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Random experiment and random source of data

S : outcome space , i.e., the set of possible outcomes s of the random experiment;

JF : space of events (or results) of interest , i.e., the set of the combinations

of interest where the outcomes in .S can be clustered:

P(-) : probability function defined in F that associates to any event in F

a real number between 0 and 1.

E=(S,F,P(:)) : random experiment

Example: roll a dice with six sides to see if an odd or even side appears =
e S =1{1,2,3,4,5,6} is the set of the six sides of the dice;

e F={A,B,S,0}, where A ={2,4,6} and B = {1,3,5} are
the events of interest, I.e., the even and odd number sets:

e P(A) = P(B) = 1/2 (ifthe dice is fair), P (S) = 1, P (()) = 0.
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A random variable of the experiment £ is a variable v whose values depend on the
outcome s of £ through of a suitable function ©(-) : S — V', where V is the set of
possible values of v:
v=(s)
Example: the random variable depending on the outcome of the roll of a dice with

six sides can be defined as
+1 fse A=1{2,4,6}

v =¢(s)
-1 ifse B={1,3,5}

A random source of data produces data that, besides the process under
investigation characterized by the unknown true value 6, of the variable to be

estimated, are also functions of a random variable; in particular, at the time instant ¢,

the datum d(t) depends on the random variable v(%).
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Probability distribution and density functions

Let us consider a real scalar ¢ € R.

The (cumulative) probability distribution function F():R—R
of the scalar random variable v is defined as:

F(z) = P(v < z)

Main properties of the function F'(-):
o F(—o0) =0
o F(+00)=1

e it is a monotonic nondecreasing function: F'(x1) < F(x2), Vo < 9

® it is almost continuous and, in particular, it is continuous from the right:
F(zt) = F(x)
P(SBl <V SZEQ) :F(ZCQ) —F(le)

It is almost everywhere differentiable
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The p.d.f. or probability density function  f(-) : R — R is defined as:

fla) = 2

Main properties of the function f(-):

o f(r) >0, Vx e R

= P(x <v <z +dx)
o [ flx)dr =1
o Fx) = [, f(&)de
o P(xy <v <) =F(x2) — Fx1) = [, f(z)dz
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Characteristic elements of a probability distribution

Let us consider a scalar random variable v.

Mean or mean value or expected value or expectation :

_E@%:/+mxf@0dx:

— OO

Note that F [-] is a linear operator, i.e.: E |[av + 8] = aF [v] + 3, Va,8 € R.

Variance:

Vmﬂ]:EBv—EWW}:/‘

— 0

Standard deviation or root mean square deviation

oy =+/Varv] >0
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k-th order (raw) moment :

In particular: mg [v] = E[1] = 1, mq |v]

k-th order central moment :
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Vector random variables

A vector v = (V] Vg - - vn]T Is a vector random variable if it depends on the
outcomes of a random experiment & through a vector function ¢ (-) : S — R" such that

90—1(1}1 <x1,02 < To,...,0p < xp) €EF, VYr=|r1 22 - :Un]TE]Rn

The joint (cumulative) probability distribution function F():R"™ — |0,1]
Is defined as:

F(xy,...,2,) = Pvy <x1,02 < To,...,05 < Xp)

with x1, ..., T, € R and with all the inequalities simultaneously satisfied.

The i-th marginal probability distribution function F;(-) : R — [0, 1]
Is defined as:

Fi(x;) F(4o00,...,4+00,z;,400,...,+00) =
:rl ntz

7

Pv1 <o00,...,0i—1 < 00,0 < Xi, Vig1 < 00,...,U0, < 00)
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The joint p.d.f. or joint probability density function — f(:) : R™ — R is defined as:

- O"F(x1,...,%y)
F@1s ) = Ox1 0y - -+ Oy,

and it is such that:

flz1,...,zpn)dx1dxs - - dry, = P <vi<zi +dzi, ..., 00 <0p <Tp + dzy)

The ¢-th marginal probability density function ~ f;(+) : R — R is defined as:

fz(xz) — oo <. f—l—oo f(.fl?l,. .. ,$n)d$1 <. d.fl?i_l d.CIZH_l <. d.fl?n

— OO — OO
" J
~\~

n—1 times

The n components of the vector random variable v are (mutually) independent

if and only if:
fl@y, ... an) =1 fi(zi)
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Mean or mean value or expected value or expectation :

E[p]=[E[n] E[vs] -+ E[va]]’ €R”, Evj]

Variance matrix or covariance matrix :

¥y = Varv|=E {@_E[U])(U—E[U])T}
g @ = E[]) (z — E[])" f(x) de € R™

Main properties of 2.,:
e itis symmetric, i.e., ¥, = X2
e it is positive semidefinite, i.e., 2, > 0, since the quadratic form
'S,z =F [(xT (v—F [v]))Z] >0, VreR"
o the eigenvalues A\;(X,) > 0,Vi=1,...,n = det(X,) =], Ai(Zs) >0

¢ X, =FE[(vi—FE [”UZ])Q] = 0, = o = variance of v;

[(vi—E [vi]) (v; — E[vj])] = 0w,0; = 0ij = covariance of v; and v,
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Correlation coefficient and correlation matrix

Let us consider any two components v; and v; of a vector random variable v.

The (linear) correlation coefficient Pij € R of the scalar random variables v; and U
Is defined as:

E(vi = Evi]) (vj = E{v])] _ Ty

\/E [(vi—E [vi])ﬂ \/E [(vj_E [vj])ﬂ 0;0;

Pij

Note that ‘pij| < 1, since the vector random variable w = |v; fuj]Thas:

2
Yw =Var|w] = ’ /
' ' Pij 0i0;

.:(1—,0@2]-)0%0?20 — pzzjél
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The random variables v; and v; are uncorrelated if and only if p;; = 0,
e, ifandonlyif o;; = E [(v;—E |v;]) (v;— E |v;])] = 0. Note that:
pij =0 & Elvvs] = Elv] Elv]
015 = E|(vi = Elvi]) (v — Elv;])| = Elviv; —vi Elvj| = Elvi] vj + Elvi] Elv;]] =
= Elvivj| =2E[v;| Elv;]+ Elvi| Elvj| = Elvivj| = E[vi] Elv;] =0 < Elv;vj]= Elvi| E]v;]

If v; and v; are linearly dependent ,i.e., v; = av; + 8 Va, S € Rwith a # 0,

o +1, fa>0

then p,; = ol = sgn (o) :{ U e and then |p;.| = 1

:(Ui_E[Ui])Z} ZE[ ,L-2—2’UZ'E[’UZ']—|—E[’U7;]2:| = E[v?] — 2E[v;]% + E[v;]? =
71— Elvi]®

(0= Blv])?] =B |(avi+8—Elavi+8))?| =E[(avi+5-aB[v)-)?] =
N2
1—E

:E[(avi—aE[’uz]) } :E[OP (vi—E[vi])ﬂ ZQZE[(U,@—E[%]F] = a20?
vi] Elvj] = Elv; (av;+B)]— Elv;] Elav; + 8] =
| — Elv;|(aFEv;|+8)= [vz] —ozE[v,,;]Q =« [E [U,LZ] —E[v,,;]Q] :oza,?

O45= E[’Uiv]
=aFE[v?|+BE[v;
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Note that, if the random variables v; and v; are mutually independent,
they are also uncorrelated, while the converse is not always true.

In fact, if v; and v; are mutually independent, then:
—+ o0 —+ o0
E [Uﬂ}j] / / $7;$j f($z, Zlij) d$zd$3 =
— OO — 0

+0o0 +00
too o T

) /—oo vifilwi) de: /+OO z; fi(x;) dxj =

— OO

= E|vi] £ [vj]

If v; and v, are jointly Gaussian and uncorrelated, they are also mutually independent.
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Let us consider a vector random variable v = [vl V9

The correlation matrix  or normalized covariance matrix  p,, € R™*" is defined as:

P11 P12 ° Pin 1 P12 Pin
P12 P22 ° P2n 1 "t Pan

L Pin P2n
Main properties of p,,:

® itis symmetric, i.e., p,, = pf

it is positive semidefinite, i.e., p, > 0, since z’ p,z > 0, Vz € R"

the eigenvalues A\;(p,) >0, Vi=1,....,n = det(p,) =[[;_, Ai(p,) =0
2
[pv]ii = Pii — —3 = > 1

g

[pv]ij = p,,; = correlation coefficient of v; and vy, ¢ %9

044
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Relevant case #1.: if a vector random variable v = [ful Vg - vn]T IS such that
all its components are each other uncorrelated (i.e., 0;; = p;; = 0, Vi =£ 3), then:

o2 0 -+ 0

0 0% e 0
:diag(J?,ag,---

T Ian

00 --- 1

Obviously, the same result holds if all the components of v are mutually independent.
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Relevant case #2: if a vector random variable v = [ful Vg - vn]T IS such that
all its components are each other uncorrelated (i.e., ;5 = Pij = 0, Vi +# 7) and
have the same standard deviation (i.e., o; = o, V1), then:

0
0

2
— 0 Ian

Py =

00 --- 1

Obviously, the same result holds if all the components of v are mutually independent.
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Gaussian or normal random variables

A scalar Gaussian or normal random variable v is such that its p.d.f. turns out to be:

V2o, 202

(Y
and the notations v ~ N (?7, 0%) orv ~G (27, 012)) are used.

flz) = ! exp(<xv) ) with v = E [v] and 0> = Var [v]

If w = av + B, where v is a scalar normal random variable and v, 8 € R, then:

W NN(@,U%U) :N(a@+ﬂ,a2ag)

—v
note that, if « = — and S =—, then w ~ N (0, 1), i.e., w has a normalized p.d.f.
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The probability that the outcome of a scalar normal random variable v differs from

the mean value ¥ no more than k times the standard deviation o, is equal to:

P.=PWv—k-o,<v<v+k-0,)=P(lv—v <k -0,) =
2

In particular, it turns out that:

95.4%

99.7%

and this allows to define suitable confidence intervals of the random variable v.

System Identification, Estimation and Filtering 17



Politecnico di Torino - DAUIN M. Taragna

A vector normal random variable v = [vl Vo - fun]T IS such that its p.d.f. is:

1 1
exp(— = (z—0) 271 (z —0)

(2m)™/? \/det =, 2 ’

where v = F [v] € R™ and 2, = Var [v] € R**".

n scalar normal variables v;, 2 = 1, ..., n, are said to be jointly Gaussian
. . T .
If the vector random variable v = [ful Vg =+ - fun] IS normal.

Main properties:

e ifvy,...,v, arejointly Gaussian, thenany v;,2 = 1,...,n, is also normal,
while the converse is not always true

e ifvy,...,v, are normal and independent, then they are also jointly Gaussian

o ifvy,...,v, are jointly Gaussian and uncorrelated, they are also independent
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