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The nonlinear system 1D problem

m Data are generated by the nonlinear system fo°:
yt+l _ fO(Wt)

W' = [yt e yt_nyut . .ut_nU]
ut : known variables

m The system f°is unknown, but a finite number of
noise corrupted measurements of yi, wt are available:

ot = fo(W)+d", t=1...,N

d! accounts for errors in data yt W

m ldentification problem: find an estimate f~fo



The nonlinear system ID problem

m Related problems :
» for a given estimate f~fo

ey

evaluate the identification error ‘ fo—f

> find an estimate f = f°
“minimizing” the identification error

m The identification error cannot be exactly evaluated
since f° and d! are not known

m Need of prior assumptions on f° and dt for
deriving finite bounds on the identification error



Parametric approach

m Typical assumptions in literature:

» onsystem: f°e€ LI’(¢9) = {f(w, 0) = iaiU(Wa ﬂ)}

> onnoise: 1d stochastic

m Functional form of f:
> derived from physical laws
> o;+ "'basis” function (polynomial, sigmoid,..).

m Parameters ¢ are estimated by means of the Prediction
Error (PE) method.



Parametric approach

m Predictor: )A/Hl = f(Wta‘g) — Zr:&io-(wtﬂ ﬂl)
i=l1

m Given N noise-corrupted measurements of 7, w':

yi=fw,0)+é’

y3:f(W2,(9)+53 Y:F(e)—l_D\é‘
yN+1 = f(w",0)+ gV Measured output Prediction
Errors

Known function of &



Parametric approach

m Given the measurements equation:
Y=F(6)+D,

It is possible to estimate ¢ by means of the
Prediction Error (PE) method:

0" = arg m@in v, (6)

/(0)=—-DID, = [y~ FO) [y~ F(0)]

Problem: VN(Q) s in general non-convex.



Parametric approach

m If possible, physical laws are used to obtain the
parametric representation of f(w,8).

m When the physical laws are not well known or too
complex, black-box parameterizations are used.

Fixed basis Tunable basis
parameterization perametrization
Polinomial, trigonometric, etc. Neural networks



Fixed basis functions

0= aow) 0=l -a]

o (w) . Basis functions

= Problem: Can g;’s be found such that:

fw,0) ——— f(w) ?




Fixed basis functions

m For continuous £, bounded W — R" and o
polynomial of degree / (Weierstrass):

lim sup |/ (w)— f(w,0)| = 0

O weW

Polynomial models



Fixed basis functions

fn0) =Y acw) 0=l -a,]

m NARX models: PE estimation of & is a linear problem:

Y=LO+D,
_UI(WI) U’,(Wl)_ I y2 ]
I = : . : y—| :
_01(WN) o (WN)_ _yN+1_

m Least squares solution: | §L5 = (LT L)_ILT Y




Tunable basis functions
f(w,0)=> a,o(w,B)
i=1
Hz[al.”ar IBIIH.Iqu:Irﬂ ﬁiemq

m One of the most common tunable parameterization
is the one-hidden layer sigmoidal neural network.




Parametric models

m Model structure choice:

- Basis functions
. . THE COMPLEXITY OF THESE
- Number of Basis functions <@ PROBLEVS MAY B

EXPONENTIAL IN n
- Number of regressors

= Problem: curse of dimensionality
The number of parameters needed to obtain
“accurate” models may grow exponentially with
the dimension n of regressor space.

More relevant in the case of fixed basis functions


Novara
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THE COMPLEXITY OF THESE PROBLEMS MAY BE EXPONENTIAL IN n 


Tunable basis functions

m Under suitable regularity conditions on the function to
approximate, the number of parameters required
to obtain “accurate” models grows linearly with n.

m Estimation of @ requires to solve a non-convex
minimization problem (even for NARX models).

Trapping in local minima



Nonlinear regression systems

m Consider a nonlinear system in regression form:
+1 f( t t+1
=f(w)+d
where:

- wt: regressor. It defines the system structure:
w = _yt you ]T < NARX

u
w = :f(wt_l)f(wt_z)...u T ]T < NOE
u

u : input signal.
- d : noise acting on the system.



Nonlinear regression systems

m The predictor of system f is defined as:

= )

w = -yt youtu T < NARX

P uu ..._T < NOE

w = [yt yoouwuT g e ]T < NARMAX

g =y —y : prediction error
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