System identification, Estimation and Filtering

Consider the following LTI system:

a(t+1) = Az(t) + vi(t) (1)
y(t) = Cx(t) + va(t)

where
0.96 0.5 0.27 0.28
—-0.125 0.96 -0.08 —0.07
A= 0 0 0.85 0.97 , ¢=[0 20 0

0 0 0 0.99

v1(t) is a white noise with zero mean value and variance V; = B,BI, B, = v/15[0.5 0 0 1]T, and
va(t) is a white noise with zero mean value and variance Vo = 2000. The noises v (t) and va(t) are
uncorrelated. Assume that the initial state (1) is a random vector with zero mean value and variance

Py = E [z(1)z(1)"] = 0.51.

Problem: Design the following predictors/filters:

- Dynamic Kalman 1-step predictor.

- Dynamic Kalman filter.

- Steady-state Kalman 1-step predictor.

- Steady-state Kalman filter.

- (Optional) Dynamic Kalman 1-step predictor in predictor/corrector form.

Compare the estimates provided by these predictors/filters by means of graphical representations and
evaluation of the Root Mean Square Error (RMSE).

Main steps:

(1) Create a Matlab program for the simulation of the system (1). Use a for loop in order to implement
the simulation. In the program, the noise v1(t) can be generated as v1(:,t)=Bv. *randn(4,1); the noise
v2(t) can be generated as v2(t)=sqrt(V2)*randn;

(2) Simulate the system for t = 1,2,..., N, N = 2000 starting from random initial conditions: z(1) =
V0.5randn(4,1). Plot the four state signals z(t), k = 1,...,4 on four different figures.

Dynamic Kalman 1-step predictor (K)
(3) After having verified the system observability, insert in the for loop the predictor I defined by

K(t) = APt)CT[CP(t)OT + V]!
P(t+1)=APHt)AT + Vi — K(t)[CP#)CT + V5K ()T
Ytlt—1) = Cz(t|t — 1)

e(t) = y(t) — gtlt — 1)

T(t+1)t) = AZ(t]t — 1) + K(t)e(t)

Initialize the variables as: Z(1]|0) = 0, P(1) = P;. Perform the simulation and add to the figures generated
at step (2) the plots of the predicted states Ty (t|t — 1), k =1,...,4.

Steady-state Kalman filter (F)
(4) Insert in the for loop the filter F defined by

Ko(t) = P()CT[CP(t)CT + Vo] !
F(tt) = (¢t — 1) + Ko (t) e(?)

where P(t), Z(t|t — 1) and e(¢) are provided by the Kalman 1-step predictor. Perform the simulation and
add to the figures generated at step (2) the plots of the estimated states Zy(t|t), k =1,...,4.

Steady-state Kalman 1-step predictor (Koo )
(5) Insert in the for loop the predictor Ko, defined by

J(tlt—1) = Cz(t|t — 1)
e(t) =y(t) —yltlt—1)
(¢ + 1)t) = AT(t]t — 1) + Ke(t)



where K is obtained using the kalman Matlab command (outside the for loop). Perform the simulation
and add to the figures generated at step (2) the plots of the predicted states Ty (¢t — 1), k =1,...,4.

Steady-state Kalman filter (Fuo)
(6) Insert in the for loop the filter Fu, defined by

Z(tlt) = Z(tt — 1) + Koe(t)

where Z(t|t —1) is the prediction provided by K., and K is obtained using the kalman Matlab command.
Perform the simulation and add to the figures generated at step (2) the plots of the estimated states
Tp(tlt), k=1,...,4.

(Optional) Dynamic Kalman 1-step predictor in predictor/corrector form (/Cp.)
(7) Insert in the for loop the predictor KCp. defined by

Ko(t) = P)CT[CP(t)CT + V5]t
Po(t) = [I, — Ko(t)C] P(t)
Pit+1)=ARt)AT + W,

y(tlt —1) = Cz(t|t — 1)
e(t) =y(t) —y(tlt —1)
T(t]t) = Z(t|t — 1) + Ko(t)e(t)
T(t+ 1t) = AZ(t|t)

Initialize the variables as: Z(1]|0) = 0, P(1) = P;. Perform the simulation and add to the figures generated
at step (2) the plots of the predicted states Ty (t|t — 1), k =1,...,4.

RMSE evaluation
The RMSE can be computed as
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where Z(t) indicates either Ty (¢|t — 1) in the case of prediction or Z(¢]t) in the case of filtering, k =
1,...,4, and Ny is a time after which the filter transient is past.
(8) Evaluate the RM SE errors obtained by the predictors/filters (try with No =1 and Ny = 100).



