, which also explains how complex data 
are handled. The expectation symbol E corresponds to the sample means.

Algorithm When nz is at most two, and when permitted by maxsize, a fast Fourier 
transform technique is applied. Otherwise, straightforward summing is used.

See Also spa

R̂i j k( ) 1
N
---- zi

t 1=
∑= = t( )zj t k+( )R(i + ( j −1)nz,  k+1)

zj
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craPurpose Perform correlation analysis and estimate impulse response.

Syntax cra(z);
[ir,R,cl] = cra(z,M,na,plot);
cra(R);

Description The output-input data are given as

z = [y u]

with y as the output column vector and u as the input column vector. The 
routine only handles single-input-single-output data pairs. (For the 
multivariate case, apply cra to two signals at a time.)  cra prewhitens the input 
sequence, i.e., filters u through a filter chosen so that the result is as 
uncorrelated (white) as possible. The output y is subjected to the same filter, 
and then the covariance functions of the filtered y and u are computed and 
graphed. The cross correlation function between (prewhitened) input and 
output is also computed and graphed. Positive values of the lag variable then 
corresponds to an influence from u to later values of y. In other words, 
significant correlation for negative lags is an indication of feedback from y to u 
in the data.

A properly scaled version of this correlation function is also an estimate of the 
system’s impulse response ir. This is also graphed along with 99% confidence 
levels. The output argument ir is this impulse response estimate, so that its 
first entry corresponds to lag zero. (Negative lags are excluded in ir.)

The output argument R contains the covariance/correlation information as 
follows: The first column of R contains the lag indices. The second column 
contains the covariance function of the (possibly filtered) output. The third 
column contains the covariance function of the (possibly prewhitened) input, 
and the fourth column contains the correlation function. The plots can be 
redisplayed by cra(R). 

The output argument cl is the 99% confidence level for the impulse response 
estimate. 

The optional argument M defines the number of lags for which the covariance/
correlation functions are computed. These are from –M to M, so that the length 
of R is 2M+1. The impulse response is computed from 0 to M. The default value 
of M is 20.
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For the prewhitening, the input is fitted to an AR model of order na. The third 
argument of cra can change this order from its default value na = 10. With na 
= 0 the covariance and correlation functions of the original data sequences are 
obtained.

plot: plot = 0 gives no plots. plot = 1 (default) gives a plot of the estimated 
impulse response together with a 99% confidence region. plot = 2 gives a plot 
of all the covariance functions.

Examples Compare a second order ARX model’s impulse response with the one obtained 
by correlation analysis:

ir = cra(z);
th = arx(z,[2 2 1]);
imp = [1;zeros(19,1)];
irth = idsim(imp,th);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')

See Also covf, spa
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dtrend Purpose Remove trends from output-input data.

Syntax zd = dtrend(z)
zd = dtrend(z,o,brkp)

Description z is a matrix, with data organized in column vectors. dtrend removes the trend 
from each column and returns the result in zd. 

The default (o = 0) removes the zero-th order trends, i.e., the sample means are 
subtracted.

With o = 1, linear trends are removed, after a least-squares fit. With brkp not 
specified, one single line is subtracted from the entire data record. A 
continuous piecewise linear trend is subtracted if brkp contains breakpoints at 
sample numbers given in a row vector.

Note that dtrend differs somewhat from detrend in the Signal Processing 
Toolbox.

Examples Remove a V-shaped trend from the output with its peak at sample number 119, 
and remove the sample mean from the input:

zd(:,1) = dtrend(z(:,1),1,119);
zd(:,2) = dtrend(z(:,2));
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etfePurpose Estimate empirical transfer functions and periodograms.

Syntax g = etfe(z)
g = etfe(z,M,N,T)

Description etfe estimates the transfer function g of the general linear model

The matrix z contains the output-input data z = [y u], where y and  u are 
column vectors. The routine works only for single-input, single-output systems.

For a time series, z = y. Then g is returned as the periodogram of y.

g is given in frequency function format (see freqfunc), with the estimate of 
 at the frequencies

w = [1:N]/N∗pi/T

The default values of N and T are 128 and 1, respectively. N must be a power of 
two.

When M is specified other than the default value M = [ ], a smoothing operation 
is performed on the raw spectral estimates. The effect of M is then similar to the 
effect of M in spa. This can be a useful alternative to spa for narrowband spectra 
and systems, which otherwise require large values of M. 

When etfe is applied to time series, the corresponding spectral estimate is 
normalized in the way that is defined in “Some Special Topics” on page 3-68. 
Note that this normalization may differ from the one used by spectrum in the 
Signal Processing Toolbox.

Examples Compare an empirical transfer function estimate to a smoothed spectral 
estimate:

ge = etfe(z);
gs = spa(z);
bodeplot([ge gs])

Algorithm The empirical transfer function estimate is computed as the ratio of the output 
Fourier transform to the input Fourier transform, using fft. The periodogram 

y t( ) G q( )u t( ) v t( )+=

G ei ω( )
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is computed as the normalized absolute square of the Fourier transform of the 
time series.

The smoothed versions (M less than the length of z) are obtained by applying a 
Hamming window to the output FFT times the conjugate of the input FFT, and 
to the absolute square of the input FFT, respectively, and subsequently 
forming the ratio of the results. The length of this Hamming window is equal 
to the number of data points in z divided by M, plus one.

See Also freqfunc, spa 
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ffplotPurpose Plot frequency functions and spectra.

Syntax ffplot(g)
ffplot([g1 g2 ... gn])
ffplot(g,sd,C,mode)

Description This function has exactly the same syntax as bodeplot. The only difference is 
that it gives graphs with linear frequency scales and Hz as the frequency unit.

See Also bodeplot, freqfunc, getff 
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fixparPurpose Fix parameters in structures defined by ms2th and arx2th.

Syntax thn = fixpar(tho,matrix)
thn = fixpar(tho,matrix,elements,parval)

Description The fixpar function produces a new model structure thn in the theta format 
from an old one tho, by fixing certain parameters to certain values. The matrix 
tho must be originally defined by arx, arx2th, canstart, iv4, or ms2th but may 
have been modified later on by fixpar, pem, thinit, or unfixpar.

To modify a state-space structure

the argument matrix is set equal to one of 'A', 'B', 'C', 'D','K', or  'x0'. The 
argument elements is a matrix with two columns, in which each row specifies 
the indices of the element in the chosen system matrix that need to be fixed. 
For example, to fix the 1,2-element and the 3,5-element of the A matrix use

thn = fixpar(tho,'A',[1,2;3,5]);

If the argument elements is omitted (or entered as the empty matrix) all 
elements of the indicated matrix will be fixed. In this case parval can be given 
a scalar number, and all the indicated elements will be fixed to that number.

The default is that the elements are fixed to their nominal (initial  or currently 
estimated) value. To fix them to something else use the fourth input argument 
parval. The r-th entry of this vector contains the value corresponding to the 
element defined by the r-th row of elements. 

To modify an ARX model

the argument matrix is set equal to one of 'A1', 'A2', ..., 'B0', 'B1', .... The 
argument elements is then a matrix with two columns, where each row gives 

x· t( ) A θ( )x t( ) B θ( )u t( ) K θ( )e t( )+ +=

y t( ) C θ( )x t( ) D θ( )u t( ) e t( )+ +=

y t( ) A1y t 1–( ) A2y t 2–( ) … Anay t na–( )+ + + + =

B0u t( ) B1u t 1–( ) … Bnbu t nb–( ) e t( )+ + + +
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the indices of the element in the chosen ARX matrix that need to be fixed. The 
role of parval is the same as for the state-space case above. 

The routine does not apply to special model structures that you have originally 
defined using mf2th, or to black-box input-output models other than ARX 
models. Fixing certain parameters can, in those cases, be achieved by using the 
third argument in pem during the estimation phase.

Examples Converting a state-space structure with all elements in the Kalman gain 
matrix K free to an output error structure in which K is fixed to zero. 

thn = fixpar(thn,'K',[],0)

Fixing the  parameter to 1 in a scalar ARX model, and then estimating the 
remaining parameters:

th = arx(z,[2 3 0]);
th = fixpar(th,'B2',[1,1],1);
th = pem(z,th);

See Also theta, thinit, unfixpar

b2
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freqfuncPurpose Describe the frequency-function format.

Syntax help freqfunc

Description Frequency functions are created by etfe, spa, and th2ff, and used by 
bodeplot, ffplot, and nyqplot. The internal format of the freqfunc format is 
intended to be transparent. The basic way to display the information is to use 
the plot commands. You can also retrieve the information from the format by 
the function getff. This entry gives details of the internal representation, but 
this information is not necessary for normal use of the System Identification 
Toolbox.

The freqfunc format contains information about frequency values, amplitudes, 
and phases, as well as their standard deviations. These are all given as 
columns. The first row of a freqfunc matrix contains integers, that, in coded 
form, describe the significance of the column in question. The interpretation of 
these integers is as follows: 

For transfer functions and spectra associated with output number 1:

n = 0 : The column is a spectrum.

n = 50: The column contains standard deviations of a spectrum.

n = 100: The column contains frequencies for the spectrum.

n = k, where k is value between 1 and 19: The column contains amplitude 
values for the transfer function associated with input number k.

n = k + 20: The column contains phase values (in degrees) for input number k.

n = k + 50: The column contains amplitude standard deviations for input 
number k.

n  = k + 70: The column contains phase standard deviations for input number 
k.

n = k + 100: The column contains the frequency values for input number k.

For the same quantities associated with output number , add  ∗1000 
to the numbers above.

ky ky 1–( )
4-37



freqfunc
The specified frequencies are for a discrete-time model, which is by default, 
equally spaced from 0 (excluded) to  over 128 values. Here T is the 
sampling interval (default = 1). For a continuous-time model, the frequencies 
are 128 values, logarithmically spread over three decades, up to a decade over 
the underlying Nyquist frequency (see th2ff).

Examples You can compute and graph the frequency functions at arbitrary frequency w (a 
row vector with an arbitrary number of elements) with

g = spa(z,M,w)
g = th2ff(th,ku,w)

The MATLAB function logspace is useful for creating such frequency vectors.

See Also bodeplot, etfe, ffplot, getff, nyqplot, sett, spa, th2ff

π T⁄
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getffPurpose Retrieve frequency functions and spectra from the freqfunc format.

Syntax [w,amp,phas] = getff(g)
[w,amp,phas,sdamp,sdphas] = getff(g,ku,ky)

Description This function extracts information from the freqfunc format for plotting as an 
alternative to bodeplot, ffplot, and  nyqplot. Results in the freqfunc format 
are obtained by etfe, spa, and th2ff.

The argument g is the frequency function or spectrum given in the freqfunc 
format. ku is the chosen input number (only one) and ky is the chosen output 
number. The noise source is counted as input number 0, so that ku = 0 will 
extract spectral information.

w is a vector containing the frequency values (in radians/second). amp contains 
the values of the magnitude (amplitude) of the frequency function and phas 
contains the phase values (in degrees). The output arguments sdamp and 
sdphas contain the corresponding standard deviations. All this information is 
for input number ku and output number ky. If several entries in g correspond 
to the same input-output pair, then w, amp, phas, sdamp, and sdphas have the 
corresponding number of columns. The default values of ku and ky are both 1, 
unless g contains only spectra. In that case getff extracts information about 
the spectrum corresponding to output number ky. 

Examples Make your own plot of the periodogram with linear scales:

per = etfe(y);
[w,amp] = getff(per);
plot(w,amp)
title('Periodogram of seismic data')
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getzpPurpose Extract zeros and poles from the zepo format.

Syntax [ze,po] = getzp(zepo)
[ze,po] = getzp(zepo,ku,ky)

Description The basic use of getzp is to extract the poles and zeros of the coded format that 
th2zp results in. zepo contains this information and is typically the output of 
th2zp. ku contains the input number (just one) and ky the output number. The 
noise source number k is here counted as input number –k. 

ze contains the zeros and po the poles of the dynamics associated with input 
number ku and output number ky. The default values of ku and  ky are both 1. 

Note that for the noise dynamics, zepo normally just contains information 
about the zeros and poles from noise source k to output number k, (no cross 
terms). To extract this information enter

[ze,po] = getzp(zepo,0,k)

See Also th2zp, zpform, zpplot 
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getmfth, getncap, gettPurpose Extract information from the theta format.

Syntax mymfile = getmfth(th)
N = getncap(th)
T = gett(th)

Description These functions retrieve some information that is coded into the theta format. 
mymfile is the name of the M-file that you write to define a model structure 
created by mf2th. 

N is the number of data, from which a certain model th is estimated. If the 
model is not estimated N is returned as [].

T is the sampling interval of the model th. If T is negative, the model is a 
continuous-time one that has been estimated from data with the sampling 
interval abs(T).

See Also mf2th, sett
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identPurpose Open the graphical user interface

Syntax ident
ident(session,directory)

Description ident by itself opens the main interface window, or brings it forward if it is 
already open.

session is the name of a previous session with the graphical interface, and 
typically has extension .sid. directory is the complete path for the location of 
this file. If the session file is on the MATLABPATH, directory can be omitted.

When the session is specified, the interface will open with this session active. 
Typing ident(session,directory) on the MATLAB command line, when the 
interface is active, will load and open the session in question.

For more information about the graphical user interface, see Chapter 2 of this 
manual.

Examples ident(‘iddata1.sid’)
ident(‘mydata.sid’,’\matlab\data\cdplayer\’)
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idfiltPurpose Filter data using Butterworth filters.

Syntax zf = idfilt(z,ord,Wn)
[zf,thf] = idfilt(z,ord,Wn,hs)

Description idfilt computes a Butterworth filter of order ord and filters all columns of the 
data matrix

z = [y u]

through this filter.

If hs is not specified and Wn contains just one element, a low pass filter with 
cutoff frequency Wn (measured as a fraction of the Nyquist frequency) is 
obtained. If hs =' high' a high pass filter with this cutoff frequency is 
obtained instead.

If Wn = [Wnl Wnh] is a vector with two elements, a filter (of order  2*ord) with 
passband between Wnl and Wnh is obtained is hs is not specified. If  
hs = 'stop' a bandstop filter with stop band between these two frequencies is 
obtained instead.

The output argument thf is the filter given in the theta format. 

It is common practice in identification to select a frequency band where the fit 
between model and data is concentrated. Often this corresponds to bandpass 
filtering with a pass band over the interesting breakpoints in a Bode diagram. 

If ord is a positive integer, a non-causal, zero-phase filter is used for the 
filtering. If ord is a negative integer, a causal filter (of order abs(ord)) is used 
instead.

Algorithm The used filter is the same as butter in the Signal Processing Toolbox would 
give. Also, the zero-phase filter is equivalent to filtfilt in that toolbox.

References Ljung (1987), Chapter 13.
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idinputPurpose Generate signals, typically to be used as inputs for identification.

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
u = idinput(N,'sine',band,levels,auxvar)

Description idinput generates input signals of different kinds, that are typically used for 
identification purposes. Only scalar inputs are generated.

N is the number of data points generated, i.e., the length of u.

type defines the type of input signal to be generated. This argument takes one 
of the following values:

• type = 'rs' : This gives a random, Gaussian signal.

• type = 'rbs': This gives a random, binary signal.

• type = 'prbs': This gives a pseudo-random, binary signal.

• type = 'sine': This gives a signal which is a sum of sinusoids.

Default is type = 'rbs'.

The frequency contents of the signal is determined by the argument band. For 
the choices type = 'rs', 'rbs', and 'sine', this argument is a row-vector with 
two entries

band = [wlow, whigh]

that determine the lower and upper bound of the pass-band. The frequencies 
wlow and whigh are expressed in fractions of the Nyquist frequency. A white 
noise character input is thus obtained for band = [0 1], which also is the 
default value. 

For the choice type = 'prbs' we have

band = [twologp, M]

where the periodicity of the generated PRBS is 2^twologp –1, and M is such 
that the signal is constant over intervals of length 1/M. twologp = 0 gives the 
maximum length PRBS, corresponding to twologp = 18. Also in this case the 
default is band = [0 1].
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The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu for the 
choices type = 'rbs', 'prbs' and 'sine'. For type = 'rs', the signal level 
is such that minu is the mean value of the signal, minus one standard deviation, 
while maxu is the mean value plus one standard deviation. Gaussian white 
noise with zero mean and variance one is thus obtained for 
levels = [–1, 1], which is also the default value.

For the option type = 'sine', there is a fourth argument

auxvar = [no_of_sinusoids, no_of_trials]

determining the number of sinusoids to be used in the input signal. The 
variable no_of_trials determines how many trials to be made to minimize the 
signal amplitude by assigning random phases to the different sinusoids. 
Default is auxvar = [10, 10].

Algorithm Very simple algorithms are used. The frequency contents is achieved for 'rs' 
by an eighth order Butterworth, non-causal filter, using idfilt. This is quite 
reliable. The same filter is used for the 'rbs' case, before making the signal 
binary. This means that the frequency contents is not guaranteed to be precise 
in this case.

For the 'sine' case, the frequencies are selected to be equally spread over the 
chosen pass band, and each sinusoid is given a random phase. A number of 
trials are made, and the phases that give the smallest signal amplitude are 
selected. (The amplitude is then scaled so as to satisfy the specifications of 
levels.)

See Also The Frequency Domain System Identification Toolbox contains several 
commands for input design that utilize more sophisticated algorithms.

Reference For PRBS, see, e.g., Söderström and Stoica (1989), Chapter C5.3.
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idmodredPurpose Reduce the order of a model in theta format.

Syntax THRED = idmodred(TH)
THRED = idmodred(TH,ORDER,OE)

Description This function reduces the order of any model TH given in the theta format. The 
resulting reduced order model THRED is also in the theta format. This reduced 
model is always represented internally in state-space form with no free 
parameters, regardless of the nature of the model TH.

The function requires several routines in the Control Systems Toolbox.

ORDER: The desired order (dimension of the state-space representation). If 
ORDER = [], which is the default, a plot will show how the diagonal elements 
of the observability and controllability Gramians decay with the order of the 
representation. You will then be prompted to select an order based on this  plot. 
The idea is that such a small element will have a negligible influence on the 
input-output behavior of the model. It is thus suggested that an order is chosen, 
such that only large elements in these matrices are retained.

OE: If the argument OE has the value ’oe’, then an output error model THRED is 
produced, that is, one with the Kalman gain equal to zero (see (3.27) and (3.31) 
in Chapter 3, "Tutorial"). Otherwise (default), also the noise model is reduced.

The function will recognize whether TH is a continuous- or discrete-time model 
and perform the reduction accordingly. The resulting model THRED will be of the 
same kind in this respect as TH.

Algorithm The functions (d)balreal and (d)modred from the Control Systems Toolbox 
are used. The plot, in case ORDER = [], shows the vector g as returned from 
(d)balreal.

Examples Build a high order multivariable ARX model,  reduce its order to 3 and compare 
the frequency responses of the original and reduced models:

TH = arx([y u],[4∗ones(3,3),4∗ones(3,2),ones(3,2)]);
THRED = idmodred(TH,3);
bodeplot([trf(TH),trf(THRED)])
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Use the reduced order model as initial condition for a third order state-space 
model:

THI = ss2th(THRED);
THSS = pem([y u],THI);

See Also ss2th
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idplotPurpose Plot input-output data.

Syntax idplot(z)
idplot(z,int,T,ny,pc)

Description z is the output-input data z = [y u] to be graphed. A split plot is obtained with 
the output on top and the inputs, one by one if several, at the bottom. Pressing 
the Return key advances the plot. 

The data points specified in the row vector int are graphed. The default value 
of int is all the data. You can use the sampling interval T (default T = 1) to 
give correct time axes. 

The argument ny is the number of outputs in the data matrix. Default is 
ny = 1. The input is piecewise constant between sampling points, and it is 
graphed accordingly. If you prefer linear interpolation between input data 
points, use pc = 'li'. The default value is pc = 'pc'.

Examples Plot only a portion of the data points:

idplot(z,100:200)
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idresampPurpose Resample data by interpolation and decimation.

Syntax zr = idresamp(z,R)
[zr, R_act] = idresamp(z,R,filter_order,tol)

Description z : The data to be resampled. Each column of z contains a signal.

zr : The resampled data. The columns of zr correspond to those of z.

R : The resampling factor. The new data record will correspond to a new 
sampling interval of R times the original one. R > 1 thus corresponds to 
decimation and R < 1 corresponds to interpolation. Any positive real number 
for R is allowed, but it will be replaced by a rational approximation (R_act).

R_act : The actually achieved resampling factor.

filter_order: The order of the presampling filters used before interpolation 
and decimation. Default is 8.

tol : The tolerance in the rational approximation of R. Default is 0.1.

Algorithm The resampling factor is first approximated by a rational number by 
[num,den] = rat(R,tol). The data are then interpolated by a factor den and 
then decimated by a factor num. The interpolation and decimation are preceded 
by prefiltering, and follow the same algorithms as in the routines interp and 
decimate in the Signal Processing Toolbox.

Caution For signals that have much energy around the Nyquist frequency (like 
piece-wise constant inputs), the resampled waveform may look “very different,” 
due to the prefiltering effects. The frequency and information contents for 
identification is, however, not mishandled.

Example Resample by a factor 1.5 and compare the signals.

plot(t,u)
[ur,ra] = idresamp(u,1.5);
plot(t,u,ra∗t,ur)
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idsimPurpose Simulate systems specified in theta format.

Syntax y = idsim([u e],th)
[y, ysd] = idsim(u,th)

Description th describes an arbitrary model in the theta format. idsim returns y containing 
the simulated output, corresponding to the input sequence u (one column for 
each input) and the noise e. If e is omitted, a noise-free simulation is obtained. 

The noise-sequence e is scaled by , where  is the noise variance (loss 
function) as specified by th. To achieve the correct noise effect, give e zero mean 
and unit variance. 

For multi-output systems simulated with noise, e should have as many 
columns as the numbers of outputs. The noise is again scaled using the noise 
covariance matrix in th.

The second output argument is the standard deviation of the simulated output. 
This option is however not available for state-space models.

If th is a continuous-time model, it is first converted to discrete time with 
sampling interval abs(T). See “Some Special Topics” on page 3-68 

Examples Simulate a given system th0 (for example created by poly2th):

e = randn(500,1);
u = idinput(500,’prbs’);
y = idsim([u e],th0);

Validate a model by comparing a measured output y with one simulated using 
an estimated model th:

yh = idsim(u,th);
plot([y yh])

Algorithm In case the model is of input-output type, idsim uses the MATLAB filter 
function. For state-space models, it uses ltitr.

See Also idsimsd, poly2th

λ λ
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idsimsdPurpose Simulate theta format system with uncertainty.

Syntax idsimsd(u,th)
idsimsd(u,th,N,noise)

Description u is a column vector (matrix) containing the input(s). th is a model given in the 
theta format (see theta). N random models are created, according to the 
covariance information given in th. The responses of each of these models to 
the input u are computed and graphed in the same diagram. If  
noise = 'noise', noise is added to the simulation, in accordance with the noise 
model of th, and its own uncertainty. 

The default values are

N = 10
noise = 'nonoise'

Examples Plot the step response of the model th and evaluate how it varies in view of the 
model’s uncertainty:

step1 = [zeros(5,1); ones(20,1)];
idsimsd(step1,th)

See Also idsim, th2ff, th2zp
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ivarPurpose Estimate the parameters of an AR model using an approximately optimal 
choice of instrumental variable procedure.

Syntax th = ivar(y,na)
th = ivar(y,na,nc,maxsize,T)

Description The parameters of an AR model structure

are estimated using the instrumental variable method. y is the signal to be 
modeled, entered as a column vector. na is the order of the A polynomial (the 
number of A parameters). The resulting estimate is returned as th, in theta 
format. The routine is for scalar signals only. 

In the above  model,  is an arbitrary process, assumed to be a moving 
average process of order nc, possibly time varying. (Default is nc = na.)  
Instruments are chosen as appropriately filtered outputs, delayed nc steps. 

The optional arguments maxsize and T are explained under auxvar.

Examples Compare spectra for sinusoids in noise, estimated by the IV method and 
estimated by the forward-backward least-squares method:

y = sin([1:500]'∗1.2) + sin([1:500]'∗1.5)...
 + 0.2∗randn(500,1);
thiv = ivar(y,4);
thls = ar(y,4);
giv = th2ff(thiv);
gls = th2ff(thls);
bodeplot([giv gls])

See Also ar, etfe, spa 

References Stoica, P. et al., Optimal Instrumental variable estimates of the AR-parameters 
of an ARMA process, IEEE Trans. Autom. Control, Vol AC-30, 1985, pp. 
1066-1074.

A q( )y t( ) v t( )=

v t( )
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ivstrucPurpose Compute fit between simulated and measured output for a group of model 
structures.

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type. 
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy 
generation of typical NN matrices for single-input systems.

Each of ze and zv are matrices containing output-input data [y u]. For 
multi-input systems, u has the corresponding number of columns. Models for 
each model structure defined in NN are estimated using the instrumental 
variable (IV) method on data set ze. The estimated models are simulated using 
the inputs from data set zv. The normalized quadratic fit between the 
simulated output and the measured output in zv is formed and returned in v. 
The rows below the first row in v are the transpose of NN, and the last row 
contains the logarithms of the condition numbers of the IV matrix

A large condition number indicates that the structure is of unnecessarily high 
order (see page 415 in Ljung (1987)). 

The information in v is best analyzed using selstruc.

If  p is equal to zero, the computation of condition numbers is suppressed. For 
the use of maxsize, see auxvar. 

The routine is for single-output systems only.

IMPORTANT: The IV method used does not guarantee that the obtained 
models are stable. The output-error fit calculated in v may then be misleading.

ς t( )ϕT
t( )∑
4-53



ivstruc
Examples Compare the effect of different orders and delays, using the same data set for 
both the estimation and validation:

v = ivstruc(z,z,struc(1:3,1:2,2:4));
nn = selstruc(v)
th = iv4(z,nn);

Algorithm A maximum order ARX model is computed using the least-squares method. 
Instruments are generated by filtering the input(s) through this model. The 
models are subsequently obtained by operating on submatrices in the 
corresponding large IV matrix.

See Also arxstruc, iv4, selstruc, struc 
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ivxPurpose Estimate the parameters of an ARX model using the instrumental variable (IV) 
method with arbitrary instruments.

Syntax th = ivx(z,nn,x)
th = ivx(z,nn,x,maxsize,T)

Description ivx is a routine analogous to the iv4 routine, except that you can use arbitrary 
instruments. These are contained in the matrix x. Make this the same size as 
the output, i.e., the first column(s) of z. The instruments used are then 
analogous to the regression vector itself, except that y is replaced by x.

Note that ivx does not return any estimated covariance matrix for th, since 
that requires additional information.

Use iv4 as the basic IV routine for ARX model structures. The main interest in 
ivx lies in its use for nonstandard situations; for example when there is  
feedback present in the data, or when other instruments need to be tried out. 
Note that there is also an IV version that automatically generates instruments 
from certain filters you define (type help iv).

See Also iv4, ivar

References Ljung (1987), page 198.
4-55



iv4
iv4Purpose Estimate the parameters of an ARX model using an approximately optimal 
four-stage instrumental variable (IV) procedure.

Syntax th = iv4(z,nn)
th = iv4(z,nn,maxsize,T)

Description This routine is an alternative to arx and the use of the arguments are entirely 
analogous to the arx function. The main difference is that the procedure is not 
sensitive to the color of the noise term  in the model equation.

For an interpretation of the loss function (innovations covariance matrix), 
consult “Some Special Topics” on page 3-68.

Examples Here is an example of a two-input one-output system with different delays on 
the inputs  and :

z = [y u1 u2];
nb = [2 2];
nk = [0 2];
th = iv4(z,[2 nb nk]);

Algorithm The first stage uses the arx function. The resulting model generates the 
instruments for a second-stage IV estimate. The residuals obtained from this 
model are modeled as a high-order AR model. At the fourth stage, the 
input-output data are filtered through this AR model and then subjected to the 
IV function with the same instrument-filters as in the second stage.

For the multi-output case, optimal instruments are obtained only if the noise 
sources at the different outputs have the same color. The estimates obtained 
with the routine are reasonably accurate though even in other cases.

See Also arx, oe

References Ljung (1987), equations (15.21)-(15.26).

e t( )

u1 u2
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mf2thPurpose Package model structures you define into the theta model format.

Syntax th = mf2th(model,cd,parval)
th = mf2th(model,cd,parval,aux,lambda,T)

Description th is returned as a model structure in the theta format. model is the name of 
an M-file that defines how the state-space matrices depend on the parameters 
to be estimated. The format of this M-file is given below. The argument cd must 
be assigned either the value 'c' which designates that the  underlying 
parameterization refers to a continuous-time model, or the value 'd', 
indicating that the model parameterization is inherently a discrete-time one. 

The argument parval contains the nominal values of the parameters. This is a 
row vector of the same length as the number of free parameters in the model 
structure. The argument aux is a matrix of auxiliary variables that the M-file 
can use for various purposes.

T denotes the sampling interval of the data, for which the model is going to be 
estimated (and the sampling interval that is used when the model is used for 
simulation and prediction). Give T a positive value even if the underlying model 
is defined to be continuous time. 

The model structure corresponds to the general linear state-space structure

The matrices in this time-discrete model can be parameterized in an arbitrary 
way by the vector . Write the format for the M-file as follows:

[A,B,C,D,K,x0] = mymfile(pars,T,aux) 

Here the row vector pars contains the parameters , and the output 
arguments A, B, C, D, K, and x0 are the matrices in the discrete-time model 
description that correspond to this value of the parameters.

x t T+( ) A θ( )x t( ) B θ( )u t( ) K θ( )e t( )+ +=

x 0( ) x0 θ( )=

y t( ) C θ( )x t( ) D θ( )u t( ) e t( )+ +=

θ

θ

4-57



mf2th
T is the sampling interval, and aux is any matrix of auxiliary variables with 
which you want to work. (In that way you can change certain constants and 
other aspects in the model structure without having to edit the M-file.) Note 
that the two arguments T and aux must be included in the function head of the 
M-file, even if they are not utilized within the M-file. 

If the underlying parameterization is a continuous-time one, it is still the 
discrete-time model matrices, corresponding to the sampling interval T that 
should be delivered by the M-file. However. it is desirable that if the M-file 
myfile is called with a negative value of T, it outputs the matrices of the 
corresponding continuous-time state-space model. If such a feature is included 
in the M-file, use cd = 'c'. This allows for easy transformations between 
continuous and discrete time using the normal functions thc2thd and thd2thc.

“Defining Model Structures” on page 3-29 contains several examples of typical 
M-files that define model structures.

Examples Use the M-file 'mynoise' given in Section 6 to obtain a physical 
parametrization of the Kalman gain:

thn = mf2th('mynoise','d',[0.1,–2,1,3,0.2],1)
th = pem(z,thn)
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midprefsPurpose Select a directory for idprefs.mat, a file that stores the graphical user 
interface’s start-up information.

Syntax midprefs
midprefs(path)

Description The graphical user interface ident allows a large number of variables for 
customized choices. These include the window layout, the default choices of 
plot options, and names and directories of the four most recent sessions with 
ident. This information is stored in the file idprefs.mat, which should be 
placed on the user’s MATLABPATH. The default, automatic location for this file is 
in the same directory as the user’s startup.m file.

midprefs is used to select or change the directory where you store 
idprefs.mat. Either type midprefs, and follow the instructions, or give the 
directory name as the argument. Include all directory delimiters as in the PC 
case

midprefs('c:\matlab\toolbox\local\')

or in the UNIX case

midprefs('/home/ljung/matlab/')

Warning The file idprefs.mat contains a variable with the directory name, which also 
needs to be updated. Therefore, do not just move it using the file system. 
Always use midprefs to change the directory for idprefs.mat. 
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modstrucPurpose Define state-space structure with unknown elements.

Syntax ms = modstruc(A,B,C,D,K)
ms = modstruc(A,B,C,D,K,x0)

Description modstruc is, like canform, a function that defines model parameterizations in 
state-space form, which are used in ms2th to create model structures in the 
theta format. The only use of the resulting matrix ms is as an input to ms2th.

The model considered is in state-space form:

The function applies both to the continuous and discrete-time cases; which one 
is determined only when the structure is formed with ms2th.

The input arguments A, B, C, D, K, and x0 are the matrices of the above 
state-space model. Numerical values in these matrices indicate fixed (known) 
entries, while the symbol NaN marks an element that is not known and you 
need to estimate. 

The default value of the initial state vector x0 is the zero vector, but it may also 
contain parameters you need to estimate.

Examples Define a continuous-time model structure in diagonal form with the two 
(real) poles and the numerator unknown:

A = [NaN,0;0,NaN];
B = [NaN;NaN];
C = [1,1];
D = 0;
K = [0;0];
ms = modstruc(A,B,C,D,K)
th = ms2th(ms,'c');

See Also canform, fixpar, ms2th, thinit, unfixpar 

x· t( ) A θ( )x t( ) B θ( )u t( ) K θ( )e t( )+ +=

x 0( ) x0 θ( )=

y t( ) C θ( )x t( ) D θ( )u t( ) e t( )+ +=
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ms2thPurpose Package standard state-space parameterizations into the theta model format.

Syntax th = ms2th(ms)
th = ms2th(ms,cd,parval,lambda,T)

Description The function returns th as a model structure in the theta format for further use 
in estimating, simulating, and analyzing models. The argument ms defines 
which parameters are fixed and which ones you need to estimate. It is typically 
formed by modstruc or canform. 

The argument cd indicates whether the state-space matrices in ms refer to a 
continuous-time model (cd = 'c') or a discrete-time model (cd = 'd'). 
cd = 'd' is the default. 

For a continuous-time model there are two options for how to sample it, as it is 
fitted to observed sample data (in pem): By selecting cd = ‘czoh’ (continuous, 
zero order hold) the input is assumed to be piecewise constant over the 
sampling interval. By selecting cd = ‘cfoh’ (continuous, first order hold), the 
input is supposed to be piecewise linear between the samples. This means that 
the continuous-time input u(t) is obtained by linear interpolation between the 
sampled values. Use cd = ‘czoh’ (which is the default for continuous-time 
models) if the system has been controlled using a piece-wise constant input. 
Use cd = 'cfoh' if the input has been a continuous function during the data 
acquisition.

The row vector parval contains the nominal values of the free parameters 
(those that correspond to NaN in ms). These nominal values are used as initial 
estimates when the parameters in th are identified with pem. They are also 
used whenever the model th is simulated or analyzed. The default value of  
parval is all zeros. 

The numbering of  the parameters in  parval (as well as in all other contexts 
in which the model parameters are listed) is as follows. The matrix A is first 
scanned, row by row, for free parameters, then the matrix B is scanned, again 
row by row, and then C, D, K, and X0 each of them row by row. The order in 
which the free parameters are found by this scanning defines the ordering in 
parval. 
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Note that setting all initial estimates equal to zero is not a good starting point 
for the iterative search for parameter estimates in pem, since this case often 
corresponds to a nonobservable/noncontrollable model. It is better to give more 
realistic values of parval or to randomize them using thinit. 

The argument lambda gives the covariance matrix of the innovation  for the 
sampling interval indicated in T. The default value of lambda is the unit matrix. 

T denotes the sampling interval of the data, for which the model is going to be 
estimated (and the sampling interval that is used when the model is used for 
simulation and prediction). Give T a positive value even if the underlying model 
is defined to be continuous time. 

Examples Define a continuous-time model structure corresponding to

with initial values

and estimate the free parameters:

A = [NaN,0;0,NaN];
B = [NaN;NaN];
C = [1,1];
ms = modstruc(A,B,C,0,[0;0]);
th = ms2th(ms,'c',[–0.2,–0.3,2,4]);
th = pem(z,th);

See Also canform, fixpar, modstruc, pem, thinit, unfixpar 

e t( )
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0 θ2
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y 1 1 x e+=
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nuderstPurpose Select the step size for numerical differentiation.

Syntax nds = nuderst(pars)

Description The function pem uses numerical differentiation with respect to the model 
parameters when applied to state-space structures. The same is true for the 
functions th2ff and th2zp when the parameter covariance information is 
translated to frequency function and zero-pole accuracy (again only for 
state-space structures). Finally, the command thd2thc uses numerical 
differentiation when translating the covariance information for any model 
structure. 

The step size used in these numerical derivatives is determined by the M-file 
nuderst. The output argument nds is a row vector whose k-th entry gives the 
increment to be used when differentiating with respect the k-th element of the 
parameter vector pars. 

The default version of nuderst uses a very simple method. The step size is the 
maximum of  and  times the absolute value of the current parameter. 
You can adjust this to the actual value of the corresponding parameter by 
editing nuderst. Note that the nominal value, for example 0, of a parameter 
may not reflect its normal size. 

10 7– 10 4–
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nyqplotPurpose Plot Nyquist curve of frequency function.

Syntax nyqplot(g)
nyqplot([g1 g2 ... gn])
nyqplot(g,sd,mode)

Description nyqplot is an alternative to bodeplot and ffplot to graph frequency functions 
in the freqfunq format. The Nyquist diagram of a frequency function is a graph 
of its imaginary part against its real part.

The argument g is the frequency function in question, given in the freqfunc 
format, typically as the output of  th2ff, spa, or  etfe. Several plots are 
obtained in the same diagram by simply listing the different frequency 
functions after each other. These need not be specified at the same frequencies 
(although they have to be of the same length). 

If the frequency function(s) contains information about several different 
input-output pairs, the default is that the Nyquist plot for each pair is graphed 
separately. Pressing the Return key advances from one pair to the next. With 
mode = 'same' all plots corresponding to the same input are given in the same 
diagram. 

If sd is given a value larger than 0, a confidence region around the nominal 
Nyquist plot is marked with dash-dotted lines. This region corresponds to sd 
standard deviations. (The information in g does not contain the correlation 
between the magnitude and phase estimates. The confidence region is 
therefore only approximate. It is computed by plotting the two curves , 
where  is the standard deviation (magnitude and phase) of g.) 

Examples g = th2ff(thmod)
nyplot(g,3)

See Also bodeplot, etfe, ffplot, freqfunc, spa, th2ff

g sd g∆±
g∆
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n4sidPurpose Estimate state-space models using a subspace method.

Syntax TH = n4sid(z)
[TH,AO] = n4sid(z,order,ny,auxord,dkx,maxsize,T,'trace')

Description The function n4sid estimates models in state-space form, and returns them in 
the theta format. It handles an arbitrary number of input and outputs, 
including the time series case (no input). The state-space model is in the 
innovations form:

x(t+1) = A x(t) + B u(t) + K e(t)
    y(t) = C x(t) + D u(t) + e(t)

TH: The resulting model in theta format. No covariance information about the 
uncertainty of the model is contained in TH.

AO: See under auxord below.

z: A matrix that contains the output-input data: z = [y u], where y and u are 
column vectors. In the multi-variable case, u and y contain one column for each 
output and input. In the time series case z = y.

order: The desired order of the state-space model. If order is entered as a row 
vector (like order = [1:10], which is the default choice), preliminary 
calculations for all the indicated orders are carried out. A plot will then be 
given that shows the relative importance of the dimension of the state vector. 
More precisely, the singular values of the Hankel matrices of the impulse 
response for different orders are graphed. You will be prompted to select the 
order, based on this plot. The idea is to choose an order such that the singular 
values for higher orders are comparatively small. If order = 'best', a model 
of “best” (default choice) order is computed, among the orders 1:10.

ny: The number of outputs in the data set z. Default is ny = 1.

auxord: An “auxiliary order” used by the algorithm. This can be seen as a 
prediction horizon, and it should be larger than the order. The default value is 
auxord = 1.2∗order+3. The choice of auxord could have a substantial influence 
on the model quality, and there are no simple rules for how to choose it. If you 
enter auxord as a row vector (like auxord = [5:15]), models for all these values 
will be computed. The prediction error for each of the models are computed 
using the data z, and that value of auxord that minimizes the fit will be 
selected. This value is returned as the output argument AO. If the last given 
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argument to n4sid is 'trace', information about the different choices of 
auxord will be given to the screen. Note that auxord can be chosen as a vector, 
only if order is a given value (no vector).

dkx: The argument dkx determines some additional structure of the matrices 
of the state-space model to be estimated. It is a row vector with three entries: 

dkx = [d, k, x]

The entries refer to the matrices K, D, and the initial state X(0) of the 
state-space model given above.

k = 1 indicates that the K-matrix in the model (the Kalman Gain) will be 
estimated, while k = 0 means that this matrix will be fixed to zero. This will 
give a so called output error model.

d = 1 indicates that D-matrix in the model (the direct term from input to 
output) will be estimated, while d = 0 means that this matrix is fixed to zero. 
This also implies that there will be a delay of (at least) one sample between the 
input and the output.

x = 1 indicates that the initial state x(0) will be estimated and stored in the 
model TH, while x = 0 means that the initial state will be taken as zero. Note 
that the initial state is something that relates to the particular data set for 
which the model was estimated, and may not be relevant when the model is 
evaluated on a new set of data.

Default is

dkx = [0, 1, 0]

The optional variables maxsize and T are explained under AUXVAR.

trace: Letting the last input argument be 'trace', gives information to the 
command line about the choice of auxiliary order, in case this is given as a 
vector.

Algorithm The function implements the methods described in P. Van Overschee and B. De 
Moor: N4SID:Subspace algorithms for the identication of combined 
deteministic-stochastic systems. Automatica, Vol. 30, No 1, pp. 75-93, 1994.

The algorithm is complemented with a separate linear least-squares step to 
re-estimate the matrices B, D, and X(0), which enter linearly.
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Examples Build a fifth order model from data with three inputs and two outputs. Try 
several choices of auxiliary orders. Look at the frequency response of the model. 
(Note that there will be no confidence intervals!)

z = [y1 y2 u1 u2 u3];
th = n4sid(z,5,2,7:15,’trace’);
bodeplot(trf(th))

Use the resulting model as initial values for estimating a state-space model of 
the same order using the prediction error method:

thi = ss2th(th);
thp = pem(z,thi); 

See Also auxvar, canstart, pem, theta 
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oePurpose Estimate the parameters of an Output-Error model.

Syntax th = oe(z,nn)
th = oe(z,nn,’trace’)
[th, iter_info] = oe(z,nn,maxiter,tol,lim,maxsize,T,'trace')

Description The parameters of the Output-Error model structure

are estimated using a prediction error method. 

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors. nn can be given either as

 nn = [nb nf nk]
or as

nn = thi

In the former case, nb, and nf are the orders of the Output-Error model and nk 
is the delay. In the latter case, this is an initial value for the estimate, given in 
theta format. See “The System Identification Problem” on page 3-8 for an exact 
definition of the orders and delay.

th is returned with the resulting parameter estimates and estimated 
covariances, stored in theta format.

The optional variables iter_info, lim, maxiter, maxsize, tol, and T are 
explained under auxvar.

For multi-input models, nb, nf, and nk are row vectors, such that entry number 
i gives the orders and delays associated with the i-th input.

oe does not support multi-output models. Use state-space model for this case 
(see canstart, n4sid, and pem)

If a last argument 'trace' is supplied, information about the progress of the 
iterative search for the model will be furnished to the MATLAB command 
window.

y t( ) B q( )
F q( )
-----------u t nk–( ) e t( )+=
4-68



oe
Algorithm oe uses essentially the same algorithm as armax with modifications to the 
computation of prediction errors and gradients. 

See Also armax, auxvar, bj, pem, theta
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pePurpose Compute the prediction errors associated with a model and a data set.

Syntax e = pe(z,th)

Description Matrix z is the output-input data set, z = [y u], and th is a model specified in 
theta format. e is returned containing the prediction errors that result when 
model th is applied to the data,

See Also resid, theta

e t( ) H
1–

q( ) y t( ) G q( )u t( )–[ ]=
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pemPurpose Estimate the parameters of general linear models.

Syntax th = pem(z,nn)
th = pem(z,nn,'trace')
[th, iter_info] = pem(z,nn,index,maxiter,tol,lim,...

maxsize,T,'trace')

Description The function pem handles all model structures, including the general 
multi-input-single-output structure

and general structures defined by fixpar, mf2th, ms2th, thinit, and 
unfixpar. Multivariable ARX structures defined by arx2th are also covered.

The matrix z contains the output-input data z = [y u], where y and u are 
column vectors (in the multi-variable case u and y contain one column for each 
input and output). 

nn is given either as

 nn = [na nb nc nd nf nk]
or as

nn = thi

In the former case, na, nb, nc, nd, and nf are the orders of the model and nk is 
the delay(s). For multi-input systems,  nb, nf, and nk are row vectors giving the 
orders and delays of each input. (See Section 3 of the Tutorial for exact 
definitions of the orders). 

In the latter case, thi defines a model structure and an initial value for the 
estimate, given in theta format. 

th is returned with the resulting parameter estimates and estimated 
covariances, stored in theta format.

The optional argument index is a row vector that contains the indices of the 
parameters that are to be estimated. The others remain fixed to their nominal 
values. The ordering of the parameters is defined under th2par. The default 

A q( )y t( )
B1 q( )
F1 q( )
--------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
-----------------unu t nknu–( ) C q( )

D q( )
------------e t( )+ + +=
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value of  index is that all free parameters are estimated. The optional variables 
iter_info, lim, maxiter, maxsize, tol, and T are explained under auxvar.

If a last argument ‘trace’ is supplied, information about the progress of the 
iterative search for the model will be furnished to the MATLAB command 
window.

For the special cases of single-input models of Output-Error, ARMAX, and 
Box-Jenkins type, it is more efficient to use oe, armax, and bj.

Examples Here is an example of a system with three inputs and two outputs. A canonical 
form state-space model of order 5 is sought.

z = [y1 y2 u1 u2 u3];
thc = canstart(z,5,3)
th = pem(z,thc);

Algorithm pem uses essentially the same algorithm as  armax with modifications to the 
computation of prediction errors and gradients. 

See Also armax, auxvar, bj, oe, theta 
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poly2thPurpose Construct theta format matrix for input-output models.

Syntax th = poly2th(A,B)
th = poly2th(A,B,C,D,F,lam,T)

Description poly2th creates a matrix containing parameters that describe the general 
multi-input-single-output model structure:

A, B, C, D, and F specify the polynomial coefficients.

For single-input systems, these are all row vectors in the standard MATLAB 
format:

A = [1 a1 a2 ... ana]

A, C, D, and  F all start with 1, while  B contains leading zeros to indicate the 
delays. See “Defining Model Structures” on page 3-29.

For multi-input systems, B and F are matrices with one row for each input. 

For time series, B and F are entered as empty matrices:

 B = [];   F = [];

lam is the variance of the white noise sequence , while T is the sampling 
interval.

A negative value of T indicates that the model is a continuous-time one. Then 
the interpretation of the arguments is that

A = [1 2 3 4]

corresponds to the polynomial  in the Laplace variable s, and so 
on. For continuous-time systems lam indicates the level of the spectral density 
of the innovations. (A sampled version of the model has the innovations 
variance lam/T, where T is the sampling interval. The continuous-time model 
must have a white noise component in its noise description. See “Some Special 
Topics” on page 3-68.
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Trailing arguments C, D, F, lam, and T can be omitted, in which case they are 
taken as 1. (If B=[], then F is taken as [].)

For discrete-time models (T>0), note the following: poly2th strips any trailing 
zeros from the polynomials when determining the orders. It also strips leading 
zeros from the B polynomial to determine the delays. Keep this in mind when 
you use poly2th and th2poly to modify earlier estimates to serve as initial 
conditions for estimating new structures. See “Some Special Topics” on page 
3-68.

Examples To create a system of ARMAX type (the “Åström system”):

A = [1 –1.5 0.7];
B = [0 1 0.5];
C = [1 –1 0.2];
th0 = poly2th(A,B,C);

This gives a system with one delay (nk = 1).

Create the continuous-time model 

Sample it with T=0.1 and then simulate it without noise:

B=[0 1;1 3];
F=[1 1 0;1 2 4]
th=poly2th(1,B,1,1,F,1,–1)
thd=thc2thd(th,0.1)
y=idsim([u1 u2],thd);

See Also idsim, theta

  
y(t ) =

1

s(s+ 1)
u1 t( )  +  

s+ 3
s2 + 2s+ 4

u2 ( t)  +  e( t )
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predictPurpose Predict the output k-step ahead.

Syntax p = predict(z,th)
[yp,thpred] = predict(z,th,k)

Description z is the output-input data in the usual format

z = [y u]

where y is a matrix whose r-th column is the r-th output signal and 
correspondingly for the input u. 

The argument k indicates that the k-step ahead prediction of y according to the 
model th (in the theta format) is computed. In the calculation of yp(t) the model 
can use outputs up to time 

: ,  

and inputs up to the current time t. The default value of k is 1. 

The output yp is a matrix of the same size as y, and its i,j element contains the 
predicted value of the corresponding element in y. The output argument 
thpred contains the k-step ahead predictor in the theta format, in the case that 
th corresponds to an input-output model. (The predictor is a system with 

 inputs and  outputs,  being the number of outputs and  the 
number of inputs to th.) 

An important use of predict is to evaluate a model’s properties in the 
mid-frequency range. Simulation with idsim (which conceptually corresponds 
to k = inf) can lead to levels that drift apart, since the low frequency behavior 
is emphasized. One step ahead prediction is not a powerful test of the model’s 
properties, since the high frequency behavior is stressed. The trivial predictor 

 can give good predictions in case the sampling of the data is fast. 

Another important use of predict is to evaluate models of time series. The 
natural way of studying a time series model’s ability to reproduce observations 
is to compare its k-step ahead predictions with actual data. 

Note that for output-error models, there is no difference between the k-step 
ahead predictions and the simulated output, since, by definition, output-error 
models only use past inputs to predict future outputs. 

t k– y s( ) s, t k–= t k– 1– …,

ny nu+ ny ny nu

ŷ t( ) y t 1–( )=
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Algorithm For a model th that is an input-output model, the formula (3.31) in Ljung 
(1987) is applied to compute the predictor. For state-space models, the state 
equations are simulated k-steps ahead with initial value , 
where  is the Kalman filter state estimate. 

Examples Simulate a time series, estimate a model based on the first half of the data, and 
evaluate the four step ahead predictions on the second half: 

th0 = poly2th([1 –0.99],[],[1 –1 0.2]);
y = idsim(randn(400,1),th0);
th = armax(y(1:200),[1 2]);
yp = predict(y,th,4);
plot([y(201:400),yp(201:400)])

Note that the last two commands also are achieved by

compare(y,th,4,201:400);

See Also compare, idsim, pe

x t k–( ) x̂ t k–( )=
x̂ t k–( )
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presentPurpose Display the information in a theta matrix.

Syntax present(th)

Description This function displays the polynomials of the model th, together with their 
standard deviations, loss function, and Akaike’s Final Prediction Error 
Criterion (FPE) (which essentially equals the AIC). It also displays information 
about how th was created.

Leading zeros in B correspond to delays;  therefore, the delay is nk if B starts 
with nk exact zeros.

For input-output models, the estimated standard deviations are given just 
below the estimated parameters. (Note that leading zeros and ones are exact 
and have zero standard deviation.)

For state-space models and multivariable ARX models, the standard 
deviations are given as fake, imaginary parts of the parameter estimates.

See Also theta
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rarmaxPurpose Estimate recursively the parameters of an ARMAX or ARMA model.

Syntax thm = rarmax(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = ... 
  rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors. nn is  given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the delay. 
See equations (3.16)-(3.18) in Chapter 3, "Tutorial" for an exact definition of the 
orders.

If  z = y and nn = [na nc], rarmax estimates the parameters of an ARMA 
model for y:

Only single-input, single-output models are handled by rarmax. Use rpem for 
the multi-input case.

The estimated parameters are returned in the matrix thm. The k-th row of  thm 
contains the parameters associated with time k, i.e., they are based on the data 
in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

See equations (3.16),(3.18) in Chapter 3, "Tutorial" for more information.

yhat is the predicted value of the output, according to the current model, i.e., 
row k of yhat contains the predicted value of z(k,1) based on all past data.

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=

A q( )y t( ) C q( )e t( )=
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The actual algorithm is selected with the two arguments  adm and adg. These 
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row 
vector, consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. See rarx. The default value of  P0 
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend in a rather complicated way on the chosen model 
orders. The normal choice of  phi0 and psi0 is to use the outputs from  a 
previous call to rarmax with the same model orders. (This call could of course 
be a dummy call with default input arguments.) The default values of phi0 and 
psi0 are all zeros. 

Note that the function requires that the delay nk be larger than 0. If  you want 
nk=0, shift the input sequence appropriately and use nk=1.

Algorithm The general recursive prediction error algorithm (11.44), (11.47)-(11.49) of 
Ljung (1987) is implemented. See “Recursive Parameter Estimation” on page 
3-61 for more information.

Examples Compute and plot, as functions of time, the four parameters in a second order 
ARMA model of a time series given in the vector y. The forgetting factor 
algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)
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rarxPurpose Estimate recursively the parameters of an ARX or AR model.

Syntax thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description The parameters of the ARX model structure

are estimated using different variants of the recursive least-squares method.

Matrix z contains the output-input data z = [y u] where  y and u are column 
vectors. nn is given as

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the delay. See 
equation (3.16) in the Tutorial for an exact definition of the orders.

If z = y and nn = na, rarx estimates the parameters of an AR model for y:

Models with several inputs

are handled by allowing u to contain each input as a column vector,

u = [u1 ... unu]

and by allowing nb and nk to be row vectors defining the orders and delays 
associated with each input.

Only single-output models are handled by rarx.

The estimated parameters are returned in the matrix thm. The k-th row of thm 
contains the parameters associated with time k, i.e., they are based on the data 

A q( )y t( ) B q( )u t nk–( ) e t( )+=
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in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

See equation (3.16) in Chapter 3, "Tutorial". In the case of a multi-input model, 
all the b parameters associated with  input number 1 are  given first, and then 
all the b parameters associated with input number 2, and so on.

yhat is the predicted value of the output, according to the current model, i.e., 
row k of yhat contains the predicted value of z(k,1) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These 
are described in “Recursive Parameter Estimation” on page 3-61. The options 
are as follows:

With adm ='ff' and adg = lam the forgetting factor algorithm (10.6abd)+(10.8) 
is obtained with forgetting factor = lam. This is what is often referred to as  
Recursive Least Squares, RLS. In this case the matrix  P (see below) has the 
following interpretation: /2 ∗ P is approximately equal to the covariance 
matrix of the estimated parameters. Here  is the variance of the innovations 
(the true prediction errors e(t) in (10.3)). 

With  adm ='ug' and  adg = gam the unnormalized gradient algorithm 
(10.6abc)+(10.9) is obtained with gain gamma= gam. This algorithm is 
commonly known as unnormalized Least Mean Squares, LMS. Similarly  
adm ='ng' and adg = gam gives the normalized gradient or Normalized Least 
Mean Squares, NLMS algorithm (10.6abc) + (10.10). In these cases  P is not 
defined or applicable.

With  adm ='kf' and adg = R1 the Kalman Filter Based algorithm (10.6) is 
obtained with R2= 1 and R1 = R1. If the variance of the innovations e(t) is not 
unity but ,  then  ∗ P is the covariance matrix of the parameter estimates, 
while  =R1 /  is the covariance matrix of the parameter changes in (10.4). 

The input argument th0 contains the initial value of the parameters; a row 
vector, consistent with the rows of thm. (See above.) The default value of th0 is 
all zeros.

The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. The default value of P0 is 104 times 
the identity matrix.

λ

R2
R2

R2 R2
R1 R2
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The arguments phi0 and phi contain initial and final values, respectively, of 
the data vector:

Then, if 

z = [y(1),u(1); ... ;y(N),u(N)]

you have phi0 =  and phi = . The default value of phi0 is all zeros. For 
online use of rarx, use phi0, th0, and P0 as the previous outputs phi, thm (last 
row), and P.

Note that the function requires that the delay nk be larger than 0. If you want 
nk=0,  shift the input sequence appropriately and use nk=1.

Examples Adaptive noise canceling:  The signal y  contains a component that has its 
origin in a known signal r. Remove this component by estimating, recursively, 
the system that relates r to y  using a sixth order FIR model together with the 
NLMS algorithm:

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
%noise is the adaptive estimate of the noise
%component of y
plot(y–noise)

ϕ t( ) y t 1–( ) … y t na–( ) u t 1–( ) …u t nb– nk– 1+( ), , , ,[ ]=

ϕ 1( ) ϕ N( )
4-82



rarx
If the above application is a true online one, so that you  want to plot the best 
estimate of the signal  y – noise at the same time as the data y and u become 
available, proceed as follows:

phi = zeros(6,1); P=1000∗eye(6);
th = zeros(1,6); axis([0 100 –2 2]);
plot(0,0,'∗'), hold
%The loop:
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y–ns,'∗')
time = time +Dt
end

This example uses a forgetting factor algorithm with a forgetting factor of 0.98. 
readAD represents an M-file that reads the value of an A/D converter at the 
indicated time instance. 
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rbjPurpose Estimate recursively the parameters of a Box-Jenkins model.

Syntax thm = rbj(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = ...
  rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors. nn is given as

nn = [nb nc nd nf nk]

where  nb, nc, nd, and  nf are the orders of the Box-Jenkins model, and nk is the 
delay. See equations (3.21) and (3.14),(3.18), (3.22) and (3.29) in the Tutorial 
for an exact definition of the orders.

Only single-input, single-output models are handled by  rbj. Use rpem for the 
multi-input case.

The estimated parameters are returned in the matrix thm. The k-th row of thm 
contains the parameters associated with time k, i.e., they are based on the data 
in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order:

thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

(See equations (3.14),(3.18),(3.22) and (3.20) in the Tutorial.)

yhat is the predicted value of the output, according to the current model, i.e., 
row k of  yhat contains the predicted value of  z(k,1) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These 
are described under rarx.

y t( ) B q( )
F q( )
-----------u t nk–( ) C q( )

D q( )
------------e t( )+=
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The input argument th0 contains the initial value of the parameters, a row 
vector, consistent with the rows of thm. (See above.) The default value of th0 is 
all zeros. 

The arguments P0 and P are the initial and final values, respectively of the 
scaled covariance matrix of the parameters. See rarx. The default value of P0 
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend in a rather complicated way on the chosen model 
orders. The normal choice of  phi0 and psi0 is to use the outputs from  a 
previous call to rbj with the same model orders. (This call could, of course, be 
a dummy call with default input arguments.) The default values of  phi0 and 
psi0 are all zeros.

Note that the function requires that the delay nk is larger than 0. If you want 
nk=0, shift the input sequence appropriately and use  nk=1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1987) is 
implemented. See also “Recursive Parameter Estimation” on page 3-61.
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residPurpose Compute and test the residuals (prediction errors) of a model.

Syntax [e,r] = resid(z,th)
[e,r] = resid(z,th,M,maxsize)
resid(r);

Description Matrix z contains the output-input data z = [y u], where y and u are column 
vectors. In the multivariable case, y and u are matrices, with columns 
corresponding to the different inputs and outputs.

th is the model to be evaluated on the given data set, defined in theta format.

e is returned with the residuals (prediction errors) associated with the model 
and the data.

The autocorrelation function of e and the cross correlation between e and the 
input(s) u are computed and displayed. The 99% confidence intervals for these 
values are also computed and displayed as dotted (red) curves. The 
computation of these values is done assuming e to be white and independent of 
u. The functions are displayed up to lag M, which is 25 by default.

The correlation information is returned with r. The plots can then be reviewed 
by 

resid(r);

See “Model Structure Selection and Validation” on page 3-49 for more 
information.

The argument maxsize is explained under auxvar.

Examples Here are some typical model validation commands:

e = resid(z,th);
plot(e)
compare(z,th);

See Also auxvar, compare, pem, theta 

References Ljung (1987), Section 16.5.
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roePurpose Estimate recursively the parameters of an Output-Error model.

Syntax thm = roe(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the Output-Error model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors. nn is given as

nn = [nb nf nk]
where nb and nf are the orders of the Output-Error model, and nk is the delay. 
See equations (3.14) and (3.19)-(3.20) in the Tutorial for an exact definition of 
the orders.

Only single-input, single-output models are handled by roe. Use rpem for the 
multi-input case.

The estimated parameters are returned in the matrix thm. The k-th row of thm 
contains the parameters associated with time k, i.e., they are based on the data 
in the rows up to and including row k in z.

Each row of thm contains the estimated parameters in the following order:

thm(k,:) = [b1,...,bnb,f1,...,fnf]

See equations (3.14), (3.20) in the Tutorial.

yhat is the predicted value of the output, according to the current model, i.e., 
row k of yhat contains the predicted value of z(k,1) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These 
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row 
vector, consistent with the rows of thm. (See above.) The default value of th0 is 
all zeros.

y t( ) B q( )
F q( )
-----------u t nk–( )=
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The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. See rarx. The default value of  P0 
is 104 times the unit matrix. The arguments  phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend in a rather complicated way on the chosen model 
orders. The normal choice of  phi0 and psi0 is to use the outputs from a 
previous call to roe with the same model orders. (This call could  be a dummy 
call with default input arguments.) The default values of phi0 and psi0 are all 
zeros.

Note that the function requires that the delay nk is larger than 0. If you want 
nk=0, shift the input sequence appropriately and use nk=1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1987) is 
implemented. See also “Recursive Parameter Estimation” on page 3-61. 

See Also oe, rarx, rbj, rplr, 
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rpemPurpose Estimate recursively the parameters of a general multi-input single-output 
linear model.

Syntax thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the general linear model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column 
vectors (in the multi-input case u contains one column for each input). nn is 
given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. 
For multi-input systems nb, nf, and nk are row vectors giving the orders and 
delays of each input. See equations (3.13)-(3.23) in the Tutorial for an exact 
definition of the orders.

The estimated parameters are returned in the matrix thm. The k-th row of thm 
contains the parameters associated with time k, i.e., they are based on the data 
in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
  c1,...,cnc,d1,...,dnd,f1,...,fnf]

See equations (3.13)-(3.23) in the Tutorial. For multi-input systems the B part 
in the above expression is repeated for each input before the C part begins, and 
also the F part is repeated for each input. This is the same ordering as in 
th2par.

yhat is the predicted value of the output, according to the current model, i.e., 
row k of  yhat contains the predicted value of  z(k,1) based on all past data.

A q( )y t( )
B1 q( )
F1 q( )
--------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
----------------- unu t nknu–( ) C q( )

D q( )
------------e t( )+ + +=
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The actual algorithm is selected with the two arguments adg and adm. These 
are described under rarx

The input argument th0 contains the initial value of the parameters;, a row 
vector, consistent with the rows of thm. (See above.) The default value of th0 is 
all zeros. 

The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. See rarx. The default value of  P0 
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend in a rather complicated way on the chosen model 
orders. The normal choice of phi0 and psi0 is to use the outputs from  a 
previous call to rpem with the same model orders. (This call could be a dummy 
call with default input arguments.) The default values of phi0 and psi0 are all 
zeros.

Note that the function requires that the delay nk is larger than 0. If you want 
nk=0 , shift the input sequence appropriately and use nk=1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1987) is 
implemented. See also “Recursive Parameter Estimation” on page 3-61.

For the special cases of ARX/AR models, and of single-input ARMAX/ARMA, 
Box-Jenkins, and Output-Error models, it is more efficient to use rarx, 
rarmax, rbj, and roe.

See Also pem, rarmax, rarx, rbj, roe, rplr 
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rplrPurpose Estimate recursively the parameters of a general multi-input single-output 
linear model.

Syntax thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description This is a direct alternative to rpem and has essentially the same syntax. See 
rpem for an explanation of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation. See 
Section 11.5 in Ljung (1987). Several of the special cases are well known 
algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr gives the 
Extended Least Squares, ELS method. When applied to the output error 
structure (nn = [0 nb 0 0 nf nk]) the method is known as HARF in the adm 
= 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time series case in which an ARMA model is 
estimated with

z = y
nn = [na nc]

You can thus use rplr as an alternative to rarmax for this case.

See Also pem, rarmax, rarx, rbj, roe, rpem 
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segmentPurpose Segment data and estimate models for each segment.

Syntax segm = segment(z,nn) 
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description segment builds models of AR, ARX, or ARMAX/ARMA,

assuming that the model parameters are piece-wise constant over time. It 
results in a model that has split the data record into segments over which the 
model remains constant. The function models signals and systems that may 
undergo abrupt changes.

The argument z is the output-input data

z = [y u]

where y is a column vector containing the outputs and u is a column vector 
containing the inputs. If the system has several inputs, u has the corresponding 
number of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk]

where na, nb, and nc are the orders of the corresponding polynomials. See 
(3.13)-(3.18) in Chapter 3, "Tutorial". Moreover nk is the delay. If the model has 
several inputs, nb and nk are row vectors, giving the orders and delays for each 
input.

For an ARX model (nc = 0) enter

nn = [na nb nk]

For an ARMA model of a time series

z = y
nn = [na nc]

and for an AR model

nn = na

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=
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The output argument segm is a matrix, whose k-row contains the parameters 
corresponding to time k. This is analogous to the output argument thm in rarx 
and rarmax. The output argument thm of segment contains the corresponding 
model parameters that have not yet been segmented. That is, they are not 
piecewise constant, and therefore correspond to the outputs of the functions 
rarmax and rarx. In fact, segment is an alternative to these two algorithms, 
and has a better capability to deal with time variations that may be abrupt.

The output argument V contains the sum of the squared prediction errors of the 
segmented model. It is a measure of how successful the segmentation has been. 

The input argument R2 is the assumed variance of the innovations e(t) in the 
model. The default value of R2 is that it is estimated. Then the output 
argument R2e is a vector whose k-th element contains the estimate of R2 at time 
k.

The argument q is the probability that the model undergoes at an abrupt 
change at any given time. The default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they occur. 
The default value is  the identity matrix with dimension equal to the number 
of estimated parameters.

M is the number of parallel models used in the algorithm (see below). Its default 
value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the initial 
covariance matrix of the parameters. The default is 10 times the identity 
matrix.

ll is the guaranteed life of each of the models. That is, any created candidate 
model is not abolished until after at least ll time steps. The default is ll = 1. 
Mu is a forgetting parameter that is used in the scheme that estimates R2. The 
default is 0.97.

The most critical parameter for  you to choose is R2. It is usually more robust 
to have a reasonable guess of  R2 than to estimate it. Typically, you need to try 
different values of R2 and evaluate the results. (See the example below.) 
sqrt(R2) corresponds to a change in the value y(t) that is normal, giving no 
indication that the system or the input might have changed.
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Algorithm The algorithm is based on M parallel models, each recursively estimated by an 
algorithm of Kalman filter type. Each is updated independently, and its 
posterior probability is computed. The time varying estimate thm is formed by 
weighting together the M different models with weights equal to their posterior 
probability. At each time step the model (among those that have lived at least 
ll samples) that has the lowest posterior probability is abolished. A new model 
is started, assuming that the system parameters have jumped, with probability 
q, a random jump from the most likely among the models. The covariance 
matrix of the parameter change is set to R1. 

After all the data are examined, the surviving model with the highest posterior 
probability is tracked back and the time instances where it jumped are marked. 
This defines the different segments of the data. (If no models had been 
abolished in the algorithm, this would have been the maximum likelihood 
estimates of the jump instances.) The segmented model segm is then formed by 
smoothing the parameter estimate, assuming that the jump instances are 
correct. In other words, the last estimate over a segment  is chosen to represent 
the whole segment.

Examples Check how the algorithm  segments a sinusoid into segments of constant levels. 
Then use a very simple model  y(t) = b1 * 1, where 1 is a faked input and  
describes the piecewise constant level of the signal y(t) (which is simulated as 
a sinusoid).

y = sin([1:50]/3)';
thm = segment([y,ones(y)],[0 1 1],0.1);
plot([thm,y])

By trying various values of  R2 (0.1 in the above example), more levels are 
created as R2 decreases. 

b1
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selstrucPurpose Select model order (structure).

Syntax [nn,vmod] = selstruc(v)
[nn,vmod] = selstruc(v,c)

Description selstruc is a function to help choose a model structure (order) from the 
information contained in the matrix v obtained as the output from arxstruc or 
ivstruc. 

The default value of c is 'plot'. This graphs the values of the loss functions in 
v against the total number of parameters in the corresponding model structure. 
If v was generated by ivstruc, so that it also contains the condition numbers 
of the IV matrices, then these are also graphed against the number of 
parameters. Based on inspection of these plots, you can choose a suitable 
number of parameters, and nn returns the best structure with this number of 
parameters.

If c = 'log', the logarithms of the loss functions are graphed instead.

c = 'aic' gives no plots, but returns in nn the structure that minimizes 
Akaike’s Information Theoretic Criterion (AIC), 

where V is the loss function, d is the total number of parameters in the 
structure in question, and N is the number of data points used for the 
estimation.

c = 'mdl' returns in nn the structure that minimizes  Rissanen’s Minimum 
Description Length (MDL) criterion.

When c equals a numerical value, the structure that minimizes

is selected.

The output argument vmod has the same format as v, but it contains the 
logarithms of the accordingly modified criteria.

Vmod V∗ 1 2∗ d N⁄( )+( )=

Vmod V∗ 1 N( )log ∗d N⁄+( )=

Vmod V∗ 1 c∗d n⁄+( )=
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The formal grounds for applying AIC or MDL require that v be generated by 
arxstruc with ze = zv. When cross-validation is used (ze different from  zv), 
the logical choice is  c = 0.

When selecting model structures, it is important to assess carefully whether 
the benefit of a better fit is worth the additional complexity of a higher order 
model. See Chapter 3, "Tutorial" for more information.

Examples Here is a typical sequence of commands for finding a suitable model structure:

NN = struc(2,2,1:8); 
v = arxstruc(z(1:200,:),z(201:400,:),NN);
nn = selstruc(v,0);
nk = nn(3);
NN = struc(1:4,1:4,nk);
va = arxstruc(z(1:200,:),z(201:400,:),NN);
vi = ivstruc(z(1:200,:),z(201:400,:),NN);
nna = selstruc(va);
nni = selstruc(vi);

See Also arxstruc, ivstruc, struc 
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settPurpose Set the sampling interval directly.

Syntax modn = sett(mod,T)

Description All functions that create model descriptions in the theta or freqfunc format set 
the sampling interval T in their last argument. For convenience sett offers an 
alternative to set it directly. It can be applied both to the case where mod is a 
model in the theta format and to the case where mod is a frequency function or 
spectrum in the freqfunc format, with a default choice of frequencies.

th = armax(z,nn);
th = sett(th,T);

is equivalent to

th = armax(z,nn,[],[],[],[],T)

Similarly,

g = spa(z);
g = sett(g,T);

is equivalent to

g = spa(z,[],[],[],T)

Note that you cannot use sett to recalculate models to a new sampling 
interval. Use thc2thd or thd2thc instead.

See Also freqfunc, theta 
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spaPurpose Estimate frequency response and spectrum by spectral analysis.

Syntax [g,phiv] = spa(z)
[g,phiv,z_spe] = spa(z,M,w,maxsize,T)

Description spa estimates the transfer function g and the noise spectrum phiv =  of the 
general linear model

where  is the spectrum of ν(t).

Matrix z contains the output-input data z = [y u], where y and u are column 
vectors. If there are several inputs, u is a matrix with one column for each 
input. The data may be complex-valued.

g is returned in the frequency function format (see  freqfunc) with the 
estimate of at the frequencies  specified by row vector  w. The default 
value of  w is

w = [1:128]/128∗pi/T

phiv is returned with the autospectrum estimate of at the same 
frequencies. Both outputs are returned with estimated standard deviations 
(see freqfunc). 

M is the length of the lag window used in the calculations. The default value is

M = min(30,length(z)/10)

Changing the value of M exchanges bias for variance in the spectral estimate. 
As M is increased, the estimated functions show more detail, but are more 
corrupted by noise. The sharper peaks a true frequency function has, the 
higher M it needs. See etfe as an alternative for narrowband signals and 
systems. 

T is the sampling interval and maxsize controls the memory-speed trade-off 
(see  auxvar).

Φv

y t( ) G q( )u t( ) v t( )+=

Φv ω( )

G ei ω( ) ω

Φv ω( )
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For time series z = y,  g is returned with the estimated output spectrum and 
its estimated standard deviation.

IMPORTANT: For multi-output data the argument M must be entered as a row 
vector of the same length as the number of outputs. This is the way the 
distinction between inputs and outputs in z is clarified. For default window 
size use in the multi-output case

M = [–1, –1, ..., –1]

The optional third output argument z_spe gives directly the spectrum matrix 
of z as follows:

reshape(z_spe(:,k),nz,nz) = The spectrum S at frequency W(k)

where nz is the number of channels in the data matrix z and 

Here win(m) is weight at lag m of an M-size Hamming window and W(k) is the 
frequency value i rad/s. Note that ' denotes complex-conjugate transpose.

The normalization of the spectrum differs from the one used by spectrum in the 
Signal Processing Toolbox . See “Some Special Topics” on page 3-68 for a more 
precise definition.

Examples With default frequencies

g = spa(z);
bodeplot(g)

With logarithmically spaced frequencies

w = logspace(–2,pi,128);
[g,phiv] = spa(z,[],w); 
% (empty matrix gives default)
bodeplot([g phiv],3)

plots the estimated spectrum together with confidence intervals of three 
standard deviations.

S Ez t m+( )z t( )′ iW k( )mT–( )exp win m( )
m M–=

M

∑=
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Algorithm The covariance function estimates are computed using covf. These are 
multiplied by a Hamming window of lag size M and then Fourier transformed. 
The relevant ratios and differences are then formed. For the default 
frequencies, this is done using FFT, which is more efficient than for 
user-defined frequencies. For multi-variable systems, a straightforward 
for-loop is used.

Note that M =  is in Table 6.1 of Ljung (1987). The standard deviations are 
computed as on pages 155-156 and 264 of Ljung (1987).

See Also auxvar, bodeplot, etfe, ffplot, freqfunc, th2ff

References Ljung (1987), Section 6.4.

ϒ

4-100



ss2th
ss2thPurpose Create a model structure parametrized in canonical form.

Syntax THS = ss2th(TH)
THS = ss2th(TH,orders)

Description This function converts any model in theta format to a canonically 
parameterized state-space model, also in theta format. It is useful when a 
model has been obtained in some way, and you want to use it as an initial model 
for prediction error estimation using pem.

TH: The given model, which can be any model in theta format.

THS: The resulting model, also in theta format. A canonical parametrization in 
observer form, based on the pseudo-observability indices orders.

orders: The pseudo-observability indices. A row vector, with as many elements 
as there are outputs in the model TH. Their sum must be equal to the order of 
the model TH. See canform for more details. If orders is omitted, a default 
choice of indices is made.

If the model TH is an output error model (its Kalman gain equal to zero), then 
so is THS. Also if there is a delay from input to output in TH (corresponding to a 
state-space representation (3.27) in the Tutorial with D=0) then THS will also 
have such a structure.

 Examples Make a parametrized state-space model from given matrices A, B, C, D, and K 
and use it as initial condition for pem estimation:

th1 = ms2th(modstruc(A,B,C,D,K),’d’);
thi = ss2th(th1);
th = pem(z,thi);

Let the model obtained from n4sid be used as the initial value for prediction 
error estimation:

thn = n4sid(z,3);
thp = pem(z,ss2th(thn));

See Also canform, canstart, ms2th, n4sid 
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strucPurpose Generate model structure matrices.

Syntax NN = struc(NA,NB,NK)

Description struc returns in NN the set of model structures comprised of all combinations 
of the orders and delays given in row vectors  NA, NB, and NK. The format of  NN 
is consistent with the input format used by arxstruc and ivstruc. The 
command is intended for single-input systems only.

Examples The statement 

NN = struc(1:2,1:2,4:5);

produces

NN =
 1  1  4
 1  1  5
 1  2  4
 1  2  5
 2  1  4
 2  1  5
 2  2  5
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thc2thdPurpose Convert a model from continuous time to discrete time.

Syntax thd = thc2thd(thc,T)

Description thc is a continuous-time model in the theta format. thd is what is obtained 
when it is sampled with sampling interval T. If  thc is of input-output type, the 
covariance matrix of the parameters is not translated.

Note that the innovations variance  of the continuous-time model is 
interpreted as the intensity of the spectral density of the noise spectrum. The 
innovations variance in thd will thus be given as /T.

Examples Define a continuous-time system and study the poles and zeros of the sampled 
counterpart:

thc = poly2th(1,1,1,1,[1 1 0],1,–1);
thd = thc2thd(thc,0.5);
zpplot(th2zp(thd))

See Also thd2thc

λ

λ
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thd2thcPurpose Convert a model from discrete to continuous time.

Syntax thc = thd2thc(thd)
thc = thd2thc(thd,delay,NoP)

Description The discrete-time model thd, given in the theta format, is converted to a 
continuous-time counterpart thc. The covariance matrix of the parameters in 
the model is also translated using Gauss’ approximation formula and 
numerical derivatives of the transformation. The step sizes in the numerical 
derivatives are determined by the function nuderst. To inhibit the translation 
of the covariance matrix and save time, enter NoP = 1.

If the discrete-time model contains pure time delays, i.e., , then these are 
first removed before the transformation is made. These delays should then be 
appended as pure time-delay (deadtime) to the continuous-time model. This is 
done automatically by th2ff. To have the time delay approximated by a 
finite-dimensional continuous system, enter delay = 'del'. The default is 
delay = 'nodel'.

If the innovations variance is  in thd, and its sampling interval is T, then the 
continuous-time model has an indicated level of innovations spectral density 
equal to T  ∗ .

IMPORTANT: The transformation from discrete to continuous time is not 
unique. thd2thc selects the continuous-time counterpart with the slowest 
time constants, consistent with the discrete-time model. The lack of 
uniqueness also means that the transformation may be ill-conditioned or even 
singular. In particular, poles on the negative real axis, in the origin, or in the 
point 1, are likely to cause problems. Interpret the results with care.

Examples Transform an identified model to continuous time and compare the frequency 
responses of the two models:

gd = th2ff(th);
thc = thd2thc(th);
gc = th2ff(thc);
bodeplot([gd, gc],3)

See Also nuderst, thc2thd 

References See “Some Special Topics” on page 3-68.

nk 1>

λ

λ
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thetaPurpose Describe the theta format.

Syntax help theta
help thss

Description theta is a packed matrix containing information about both a model structure 
and its nominal or estimated parameters. It also contains other relevant 
information about the identification result.

This model format is the basic format with the System Identification Toolbox. 
It is used by all parametric identification methods and it can be transformed to 
many other model representations. See the tables in the beginning of this 
chapter for more details.

The internal format of the theta format is intended to be transparent to the 
user. The basic way to display the information is to use the present command. 
Some specific information is retrieved from the format by the functions 
getmfth, getncap, gett, and th2par. This entry gives the details of the internal 
representation, but this information is not necessary for most users of the 
System Identification Toolbox. The formats differ whether the underlying 
model is in state-space form or of the input-output black box character. 

I. For the general multi-input single-output linear model structure

A, B, C, D, and F are polynomials in the delay operator of orders na, nb, nc, nd, 
and nf, respectively. If the system has nu inputs, nb, nf and nk are row vectors 
of dimension nu containing information about the orders and delays associated 
with each of the inputs. In the case of a time series (no u), B and F are not 
defined.

Let n be the sum of all the orders (the number of estimated parameters) and let

r = max(n, 7, 6  + 3 nu )

A q( )y t( )
B1 q( )
F1 q( )
--------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
-----------------u nu t nknu–( ) C q( )

D q( )
------------e t( )+ + +=
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Then theta is a (3+n) r matrix organized as follows:

• Row 1 has entries: estimated variance of e, sampling interval T, nu, na, nb, 
nc, nd, nf,  and nk.

• Row 2 has entries:  FPE (Akaike’s Final Prediction Error), year, month,  
date, hour, minute and command by which the model was generated. The 
matrix entry (2,7) thus contains the coded number of which command gener-
ated the model. This number is less than 20 for the black-box models of the 
type above.

• Row 3 is the vector of estimated parameters, A, B ,C, D, and F, (excluding  
leading 1s and 0s).

• Rows 4 to 3+n contain the estimated  covariance matrix.

• For continuous-time models, a possible element (4+n,1) contains a dead-time 
for the system. This is used when computing frequency functions in th2ff.

II. For models that are defined as state-space structures there is an underlying 
M-file that defines the structure. This M-file is called by

[A,B,C,D,K,X0] = mfname(par,T,aux)

(See mf2th.) For model structures that are defined by ms2th, the name of this 
M-file is ssmodx9 or ssmodx8 and the argument aux is the actual model 
structure ms created by modstruc. Notice in particular that multi-output ARX 
models are internally represented as state-space models with the aid of 
ssmodx9.

Suppose that the number of estimated parameters is n and that the length of 
the name of your M-file mfname is r. Suppose also that the model has ny outputs 
and that the size of the argument aux above is nr  times nc. Then theta is a 
matrix of dimension

max(n, ny, nc, 7 + r) by 3+ n + nr  + ny)

organized as follows:

• Row 1 has entries:  determinant of innovations covariance, sampling inter-
val, number of inputs, number of outputs, number of estimated parameters, 
number of rows of  aux, number of columns of aux, and name of 
M-file that defines the structure.
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• Row 2 contains the entries: FPE (Akaike’s Final Prediction Error), year, 
month, date, hour, minute, and command by which the model was generated. 
This last one is a number larger than 20 for state-space structures. 

• Entry (2,8) is interpreted as follows:  “1” means that the underlying param-
eterization is in continuous time, using ssmodx9. “ll” means that the under-
lying parameterization is in continuous time, to be sampled by 
first-order-hold, using ssmodx8. “2” means that it is in discrete time, again 
using ssmodx9. ‘3” means that the model is a multivariate ARX model. “4” 
means that the underlying parameterization is in discrete time and user  de-
fined. “5” means that the model is a user-defined continuous-time parame-
terization, equipped with sampling inhibition when called with a negative 
value of T.

• Row 3 contains the estimated (nominal) values of the parameters.

• Rows 4 to 3 + n contain the estimated covariance matrix of the parameters.

• Rows 4 + n to 3 + n + nr contain the matrix  aux.

• Rows 4 +n + nr to  3+n + nr + ny  contain the covariance matrix of the inno-
vations of the model.
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thinitPurpose Set initial values for the parameters to be estimated.

Syntax th = thinit(th0)
th = thinit(th0,R,pars,sp)

Description This function randomizes initial parameter estimates for model structures th0 
in the theta format that correspond to state-space models. th is the same model 
structure as  th0, but with a different nominal parameter vector. This vector is 
used as the initial estimate by pem.

The parameters are randomized around pars with variances given by the row 
vector R. Parameter number k is randomized as pars(k) + e*sqrt(R(k)), 
where e is a normal random variable with zero mean and a variance of 1. The 
default value of  R is all ones, and the default value of pars is the nominal 
parameter vector in th0.

Only models that give stable predictors are accepted. If sp = 'b', only models 
that are both stable and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires stability 
only of the predictor. Sp = 'p' is the default.

A maximum of 100 trials are made by thinit. It may be difficult to find a stable 
predictor for high order systems just by trial and error. An alternative is then 
to compute the Kalman filter predictor for a randomized model.

See Also canstart, mf2th, ms2th, pem
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th2arxPurpose Extract the ARX parameters from a theta format model.

Syntax [A,B] = th2arx(th)
[A,B,dA,dB] = th2arx(th)

Description th is the model in the theta format. A and  B are returned as the matrices that 
define the ARX structure:

A = [I A1 A2 ... Ana]
B = [B0 B1 ... Bnb]

where

Delays in the system are indicated by leading zeros in the B matrices. See 
Section 6 in the Tutorial.

dA and dB are the standard deviations of A and B.

See Also arx2th

y t( ) A1y t 1–( ) … Anay t na–( )+ + + B0u t( ) B1u t 1–( ) … Bnbu t nb–( )+ + +=
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th2ff, trfPurpose Compute the frequency response and standard deviations of a theta format 
model.

Syntax [g,phiv] = th2ff(th)
[g,phiv] = th2ff(th,ku,w,ky)

Description th2ff computes the frequency functions of th, where th is  a matrix in theta 
format containing a general model. 

g is returned with the transfer function estimate (see (3.4), (3.23), and (3.25) in 
the Tutorial)

computed at the frequencies  given in row vector w. If th has several inputs 
and outputs, g is computed for the input and output numbers specified in row 
vectors ku and ky, respectively. The format of g is detailed under  freqfunc. 
The default values of ku and ky are all input and output pairs contained in th.

For a time continuous model the frequency function  is obtained instead. 

Phiv ( ) is returned with the estimated noise spectrum for each of the outputs 

where  is the estimated variance of e(t) (the loss function) specified by th. 
phiv is computed at the same frequencies as g. The normalization of the 
spectrum differs from the one used by spectrum in the Signal Processing 
Toolbox. See “Some Special Topics” on page 3-68, for a precise definition. Note 
that no cross-spectra between different outputs are computed.

The standard deviations of the frequency function(s) and the spectra are also 
computed, using the Gauss approximation formula. For models with 
complicated parameter dependencies, numerical differentiation is applied. The 
step sizes for the numerical derivatives are determined by nuderst. 

G e
iω( )

ω

G iω( )

Φv

Φv ω( ) λ∗T∗ H e
iwt( )

2
=

λ
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The default values of the frequencies are in the discrete-time case are

w = [1:128]/128∗pi/T

where T is the sampling interval specified by th (default = 1) and for the 
continuous-time case

w = logspace(log10(pi/abs(T)/100),log10(10*pi/ abs(T)),128)

where abs(T)is the “underlying” sampling interval for the continuous-time 
model. 

The frequency functions can be graphed with bodeplot, ffplot, and  
nyqplot. 

IMPORTANT:  The command trf has the same syntax as th2ff but does not 
calculate the standard deviations, and can be considerably faster.

Examples Compare the results from spectral analysis and an ARMAX model 
(input-output dynamics only).

th = armax(z,[2 2 2 1]);
gp = th2ff(th);
gs = spa(z);
bodeplot([gs gp])

Plot, but don’t store, the frequency function g associated with th:

 bodeplot(th2ff(th))

See Also bodeplot, etfe, ffplot, nyqplot, sett, spa
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th2parPurpose Extract the parameters from the theta format.

Syntax [par,P,lam] = th2par(th)

Description th is a model, defined in the theta format. par is returned as the nominal or 
estimated values of the free parameters in th. The covariance matrix of the 
parameters is obtained as P, and  lam is the variance (covariance matrix) of the 
innovations.

The ordering for the parameters is as follows. For the general input-output 
model (7.2), you have

Here, superscript refers to the input number.

For a state-space structure, defined by ms2th, the parameters in  pars are 
obtained in the following order:  The A matrix is first scanned row by row for 
free parameters. Then the B matrix is scanned row by row, and so on for the C, 
D, K, and X0 matrices. (See ms2th.) 

For a state-space matrix that is defined by mf2th, the ordering of the 
parameters is the same as in your M-file. 

Multivariate ARX models are internally represented in state-space form. The 
ordering of the parameters may not be transparent in this case; it is better to 
use th2arx.

pars a1 … ana b1
1 … bnb1

1 … b1
2 … bnb2

2 …, , , , , , , , , ,[=

b1
nu … bnbnu

nu … c1 … cnc d1 … dnc f1
1 … fnf1

1 … f1
nu … fnfnu

nu ], , , , , , , , , , , , , , , ,
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th2polyPurpose Convert theta matrix into its component polynomials.

Syntax [A,B,C,D,F,LAM,T] = th2poly(th)

Description This is essentially the inverse of the poly2th function. It returns the 
polynomials of the general model

as contained by the matrix th in theta format. See “Examining Models” on page 
3-40.

LAM is the noise variance and T is the sampling interval.

See Also poly2th, th2tf, theta

A q( )y t( )
B1 q( )
F1 q( )
--------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
-----------------unu t nknu–( ) C q( )

D q( )
------------e t( )+ + +=
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th2ssPurpose Transform a model to state-space form.

Syntax [A,B,C,D,K,X0] = th2ss(th)
[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = th2ss(th)

Description th is the model given in the  theta format. A, B, C, D,K, and X0 are the matrices 
in the state-space description

where  is  or  depending on whether th is a continuous or 
discrete-time model. 

dA, dB, dC, dD, dK, and dX0 are the standard deviations of the state-space 
matrices.

If the underlying model itself is a state-space model, the matrices correspond 
to the same basis. If the underlying model is an input-output model, an 
observer canonical form representation is obtained.

Algorithm The computation of the standard deviations in the input-output case assumes 
that an A polynomial is not used together with a F or D polynomial in (7.2). For 
the computation of standard deviations in the case that the state-space 
parameters are complicated functions of the parameters, Gauss approximation 
formula is used together with numerical derivatives. The step sizes for this 
differentiation are determined by nuderst.

See Also mf2th, ms2th, nuderst

x̃ t( ) Ax t( ) Bu t( ) Ke t( )+ +=

x 0( ) x0=

y t( ) Cx t( ) Dx t( ) e t( )+ +=

x̃ t( ) x· x t 1+( )
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th2tfPurpose Transform a model to transfer function form.

Syntax [num,den] = th2tf(th)
[num,den] = th2tf(th,iu)

Description th is a model given in the theta format. num is a matrix whose row number k gives 
the numerator polynomial associated with the transfer function from input 
number iu to output number k. den is a row vector giving the (common) 
denominator polynomial for these transfer functions. The default value of iu is 1.

The formats of num and den are the same as those used by the Signal Processing 
Toolbox and the Control Systems Toolbox, both for continuous-time and 
discrete-time models. See “Examining Models” on page 3-40.

To obtain the transfer function from noise source number k, enter iu = –k.

Examples For a continuous-time model

num = [1 2]
den = [1 3 0]

corresponds to the transfer function

For a discrete-time model

num = [2 4 0]
den = [1 2 3 5]

corresponds to the transfer function

which is the same as

See Also th2poly

G s( ) s 2+

s
2

3s+
-----------------=

H z( ) 2z
2

4z+

z
3

2z
2

3z 5+ + +
-----------------------------------------=

H q( ) 2q
1–

4q
2–

+

1 2q
1–

3q
2–

5q
3–

+ + +
--------------------------------------------------------=
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th2zp, zpPurpose Compute zeros, poles, and static gains of a theta format model.

Syntax [zepo,k] = th2zp(th)
[zepo,k] = th2zp(th,ku,ky,thresh)

Description For any model described in theta format by th, the poles and zeros and static 
gains, along with their standard deviations are computed. The poles and zeros 
are stored in coded form in the matrix zepo, while the static gains are returned 
in k. 

The best way to display the information in  zepo is to plot it using zpplot. The 
information can also be retrieved with getzp. 

The first row of k contains the integer (jy-1)∗1000+ju, where jy is the output 
number and ju is the input number for the gain in question. The second row of  
k contains the corresponding gains, and the third row the standard deviation 
of the gain in question.

NOTE: The gain here is the static gain, i.e., the steady state gain from a step in 
input number ju to output number jy. It is thus the same for a discrete-time 
and a continuous-time representation of the same model. This is different 
from the routines ss2zp and zp2ss in the Signal Processing Toolbox, which 
use the transfer function gain, i.e., the coefficient of the highest power in the 
numerator. 

Row vectors ku and ky contain the indices of the inputs and outputs, 
respectively, for which the zeros, poles and gains are to be computed. In this 
context, the noise e(t) is counted as inputs with negative numbers. That is, 
noise source number ju (the ju-th component of e(t) is counted as input 
number ju. The value 0 in the vector ku is the default for “all noise sources.” 
The default values of ku and ky are all inputs and all outputs (no noise inputs). 

The optional argument thresh is a threshold for the computation of the zeros. 
Zeros at infinity may, due to the numerical procedure, end up as large, finite 
values. To avoid this, any zero whose absolute value is larger than thresh is 
regarded to be at infinity. The default value of thresh is 100000.

The procedure handles both models in continuous and discrete time. 
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For the general discrete-time multi-input, single-output model

the zeros  are the roots of (with z replacing the forward shift 
operator q), and the poles are the roots of . The static  gain is 
k =B(1)/(A(1)F(1)).

For models that are internally represented in state-space form, the poles are 
the eigenvalues of the system matrix. The zeros are the zeros of the 
corresponding transfer function. These zeros may thus differ from the 
transmission zeros associated with the multivariable system. To find the 
trans-mission zeros,  first use th2ss and then apply tzero from the Control 
System Toolbox. 

Note that you cannot rely on information about zeros and poles at the origin 
and at infinity. (This is a somewhat confusing issue anyway.)

zepo is returned in a format that allows easy plotting with zpplot. (Then zeros 
and poles at the origin and at infinity are ignored.) The routine zpform is useful 
when comparing different models. 

The alternative routine zp has the same syntax as th2zp but does not compute 
standard deviations. This can be a useful alternative, when the standard 
deviations are not of interest, and computation time for th2zp is long. 
Moreover, zp uses ss2zp from the Signal Processing Toolbox, which may give 
better numerical accuracy in difficult cases.

Note: Although zp computes zeros and poles for all combinations of noise 
sources and outputs, present in the indices ky, ku, the command th2zp only 
gives information about poles and zeros from noise source number ju to output 
number ju (if ku contains the number -ju).

Algorithm The standard deviations are computed using Gauss’s approximation formula, 
using the parameter covariance matrix contained in th. When the transfer 
function depends on the parameters in a complicated way, numerical 

A q( )y t( )
B1 q( )
F1 q( )
--------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
-----------------unu t nknu–( ) C q( )

D q( )
------------e t( )+ + +=

znb nk+ B z( )
zna nf+ A z( )F z( )
4-117



th2zp, zp
differentiation is applied. The step sizes for the differentiation are determined 
in the M-file nuderst. 

Note that Gauss’s approximation formula gives infinite variance to poles and 
zeros that are exactly repeated.

Examples The statement 

zpplot(th2zp(th)) 

plots, but does not store, the poles and zeros. 

To compare the zeros and poles of second and third order ARX models 
(input-output dynamics only), use

th2 = arx(z,[2 2 1]);
th3 = arx(z,[3 3 1]);
zp2 = th2zp(th2);
zp3 = th2zp(th3);
zpplot(zpform(zp2,zp3))

See Also getzp, theta, zepo, zpform, zpplot 
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unfixparPurpose Free parameters in structures defined by ms2th and arx2th.

Syntax thn = unfixpar(tho,matrix)
thn = unfixpar(tho,matrix,elements)

Description This function is the inverse of fixpar. The interpretation of the arguments is 
the same. unfixpar makes the indicated parameters free parameters to be 
estimated. The nominal/initial values of these parameters are taken to be 
equal to their actual values in the structure tho.

See Also fixpar, ms2th, theta, thinit
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zepoPurpose Describe the zeros and pole format.

Syntax help zepo

Description The zepo format is created by th2zp and zp and used by zpplot. It contains 
information about zeros and poles and their standard deviations. The internal 
format is intended to be transparent to the user. The basic way to display the 
information is to use the zpplot command. Some specific infor-mation is 
retrieved from the format by the function getzp. This entry gives the details of 
the internal representation, but this information is not necessary for most 
users of the System Identification Toolbox.

The first row of the matrix consists of integers that give information about 
what the column below contains. The integers are coded in the following way:

• The zeros associated with input number ku and output number ky corre-
spond to the number (ky  - 1)*1000 + ku.

• The standard deviations of these zeros correspond to the number 
(ky-1)*1000 + ku +60.

• The poles associated with input number ku and output number ky corre-
spond to the number (ky  - 1)*1000 + ku + 20.

• The standard deviation of these poles correspond to the number 
(ky  - 1)*1000 + ku + 80.

• The zeros associated with noise input number ky and output number ky (only 
these are normally represented) correspond to the number 500 + ky. 

• The standard deviation of these, the corresponding poles, and their standard 
deviations are obtained by adding 60, 20, and 80, respectively to this num-
ber.

• Positions corresponding to nonexisting zeros and poles (as well as zeros and 
poles at infinity) are represented by inf.

• If any of the above numbers is negative, it indicates that the  pole or zero rep-
resentation corresponds to a continuous-time model. Then the absolute val-
ue of the number has the interpretation above.
4-120



zepo
• For complex conjugated pairs, the first row in the corresponding entry for the 
standard deviation contains a complex number whose real and imaginary 
parts are the standard deviations of the real and imaginary parts, respec-
tively, of the pole or zero in question. The next row entry (corres-ponding to 
the conjugate pole or zero) contains a real number that is the correlation  be-
tween the real and imaginary parts.

See Also getzp, th2zp, zpform, zpplot
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zpformPurpose Merge zero-pole information from different models.

Syntax zepo = zpform(zepo1,zepo2,...,ku)

Description The zeros and poles in zepo1, zepo2, ... from different models are merged into 
one matrix to be used by zpplot. zepo1, zepo2, ... have the format as produced 
by th2zp. ku is an optional row  vector containing the input numbers to be 
picked out when forming  zepo. The default value is ku is equal to all inputs 
present in zepo1, zepo2, ... A maximum of five input arguments to 
zpform is possible.

Examples The statement 

zpplot(zpform(zpbj2,zpbj4,zpax2,zpax4,0)) 

compares the noise characteristics from four different models.

See Also th2zp, zpplot
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zpplotPurpose Plot zeros and poles.

Syntax zpplot(zepo)
zpplot(zpform(zepo1,zepo2, ..., zepon))
zpplot(zepo,sd,mode,axis)

Description The zeros and poles specified by zepo (see zepo for the format) are graphed, 
with o denoting zeros and x denoting poles. Poles and zeros associated with the 
same input, but different models, are always graphed in the same diagram, and 
pressing the Return key advances the plot from one model to the next. On 
color screens poles, zeros and their confidence regions, corresponding to the 
same model all have the same color. Poles and zeros at infinity are ignored. For 
discrete-time models, zeros and poles at the origin are also ignored.

If sd has a value larger than zero, confidence regions around the poles and 
zeros are also graphed. The regions corresponding to sd standard deviations 
are marked. The default value is sd = 0. Note that the confidence regions may 
sometimes stretch outside the plot, but they are always symmetric around the 
indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a unit circle is 
also drawn.

When zepo contains information about several different inputs, there are some 
options:

mode = 'sub' splits the screen into several plots.

mode = 'same' gives all plots in the same diagram. Pressing the Return key 
advances the plots. 

mode = 'sep' erases the previous plot before the next input is treated.

The default value is  mode = 'sub'.

axis = [x1 x2 y1 y2] fixes the axis scaling accordingly. axis = m is the same 
as

axis = [–m m –m m]
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Examples zpbj = th2zp(thbj2);
zpax = th2zp(tharmax4);
zpoe = th2zp(thoe3);
zpplot(zpform(zpoe,zpax,zpbj),3)

show all zeros and poles of three models along with the confidence regions 
corresponding to three standard deviations.

See Also th2zp, zpform
4-124



Index
A
adaptive noise cancelling 4-82
Akaike’s Final Prediction Error (FPE) 3-50
AR model 3-23
ARARMAX structure 3-12
ARMAX model 2-22
ARMAX structure 3-11
ARX model 1-6, 2-20, 3-6, 3-10, 3-17, 3-22, 3-29

B
basic tools 3-3
Bode diagram 2-29
Bode plot 1-9
Box-Jenkins (BJ) structure 3-11
Box-Jenkins model 2-22
Burg’s method 3-23

C
canonical forms 3-35
communication window ident 2-2
comparisons using compare 3-48
complex-valued data 3-79
correlation analysis 1-4, 2-14, 3-15, 3-20
covariance function 3-9
covariance method 3-23
creating models from data 2-2
cross correlation function 3-52
cross spectrum 3-16

D
Data Board 2-3
data handling checklist 2-12
data representation 2-7, 3-19
data views 1-4
delays 3-10, 3-31
detrending the data 2-10
disturbance 1-5
drift matrix 3-63
dynamic models, introduction 1-5

E
estimation data 1-4
estimation method

instumental variables 3-17
prediction error approach 2-18, 3-17

estimation methods
direct 2-14
parametric 2-14
subspace method 3-18, 3-25

exporting to the MATLAB workspace 2-32
extended least squares (ELS) 3-66

F
fault detection 3-67
feedback 1-13
freqfunc format 3-20
frequencies 3-28
frequency

function 2-15
functions 3-8, 3-20
plots 3-8
range 3-8
response 2-15
scales 3-8

frequency domain description 3-10
frequency response 1-9
I-125



Index

I-12
G
Gauss-Newton minimization 3-24
geometric lattice method 3-23
graphical user interface (GUI) 2-2
GUI 2-2

topics 2-34

H
Hamming window 3-21

I
ident window 2-34
identification process, basic steps 1-10
importing data into the GUI 2-9
impulse response 1-9, 2-29, 3-8, 3-9, 3-15
Information Theoretic Criterion (AIC) 3-50
initial condition 3-24
initial parameter values 3-37
innovations form 3-13, 3-33
input signals 1-5
instrumental variable 3-17

(IV) method 3-22
technique 3-23

iterations 3-27
iterative search 3-24

K
Kalman-gain matrix 3-33

L
lag widow 3-16
layout 2-35
6

M
main ident window 2-34
maximum likelihood

criterion 3-26
method 3-17

memory horizon 3-63
model

output-error 1-7
properties 1-9
set 1-4
state-space 1-7
structure 2-17, 3-3
structure selection 3-3
structures 3-29
uncertainty 3-53
validation 1-4
view functions 2-27
views 1-4, 1-7, 2-4

Model Board 2-3
multivariable ARX model 3-30
multivariable systems 1-16, 3-23

N
noise 1-5
noise model 1-7
noise source 1-7, 2-31
noise-free simulation 1-8
noise-free simulations 3-53
nonparametric 3-10, 3-19
nonparametric identification 1-4
Normalized Gradient (NG) Approach 3-64
numerical differentiation 3-37

O
offsets 3-58



Index
outliers
signals 1-4

output signals 1-5
Output-Error (OE) structure 3-11
Output-Error model 1-7, 2-22

P
parametric identification 1-4
periodogram 3-21
poles 1-9
prediction

error identification 2-18
error method 3-17

prefiltering 2-11
prefiltering signals 2-11

Q
Quickstart menu item 2-12

R
recursive

identification 3-4, 3-61
least squares 3-64
parameter estimation 3-61

references list 1-19
resampling 2-11
robust estimation techniques 3-27

S
sampling interval 3-30
selecting data ranges 2-11
Sessions 2-5
shift operator 3-8

simulating data 2-12
spectra 3-8, 3-16
spectral analysis 1-4, 3-16, 3-20
spectrum 3-9, 3-20
startup identification procedure 1-12
state vector 3-13
state-space

form 3-13
model 1-7, 2-24
modeling 3-4
models 3-33

step response 1-9, 2-29
structure 1-4
subspace method 3-18, 3-25

T
theta format 3-22, 3-29
time domain description 3-9
time-continuous systems 3-30
transfer function 1-6
transient response 1-9, 2-29

U
Unnormalized Gradient (UG) Approach 3-64

V
validation data 1-4

W
white noise 3-9
window sizes 3-21
Working Data set 2-3
workspace variables 2-6
I-127



Index

I-12
Y
Yule-Walker approach 3-23

Z
zeros 1-9
8


	The System Identification Problem
	What is System Identification?
	How is that done?
	How do you know if the model is any good?
	Can the quality of the model be tested in other wa...
	What models are most common?
	Do you have to assume a model of a particular type...
	What does the System Identification Toolbox contai...
	Isn’t it a big limitation to work only with linear...
	How do I get started?
	Is this really all there is to System Identificati...
	The Signals
	The Basic Dynamic Model
	Variants of Model Descriptions
	How to Interpret the Noise Source
	Terms to Characterize the Model Properties
	Impulse Response
	Step Response
	Frequency Response
	Zeros and Poles
	Model Unstable
	Feedback in Data
	Noise Model
	Model Order
	Additional Inputs
	Nonlinear Effects
	Still Problems?
	Fit Between Simulated and Measured Output
	Residual Analysis Test
	Pole Zero Cancellations
	What Model Structures Should be Tested?

	Multivariable Systems
	Available Models
	Working with Subsets of the Input Output Channels
	Some Practical Advice

	Reading More About System Identification

	The Graphical User Interface
	The Model and Data Boards
	The Working Data
	The Views
	The Validation Data
	The Work Flow
	Management Aspects
	Workspace Variables
	Help Texts
	Data Representation
	Getting Data into the GUI
	Taking a Look at the Data
	Preprocessing Data
	Detrending
	Selecting Data Ranges
	Prefiltering
	Resampling
	Quickstart

	Checklist for Data Handling
	Simulating Data
	The Basics
	Direct Estimation of the Impulse Response
	Direct Estimation of the Frequency Response
	Estimation of Parametric Models
	Estimation Method
	Resulting Models
	How to Know Which Structure and Method to Use

	ARX Models
	The Structure
	Entering the Order Parameters
	Estimating Many Models Simultaneously
	Estimation Methods
	Multi-Output Models

	ARMAX, Output-Error and Box-Jenkins Models
	The General Structure
	The Special Cases
	Entering the Model Structure
	Estimation Method

	State-Space Models
	The Model Structure
	Entering Black-Box State-Space Model Structures
	Estimating Many Models Simultaneously
	Estimation Methods

	User Defined Model Structures
	State-Space Structures
	Any Model Structure

	Views and Models
	The Plot Windows
	File
	Options
	Style
	Channel
	Help

	Frequency Response and Disturbance Spectra
	Transient Response
	Poles and Zeros
	Compare Measured and Model Output
	Residual Analysis
	Text Information
	Present
	Modify

	Further Analysis in the MATLAB Workspace
	Mouse Buttons and Hotkeys
	The Main ident Window
	Plot Windows

	Troubleshooting in Plots
	Layout Questions and idprefs.mat
	Customized Plots
	Import from and Export to Workspace
	What Cannot be Done Using the GUI

	Tutorial
	Layer 1: Basic Tools
	Layer 2: Model Structure Selection
	Layer 3: More Methods To Examine Models and Multi-...
	Layer 4: Recursive Identification
	Layer 5: State-Space Modeling
	Impulse Responses, Frequency Functions, and Spectr...
	Polynomial Representation of Transfer Functions
	State-Space Representation of Transfer Functions
	Continuous-Time State-Space Models
	Estimating Impulse Responses
	Estimating Spectra and Frequency Functions
	Estimating Parametric Models
	Subspace Methods for Estimating State-Space Models...
	Data Representation
	Correlation Analysis
	Spectral Analysis
	ARX Models
	AR Models
	General Polynomial Black-Box Models
	State-Space Models
	Black-box, discrete-time, parametrizations
	Arbitrarily parameterized models in discrete and c...

	Optional Variables
	Polynomial Black-Box Models
	Multivariable ARX Models
	State-Space Models with Free Parameters
	Discrete-Time Innovations Form
	System Dynamics Expressed in Continuous Time
	The Black-Box, Discrete-Time Case
	Example 6.1: A Discrete-Time Structure
	Example 6.2: A Continuous-Time Model Structure


	State-Space Models with Coupled Parameters
	State-Space Structures: Initial Values and Numeric...
	Some Examples of User-Defined Model Structures
	Example 6.3: Heat Diffusion
	Example 6.4: Parametrized Noise Models

	Theta Format: th
	Frequency Function Format: ff
	Zero-Pole Format: zp
	State-Space Format: ss
	Transfer Function Format: tf
	Polynomial Format: poly
	The ARX Format: arx
	Transformations Between Discrete and Continuous Mo...
	Continuous-Time Models
	Discrete-Time Models
	Transformations

	Simulation and Prediction
	Comparing Different Structures
	Checking Pole-Zero Cancellations
	Residual Analysis
	Noise-Free Simulations
	Assessing the Model Uncertainty
	Comparing Different Models
	Conditioning of the Prediction Error Gradient
	Selecting Model Structures for Multivariable Syste...
	Offset Levels
	Outliers
	Filtering Data
	Feedback in Data
	Delays
	The Basic Algorithm
	Choosing an Adaptation Mechanism and Gain
	Available Algorithms
	Segmentation of Data
	Time Series Modeling
	The Sampling Interval
	Out of Memory
	Memory-Speed Trade-Offs
	Regularization
	Local Minima
	Initial Parameter Values
	Linear Regression Models
	Spectrum Normalization and the Sampling Interval
	Interpretation of the Loss Function
	Enumeration of Estimated Parameters
	Complex-Valued Data
	Strange Results

	Command Reference

