ESSENTIALS OF PROBABILITY THEORY

Michele TARAGNA

Dipartimento di Automatica e Informatica
Politecnico di Torino
michele.taragna@polito.it

II level Specializing Master in Automatica and Control Technologies

Class "System Identification, Estimation and Filtering"

Academic Year 2011/2012

Random experiment and random source of data

S: **outcome space**, i.e., the set of possible outcomes s of the random experiment;

 ${\cal F}$: space of events (or results) of interest, i.e., the set of the combinations of interest where the outcomes in S can be clustered;

 $P(\cdot)$: **probability** function defined in \mathcal{F} that associates to any event in \mathcal{F} a real number between 0 and 1.

$$\mathcal{E} = (S, \mathcal{F}, P(\cdot))$$
: random experiment

Example: roll a dice with six sides to see if an odd or even side appears \Rightarrow

- $S = \{1, 2, 3, 4, 5, 6\}$ is the set of the six sides of the dice;
- $\mathcal{F}=\{A,B,S,\emptyset\}$, where $A=\{2,4,6\}$ and $B=\{1,3,5\}$ are the events of interest, i.e., the even and odd number sets;
- P(A) = P(B) = 1/2 (if the dice is fair), P(S) = 1, $P(\emptyset) = 0$.

A random variable of the experiment $\mathcal E$ is a variable v whose values depend on the outcome s of $\mathcal E$ through of a suitable function $\varphi(\cdot):S\to V$, where V is the set of possible values of v:

$$v = \varphi(s)$$

Example: the random variable depending on the outcome of the roll of a dice with six sides can be defined as

$$v = \varphi(s) = \begin{cases} +1 & \text{if } s \in A = \{2, 4, 6\} \\ -1 & \text{if } s \in B = \{1, 3, 5\} \end{cases}$$

A random source of data produces data that, besides the process under investigation characterized by the unknown true value θ_o of the variable to be estimated, are also functions of a random variable; in particular, at the time instant t, the datum d(t) depends on the random variable v(t).

Probability distribution and density functions

Let us consider a real scalar $x \in \mathbb{R}$.

The (cumulative) probability distribution function $F(\cdot): \mathbb{R} \to \mathbb{R}$ of the scalar random variable v is defined as:

$$F(x) = P(v \le x)$$

Main properties of the function $F(\cdot)$:

- $F(-\infty) = 0$
- $F(+\infty) = 1$
- it is a monotonic nondecreasing function: $F(x_1) \leq F(x_2), \ \forall x_1 < x_2$
- it is almost continuous and, in particular, it is continuous from the right:

$$F(x^+) = F(x)$$

- $P(x_1 < v \le x_2) = F(x_2) F(x_1)$
- it is almost everywhere differentiable

The p.d.f. or probability density function $f(\cdot):\mathbb{R}\to\mathbb{R}$ is defined as:

$$f(x) = \frac{dF(x)}{dx}$$

Main properties of the function $f(\cdot)$:

- $f(x) \ge 0, \ \forall x \in \mathbb{R}$
- $f(x)dx = P(x < v \le x + dx)$
- $\bullet \int_{-\infty}^{+\infty} f(x)dx = 1$
- $F(x) = \int_{-\infty}^{x} f(\xi) d\xi$
- $P(x_1 < v \le x_2) = F(x_2) F(x_1) = \int_{x_1}^{x_2} f(x) dx$

Characteristic elements of a probability distribution

Let us consider a scalar random variable v.

Mean or mean value or expected value or expectation:

$$E[v] = \int_{-\infty}^{+\infty} x f(x) \ dx = \overline{v}$$

Note that $E\left[\cdot\right]$ is a linear operator, i.e.: $E\left[\alpha v + \beta\right] = \alpha E\left[v\right] + \beta, \quad \forall \alpha, \beta \in \mathbb{R}.$

Variance

$$Var[v] = E[(v - E[v])^2] = \int_{-\infty}^{+\infty} (x - E[v])^2 f(x) dx = \sigma_v^2 \ge 0$$

Standard deviation or root mean square deviation:

$$\sigma_v = \sqrt{Var\left[v\right]} \ge 0$$

k-th order (raw) moment:

$$m_k[v] = E[v^k] = \int_{-\infty}^{+\infty} x^k f(x) dx$$

In particular: $m_0[v] = E[1] = 1$, $m_1[v] = E[v] = \overline{v}$

k-th order central moment:

$$\mu_k[v] = E[(v - E[v])^k] = \int_{-\infty}^{+\infty} (x - E[v])^k f(x) dx$$

In particular:
$$\mu_0\left[v\right]=E\left[1\right]=1, \\ \mu_1\left[v\right]=E\left[v-E\left[v\right]\right]=0, \\ \mu_2\left[v\right]=E\left[\left(v-E\left[v\right]\right)^2\right]=Var\left[v\right]=\sigma_v^2$$

Vector random variables

A vector $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}^T$ is a **vector random variable** if it depends on the outcomes of a random experiment $\mathcal E$ through a vector function $\varphi(\cdot): S \to \mathbb R^n$ such that

$$\varphi^{-1}(v_1 \le x_1, v_2 \le x_2, \dots, v_n \le x_n) \in \mathcal{F}, \quad \forall x = [x_1 \ x_2 \ \cdots \ x_n]^T \in \mathbb{R}^n$$

The joint (cumulative) probability distribution function $F(\cdot): \mathbb{R}^n \to [0,1]$ is defined as:

$$F(x_1, \dots, x_n) = P(v_1 \le x_1, v_2 \le x_2, \dots, v_n \le x_n)$$

with $x_1, \ldots, x_n \in \mathbb{R}$ and with all the inequalities simultaneously satisfied.

The *i*-th marginal probability distribution function $F_i(\cdot): \mathbb{R} \to [0,1]$ is defined as:

$$F_{i}(x_{i}) = F(\underbrace{+\infty, \dots, +\infty}_{i-1}, x_{i}, \underbrace{+\infty, \dots, +\infty}_{n-i}) =$$

$$= P(v_{1} \leq \infty, \dots, v_{i-1} \leq \infty, v_{i} \leq x_{i}, v_{i+1} \leq \infty, \dots, v_{n} \leq \infty)$$

The joint p.d.f. or joint probability density function $f(\cdot):\mathbb{R}^n \to \mathbb{R}$ is defined as:

$$f(x_1, \dots, x_n) = \frac{\partial^n F(x_1, \dots, x_n)}{\partial x_1 \partial x_2 \cdots \partial x_n}$$

and it is such that:

$$f(x_1, \ldots, x_n)dx_1 dx_2 \cdots dx_n = P(x_1 < v_1 \le x_1 + dx_1, \ldots, x_n < v_n \le x_n + dx_n)$$

The i-th marginal probability density function $f_i(\cdot):\mathbb{R} o \mathbb{R}$ is defined as:

$$f_i(x_i) = \underbrace{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty}}_{n-1 \text{ times}} f(x_1, \dots, x_n) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_n$$

The n components of the vector random variable v are (mutually) independent if and only if:

$$f(x_1,\ldots,x_n) = \prod_{i=1}^n f_i(x_i)$$

Mean or mean value or expected value or expectation:

$$E[v] = \begin{bmatrix} E[v_1] & E[v_2] & \cdots & E[v_n] \end{bmatrix}^T \in \mathbb{R}^n, \quad E[v_i] = \int_{-\infty}^{+\infty} x_i f_i(x_i) dx_i$$

Variance matrix or covariance matrix:

$$\Sigma_{v} = Var[v] = E\left[\left(v - E[v]\right)\left(v - E[v]\right)^{T}\right] =$$

$$= \int_{\mathbb{R}^{n}} \left(x - E[v]\right)\left(x - E[v]\right)^{T} f(x) dx \in \mathbb{R}^{n \times n}$$

Main properties of Σ_v :

- ullet it is symmetric, i.e., $\Sigma_v = \Sigma_v^T$
- ullet it is positive semidefinite, i.e., $\Sigma_v \geq 0$, since the quadratic form

$$x^{T} \Sigma_{v} x = E\left[\left(x^{T} \left(v - E\left[v\right]\right)\right)^{2}\right] \ge 0, \quad \forall x \in \mathbb{R}^{n}$$

- the eigenvalues $\lambda_i(\Sigma_v) \geq 0, \ \forall i = 1, \dots, n \quad \Rightarrow \quad \det(\Sigma_v) = \prod_{i=1}^n \lambda_i(\Sigma_v) \geq 0$
- $[\Sigma_v]_{ii} = E\left[(v_i E\left[v_i\right])^2\right] = \sigma_{v_i}^2 = \sigma_i^2 = \text{variance of } v_i$
- $[\Sigma_v]_{ij} = E[(v_i E[v_i])(v_j E[v_j])] = \sigma_{v_i v_j} = \sigma_{ij} = \text{covariance of } v_i \text{ and } v_j$

Correlation coefficient and correlation matrix

Let us consider any two components v_i and v_j of a vector random variable v.

The (linear) correlation coefficient $\rho_{ij} \in \mathbb{R}$ of the scalar random variables v_i and v_j is defined as:

$$\rho_{ij} = \frac{E\left[\left(v_i - E\left[v_i\right]\right)\left(v_j - E\left[v_j\right]\right)\right]}{\sqrt{E\left[\left(v_i - E\left[v_i\right]\right)^2\right]}\sqrt{E\left[\left(v_j - E\left[v_j\right]\right)^2\right]}} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

Note that $\left| \rho_{ij} \right| \leq 1$, since the vector random variable $w = \left[v_i \ v_j \right]^T$ has:

$$\Sigma_{w} = Var\left[w\right] = \begin{bmatrix} \sigma_{i}^{2} & \sigma_{ij} \\ \sigma_{ij} & \sigma_{j}^{2} \end{bmatrix} = \begin{bmatrix} \sigma_{i}^{2} & \rho_{ij} \sigma_{i} \sigma_{j} \\ \rho_{ij} \sigma_{i} \sigma_{j} & \sigma_{j}^{2} \end{bmatrix} \ge 0 \implies \det(\Sigma_{w}) = \sigma_{i}^{2} \sigma_{j}^{2} - \rho_{ij}^{2} \sigma_{i}^{2} \sigma_{j}^{2} = (1 - \rho_{ij}^{2}) \sigma_{i}^{2} \sigma_{j}^{2} \ge 0 \implies \rho_{ij}^{2} \le 1$$

The random variables v_i and v_j are **uncorrelated** if and only if $\rho_{ii}=0$, i.e., if and only if $\sigma_{ij} = E\left[\left(v_i - E\left[v_i\right]\right)\left(v_j - E\left[v_i\right]\right)\right] = 0$. Note that: $\rho_{ii} = 0 \quad \Leftrightarrow \quad E\left[v_i v_j\right] = E\left[v_i\right] E\left[v_j\right]$ $\sigma_{ij} = E[(v_i - E[v_i]) (v_j - E[v_j])] = E[v_i v_j - v_i E[v_j] - E[v_i] v_j + E[v_i] E[v_j]] = E[v_i v_j - v_i E[v_j] - E[v_i] v_j + E[v_i] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] v_j + E[v_i] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] v_j + E[v_i] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] v_j + E[v_i] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] v_j + E[v_i] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] v_j + E[v_i] E[v_i] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] E[v_i] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] E[v_j] + E[v_i] E[v_j] E[v_j] = E[v_i v_j - v_i E[v_j] - E[v_i] E[v_j] + E[v_i] E[v_j] E[v_j] + E[v_i] E[v_j] E[v_j] E[v_j] + E[v_i] E[v_j] E$ $= E[v_i v_j] - 2E[v_i]E[v_j] + E[v_i]E[v_j] = E[v_i v_j] - E[v_i]E[v_j] = 0 \Leftrightarrow E[v_i v_j] = E[v_i]E[v_j]$ If v_i and v_j are linearly dependent, i.e., $v_j = \alpha v_i + \beta \quad \forall \alpha, \beta \in \mathbb{R}$ with $\alpha \neq 0$, then $\rho_{ij}=rac{lpha}{|lpha|}=\mathrm{sgn}\,(lpha)=\left\{ egin{array}{ll} +1, & \mbox{if } lpha>0 \\ -1, & \mbox{if } lpha<0 \end{array}
ight.$ and then $\left|
ho_{ij}
ight|=1$ $\sigma_i^2 = E\left[(v_i - E[v_i])^2 \right] = E\left[v_i^2 - 2v_i E[v_i] + E[v_i]^2 \right] = E\left[v_i^2 \right] - 2E[v_i]^2 + E[v_i]^2 = E\left[v_i^2 - 2v_i E[v_i] + E[v_i]^2 \right] = E\left[v_i^2 - 2v_i E[v_i] + E[v_i] + E[v_i]^2 \right] = E\left[v_i^2 - 2v_i E[v_i] + E[v_i]$ $=E[v_i^2]-E[v_i]^2$ $\sigma_{i}^{2} = E\left|\left(v_{j} - E[v_{j}]\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - E[\alpha v_{i} + \beta]\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}\right| = E\left|\left(\alpha v_{i} + \beta - \alpha E[v_{i}] - \beta\right)^{2}$ $= E \left| (\alpha v_i - \alpha E[v_i])^2 \right| = E \left| \alpha^2 (v_i - E[v_i])^2 \right| = \alpha^2 E \left| (v_i - E[v_i])^2 \right| = \alpha^2 \sigma_i^2$ $\sigma_{ij} = E[v_i v_j] - E[v_i] E[v_j] = E[v_i (\alpha v_i + \beta)] - E[v_i] E[\alpha v_i + \beta] =$ $= \alpha E\left[v_i^2\right] + \beta E\left[v_i\right] - E\left[v_i\right] (\alpha E\left[v_i\right] + \beta) = \alpha E\left[v_i^2\right] - \alpha E\left[v_i\right]^2 = \alpha \left|E\left[v_i^2\right] - E\left[v_i\right]^2\right| = \alpha \sigma_i^2$ Note that, if the random variables v_i and v_j are mutually independent, they are also uncorrelated, while the converse is not always true. In fact, if v_i and v_j are mutually independent, then:

$$E[v_{i}v_{j}] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{i}x_{j} f(x_{i}, x_{j}) dx_{i}dx_{j} =$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{i}x_{j} f_{i}(x_{i}) f_{j}(x_{j}) dx_{i}dx_{j} =$$

$$= \int_{-\infty}^{+\infty} x_{i}f_{i}(x_{i}) dx_{i} \int_{-\infty}^{+\infty} x_{j} f_{j}(x_{j}) dx_{j} =$$

$$= E[v_{i}] E[v_{j}]$$

$$\updownarrow$$

$$\rho_{ij} = 0$$

If v_i and v_j are jointly Gaussian and uncorrelated, they are also mutually independent.

Let us consider a vector random variable $v = [v_1 \ v_2 \ \cdots \ v_n]^T$.

The correlation matrix or normalized covariance matrix $\rho_v \in \mathbb{R}^{n \times n}$ is defined as:

$$\rho_{v} = \begin{bmatrix} \rho_{11} & \rho_{12} & \cdots & \rho_{1n} \\ \rho_{12} & \rho_{22} & \cdots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1n} & \rho_{2n} & \cdots & \rho_{nn} \end{bmatrix} = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1n} \\ \rho_{12} & 1 & \cdots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1n} & \rho_{2n} & \cdots & 1 \end{bmatrix}$$

Main properties of ρ_v :

- ullet it is symmetric, i.e., $ho_v =
 ho_v^T$
- ullet it is positive semidefinite, i.e., $\rho_v \geq 0$, since $x^T \rho_v x \geq 0$, $\forall x \in \mathbb{R}^n$
- the eigenvalues $\lambda_i(\rho_v) \geq 0, \ \forall i=1,\ldots,n \quad \Rightarrow \quad \det(\rho_v) = \prod_{i=1}^n \lambda_i(\rho_v) \geq 0$
- $\bullet \ [\rho_v]_{ii} = \rho_{ii} = \frac{\sigma_{ii}}{\sigma_i^2} = \frac{\sigma_i^2}{\sigma_i^2} = 1$
- $[\rho_v]_{ij} = \rho_{ij} = \text{correlation coefficient of } v_i \text{ and } v_j, i \neq j$

Relevant case #1: if a vector random variable $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}^T$ is such that all its components are each other uncorrelated (i.e., $\sigma_{ij} = \rho_{ij} = 0$, $\forall i \neq j$), then:

$$\Sigma_v = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix} = \operatorname{diag} \left(\sigma_1^2, \sigma_2^2, \cdots, \sigma_n^2 \right)$$

$$\rho_v = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_{n \times n}$$

Obviously, the same result holds if all the components of \boldsymbol{v} are mutually independent.

Relevant case #2: if a vector random variable $v = [v_1 \ v_2 \ \cdots \ v_n]^T$ is such that all its components are each other uncorrelated (i.e., $\sigma_{ij} = \rho_{ij} = 0$, $\forall i \neq j$) and have the same standard deviation (i.e., $\sigma_i = \sigma$, $\forall i$), then:

$$\Sigma_{v} = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{bmatrix} = \sigma^{2} I_{n \times n}$$

$$\rho_{v} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_{n \times n}$$

Obviously, the same result holds if all the components of v are mutually independent.

Gaussian or normal random variables

A scalar Gaussian or normal random variable v is such that its p.d.f. turns out to be:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma_v} \exp\left(\frac{-\left(x-\bar{v}\right)^2}{2\sigma_v^2}\right), \quad \text{with } \bar{v} = E\left[v\right] \text{ and } \sigma_v^2 = Var\left[v\right]$$

and the notations $v\sim\mathcal{N}\left(\bar{v},\sigma_v^2\right)$ or $v\sim G\left(\bar{v},\sigma_v^2\right)$ are used.

If $w=\alpha v+\beta$, where v is a scalar normal random variable and $\alpha,\beta\in\mathbb{R}$, then:

$$w \sim \mathcal{N}\left(\bar{w}, \sigma_w^2\right) = \mathcal{N}\left(\alpha\bar{v} + \beta, \alpha^2\sigma_v^2\right)$$

note that, if $\alpha = \frac{1}{\sigma_v}$ and $\beta = \frac{-\bar{v}}{\sigma_v}$, then $w \sim \mathcal{N}(0,1)$, i.e., w has a normalized p.d.f.:

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right)$$

The probability that the outcome of a scalar normal random variable v differs from the mean value \bar{v} no more than k times the standard deviation σ_v is equal to:

$$P_k = P\left(\bar{v} - k \cdot \sigma_v \le v \le \bar{v} + k \cdot \sigma_v\right) = P\left(|v - \bar{v}| \le k \cdot \sigma_v\right) =$$

$$= 1 - \frac{2}{\sqrt{2\pi}} \int_{-k}^{+\infty} \exp\left(\frac{-x^2}{2}\right) dx$$

In particular, it turns out that:

$oxed{k}$	P_k
1	68.3%
2	95.4%
3	99.7%

and this allows to define suitable **confidence intervals** of the random variable v.

A vector normal random variable $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}^T$ is such that its p.d.f. is:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \Sigma_v}} \exp\left(-\frac{1}{2} (x - \bar{v})^T \Sigma_v^{-1} (x - \bar{v})\right)$$

where $\bar{v}=E\left[v\right]\in\mathbb{R}^{n}$ and $\Sigma_{v}=Var\left[v\right]\in\mathbb{R}^{n\times n}$.

n scalar normal variables v_i , $i=1,\ldots,n$, are said to be **jointly Gaussian** if the vector random variable $v=\begin{bmatrix}v_1 & v_2 & \cdots & v_n\end{bmatrix}^T$ is normal.

Main properties:

- if v_1, \ldots, v_n are jointly Gaussian, then any v_i , $i = 1, \ldots, n$, is also normal, while the converse is not always true
- if v_1, \ldots, v_n are normal and independent, then they are also jointly Gaussian
- ullet if v_1,\ldots,v_n are jointly Gaussian and uncorrelated, they are also independent