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The nonlinear system ID problemThe nonlinear system ID problem

Data are generated  by the nonlinear system f o :
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ut : known variables

The system f o is unknown, but a finite number of 
noise corrupted measurements of yt, wt are available:

dt accounts for errors in data ,t ty w% %

Identification problem: find an estimate 
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Related problems :
for a given estimate

evaluate the identification error

find an estimate
“minimizing” the identification error

The identification error cannot be exactly evaluated
since f o and dt are not known

Need of prior assumptions on f o and dt for 
deriving finite bounds on the identification error
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Typical assumptions in literature:

on system:   

Functional form of f o:
derived from physical laws
σi : “basis” function (polynomial, sigmoid,..).

on noise: iid stochastic

Parameters θ are estimated by means of the Prediction 
Error (PE) method.

Parametric approachParametric approach
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Parametric approachParametric approach
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Given N noise-corrupted measurements of yt,wt:

Measured output

Known function of θ

Prediction
Errors
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Given the measurements equation:

It is possible to estimate θ by means of the 
Prediction Error (PE) method:

Parametric approachParametric approach
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Problem: is in general non-convex.
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Parametric approachParametric approach

If possible, physical laws are used to obtain the
parametric representation of .( )θ,wf

When the physical laws are not well known or too 
complex, black-box parameterizations are used.

Fixed basis 
parameterization
Polinomial, trigonometric, etc.

Tunable basis 
perametrization
Neural networks



FixedFixed basis functionsbasis functions
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Basis functions

Problem: Can σi ’s be found such that:
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FixedFixed basis functionsbasis functions

For continuous fo, bounded              and σi

polynomial of degree i (Weierstrass):
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Polynomial models



FixedFixed basis functionsbasis functions

NARX models: PE estimation of θ is a linear problem:
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Least squares solution: ( ) YLLL TTLS 1ˆ −
=θ

( ) ( )

( ) ( ) 















=
















=
+1

2

1

11
1

NN
r

N

r

y

y
Y

ww

ww
L

σσ

σσ



TunableTunable basis functionsbasis functions
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One of the most common tunable parameterization
is the one-hidden layer sigmoidal neural network.



Parametric modelsParametric models

Model structure choice:
- Basis  functions
- Number of Basis functions
- Number of regressors

Problem: curse of dimensionality
The number of parameters needed to obtain 
“accurate” models may grow exponentially with 
the dimension n of regressor space.

More relevant in the case of fixed basis functions

The complexity of 
such problem can 
be exponential in n

Novara
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THE COMPLEXITY OF THESE PROBLEMS MAY BE EXPONENTIAL IN n 



Under suitable regularity conditions on the function to 
approximate, the number of parameters required 
to obtain “accurate” models grows linearly with n.

Estimation of θ requires to solve a non-convex
minimization problem (even for NARX models).

Trapping in local minima

TunableTunable basis functionsbasis functions



Nonlinear regression systemsNonlinear regression systems

- wt : regressor. It defines the system structure:
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Consider a nonlinear system in regression form:

- u : input signal.
- d : noise acting on the system.

where:



Nonlinear regression systemsNonlinear regression systems
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The predictor of system f is defined as:

:  prediction error

where:
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