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System identification

• System identification is aimed at constructing or selecting mathematical models

M of dynamical data generating systems S to serve certain purposes (forecast,

diagnostic, control, etc.)

• A first step is to determine a class M of models within which the search for the

most suitable model is to be conducted

• Classes of parametric models M(θ) are often considered, where the parameter

vector θ belongs to some set Θ, i.e., M = {M(θ) : θ ∈ Θ}
⇓

the choice problem is tackled as a parametric estimation problem

• We start by discussing two model classes for linear time-invariant (LTI) systems:

– transfer-function models

– state-space models
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Transfer-function models

• The transfer-function models, known also as black-box or Box-Jenkins models,

involve external variables only (i.e., input and output variables) and do not require

any auxiliary variable

• Different structures of transfer-function models are available:

– equation error or ARX model structure

– ARMAX model structure

– output error (OE) model structure
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Equation error or ARX model structure

• The input-output relationship is a linear difference equation:

y(t)+a1y(t−1)+a2y(t−2)+· · ·+anay(t−na)=b1u(t−1)+· · ·+bnb
u(t−nb)+e(t)

where the white-noise term e(t) enters as a direct error

• Let us denote by z−1 the unitary delay operator, such that z−1y(t) = y(t− 1),
z−2y(t) = y(t− 2), etc., and introduce the polynomials:

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ana
z−na

B(z) = b1z
−1 + b2z

−2 + · · ·+bnb
z−nb

then, the above input-output relationship can be written as:

A(z)y(t) = B(z)u(t) + e(t) ⇒
y(t) = B(z)

A(z)u(t) +
1

A(z)e(t) = G(z)u(t) +H(z)e(t)

where

G(z) = B(z)
A(z) , H(z) = 1

A(z)
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• If the input u(·) is present, also known as exogenous variable, then the model:

A(z)y(t) = B(z)u(t) + e(t)

contains the autoregressive (AR)A(z)y(t)and the exogenous (X)B(z)u(t)parts.
The integers na and nb are the orders of these two parts of the ARX model,
denoted as ARX(na, nb)

• If na=0, then A(z)=1 and y(t) is modeled as a finite impulse response (FIR)

• If the input u(·) is missing, then the model:

A(z)y(t) = e(t)

contains only the autoregressive (AR) A(z)y(t) part.
The integer na is the order of the resulting AR model, denoted as AR(na)
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ARMAX model structure
• The input-output relationship is a linear difference equation:

y(t) + a1y(t−1) + a2y(t−2) + · · ·+ anay(t−na) =

= b1u(t−1) + · · ·+ bnb
u(t−nb) + e(t) + c1e(t−1) + · · ·+ cnce(t−nc)

where the white-noise term e(t) enters as a linear combination of nc+1 samples

• By introducing the polynomials:

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ana
z−na

B(z) = b1z
−1 + b2z

−2 + · · ·+bnb
z−nb

C(z) = 1 + c1z
−1 + c2z

−2 + · · ·+cnc
z−nc

the above input-output relationship can be written as:

A(z)y(t) = B(z)u(t) + C(z)e(t) ⇒
y(t) = B(z)

A(z)u(t) +
C(z)
A(z)e(t) = G(z)u(t) +H(z)e(t)

where
G(z) = B(z)

A(z) , H(z) = C(z)
A(z)
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• If the exogenous variable u(·) is present, then the model:

A(z)y(t) = B(z)u(t) + C(z)e(t)

contains the autoregressive (AR) partA(z)y(t), the exogenous (X) partB(z)u(t)
and the moving average (MA) part C(z)e(t), which is a colored noise instead of
a white one.
The integers na, nb and nc are the orders of these three parts of the ARMAX
model, denoted as ARMAX(na, nb, nc)

• If the input u(·) is missing, then the model:

A(z)y(t) = C(z)e(t)

contains only the autoregressive

A(z)y(t)and the moving average C(z)e(t)parts.
The integers na and nc are the orders of the resulting ARMA model, denoted as
ARMA(na, nc)
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Output error or OE model structures

• The relationship between input and undisturbed output is a linear difference equation:

w(t) + f1w(t−1) + · · ·+ fnf
w(t−nf )=b1u(t−1) + · · ·+ bnb

u(t−nb)

and the model output is corrupted by white measurement noise:

y(t) = w(t) + e(t)

• By introducing the polynomials:

F (z) = 1 + f1z
−1 + f2z

−2 + · · ·+ fnf
z−nf

B(z) = b1z
−1 + b2z

−2 + · · ·+bnb
z−nb

the above input-undisturbed output relationship can be written as:

F (z)w(t) = B(z)u(t) ⇒
y(t) = w(t) + e(t) = B(z)

F (z)u(t) + e(t) = G(z)u(t) + e(t)

where
G(z) = B(z)

F (z)

• The integersnb andnf are the orders of the OE model, denoted as OE(nb, nf )
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State-space models
The discrete-time, linear time-invariant model M is described by:

M :

{

x(t+ 1) = Ax(t) +Bu(t) + v1(t)

y(t) = Cx(t) + v2(t)
t = 1, 2, . . .

where:

• x(t)∈R
n, y(t)∈R

q , u(t)∈R
p, v1(t)∈R

n, v2(t)∈R
q

• the process noise v1(t) and the measurement noise v2(t) are uncorrelated
white noises with zero mean value, i.e.:
v1(t) ∼WN(0, V1) with V1∈R

n×n, v2(t) ∼WN(0, V2) with V2∈R
q×q

• A∈R
n×n is the state matrix, B∈R

n×p is the input matrix,
C∈R

q×n is the output matrix

The transfer matrix between the exogenous input u and the output y is:

G(z) = C (zIn −A)
−1
B
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The system identification procedure
The system identification problem may be solved using an iterative approach:
1. Collect the data set

• If possible, design the experiment so that the data become maximally informative

• If useful and/or necessary, apply some prefiltering technique of the data

2. Choose the model set or the model structure, so that it is suitable for the aims

• A physical model with some unknown parameters may be constructed
by exploiting the possible a priori knowledge and insight

• Otherwise, a black box model may be employed, whose parameters are
simply tuned to fit the data, without reference to the physical background

• Otherwise, a gray box model may be used, with adjustable parameters
having physical interpretation

3. Determine the suitable complexity level of the model set or model structure

4. Tune the parameters to pick the “best” model in the set, guided by the data

5. Perform a model validation test: if the model is OK, then use it, otherwise revise it
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The predictive approach
Let us consider a class M of parametric models M(θ):

M = {M(θ) : θ ∈ Θ}
where the parameter vector θ belongs to some set Θ

The data are the measurements collected at the time instants t from 1 to N

• of the variable y(t), in the case of time series

• of the input u(t) and the output y(t), in the case of input-output systems

Given a modelM(θ), a corresponding predictorM̂(θ) can be associated that provides
the optimal one-step prediction ŷ(t+1|t) of y(t+1) on the basis of the data, i.e.,

• in the case of time series, the predictor is given by:

M̂(θ) : ŷ(t+ 1) = ŷ(t+ 1|t) = f
(
yt, θ

)

• in the case of input-output systems, the predictor is given by:

M̂(θ) : ŷ(t+ 1) = ŷ(t+ 1|t) = f
(
ut, yt, θ

)

withyt={y(t),y(t−1),y(t−2), ... ,y(1)},ut={u(t),u(t−1),u(t−2), ... ,u(1)}
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Given a model M(θ) with a fixed value of the parameter vectorθ, the prediction error
at the time instant t+ 1 is given by:

ε(t+ 1) = y(t+1)− ŷ(t+1|t)
and the overall mean-square error (MSE) is defined as:

JN (θ) =
1

N

N∑

t=τ

ε(t)2

where τ is the first time instant at which the prediction ŷ(τ |τ−1) of y(τ) can be
computed from the data (τ = 1 is often assumed)

In the predictive approach to system identification, the parameters of the model M(θ)
in the class M are tuned to minimize the criterion JN (θ) over all θ ∈ Θ, i.e.,

θ̂N = argmin
θ∈Θ

JN (θ)

If the model quality is high, the prediction error has to be white, i.e., without its own
dynamics, since the dynamics contained in the data has to be explained by the model
⇒ many different whiteness tests can be performed on the sequence ε(t)
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Models in predictor form
Let us consider the transfer-function model

M(θ) : y(t) = G(z)u(t) +H(z)e(t)

where e(t) is a white noise with zero mean value

The term v(t) = H(z)e(t) is called residual and has to be small, so that the model
M(θ) could satisfactorily describe the input-output relationship of a given system S

⇓
It is typically assumed that v(t) is a stationary process, i.e., a sequence of random
variables whose joint probability distribution does not change over time or space ⇒
the following assumptions can be made, leading to the canonical representation ofv(t):
1. H(z) is the ratio of two polynomials with the same degree that are:

• monic, i.e., such that the coefficients of the highest order terms are equal to 1
• coprime, i.e., without common roots

2. both the numerator and the denominator of H(z) are asymptotically stable,
i.e., the magnitude of all the zeros and poles of H(z) is less than 1

System Identification, Estimation and Filtering 12
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The predictor associated toM(θ) can be derived from the model equation as follows:

1. subtract y(t) from both sides: 0 = −y(t) +G(z)u(t) +H(z)e(t)

2. divide by H(z): 0 = − 1
H(z)y(t) +

G(z)
H(z)u(t) + e(t)

3. add y(t) to both sides: y(t) =
[

1− 1
H(z)

]

y(t) + G(z)
H(z)u(t) + e(t)

Since H(z) is the ratio of two monic polynomials with the same degree, then:
1

H(z) = 1+α1z
−1+α2z

−2 + . . . ⇒ 1− 1
H(z) = −α1z

−1−α2z
−2− . . . ⇒

[

1− 1
H(z)

]

y(t) = −α1y(t− 1)− α2y(t− 2)− . . . = fy(y
t−1)

with yt−1={y(t−1), y(t−2), . . .}. Analogously, since G(z) is strictly proper:
G(z)
H(z) = G(z)

(
1+ α1z

−1+ α2z
−2 + . . .

)
= β1z

−1 + β2z
−2 + . . . ⇒

G(z)
H(z)u(t) = β1u(t− 1) + β2u(t− 2) + . . . = fu(u

t−1)

with ut−1 = {u(t− 1), u(t− 2), . . .} and then:

y(t) = fy(y
t−1) + fu(u

t−1) + e(t)
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In the model equation

y(t) = fy(y
t−1) + fu(u

t−1) + e(t)

the output y(t) depends on past values ut−1 and yt−1 of the input and the output,

while the white noise term e(t) is unpredictable and independent of ut−1 and yt−1

⇓
the best prediction of e(t) is provided by its mean value, which is equal to 0

⇓
the optimal one-step predictor of the model M(θ) is given by:

M̂(θ) : ŷ(t) = ŷ(t|t− 1) =

[

1− 1

H(z)

]

y(t) +
G(z)

H(z)
u(t)
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ARX, AR and FIR models in predictor form
In the case of the ARX transfer-function model:

M(θ) : y(t) = G(z)u(t) +H(z)e(t), with G(z) =
B(z)

A(z)
, H(z) =

1

A(z)
the optimal predictor is given by:

M̂(θ) : ŷ(t) = [1−A(z)] y(t) +B(z)u(t)

• ŷ(t) is a linear combination of past values of the input and the output,
independent of past predictions

• ŷ(t) is linear in the parameters ai and bi of the polynomials A(z) and B(z)

• the predictor is stable for any value of the parameters that defineA(z) and B(z)

In the case of the AR transfer-function model, where B(z) = 0, then:

M̂(θ) : ŷ(t) = [1− A(z)] y(t)

In the case of the FIR transfer-function model, where A(z) = 1, then:

M̂(θ) : ŷ(t) = B(z)u(t)

System Identification, Estimation and Filtering 15
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ARMAX, ARMA and MA models in predictor form
In the case of the ARMAX transfer-function model:

M(θ) : y(t) = G(z)u(t) +H(z)e(t), with G(z) =
B(z)

A(z)
, H(z) =

C(z)

A(z)
the optimal predictor is given by:

M̂(θ) : ŷ(t) =

[

1− A(z)

C(z)

]

y(t) +
B(z)

C(z)
u(t)

• ŷ(t) is nonlinear in the parameters ai, bi, ci of the polynomials A(z),B(z),C(z)

• the predictor stability depends on the values of the parameters that define C(z)

In the case of the ARMA transfer-function model, where B(z) = 0, then:

M̂(θ) : ŷ(t) =

[

1− A(z)

C(z)

]

y(t)

In the case of the MA transfer-function model, where B(z)=0 and A(z)=1, then:

M̂(θ) : ŷ(t) =

[

1− 1

C(z)

]

y(t)
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OE models in predictor form

In the case of the OE transfer-function model:

M(θ) : y(t) = G(z)u(t) +H(z)e(t), with G(z) =
B(z)

F (z)
, H(z) = 1

the optimal predictor is given by:

M̂(θ) : ŷ(t) =
B(z)

F (z)
u(t)

• ŷ(t) is a linear combination of past values of the exogenous input only,

independent of past predictions

• ŷ(t) is nonlinear in the parameters bi,fi of the polynomials B(z) and F (z)

• the predictor stability depends on the values of the parameters that define F (z)

System Identification, Estimation and Filtering 17
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Asymptotic analysis of
prediction-error identification methods

Using the prediction-error identification methods (PEM), the optimal model in the
parametric class M = {M(θ) : θ ∈ Θ} is obtained by minimizing the “ size” of
the prediction-error sequence ε(·), i.e.:

JN (θ) = 1
N

∑N
t=τε(t)

2 or, in general, JN (θ) = 1
N

∑N
t=τ ℓ (ε(t))

where ℓ (·) is a scalar-valued (typically positive) function

Goal : analyze the asymptotic (i.e., asN→∞) characteristics of the optimal estimate

θ̂N = argmin
θ∈Θ

JN (θ)

Assumptions : the predictor form M̂(θ) of the model M(θ) is stable and the
sequences u(·) and y(·) are stationary processes ⇒ the one-step prediction ŷ(·)
and the prediction error ε(·) = y(·)− ŷ(·) are stationary processes as well ⇒

JN (θ) = 1
N

∑N
t=τε(t)

2 −−−−−−→
N → ∞

J̄(θ) = E
[
ε(t)2

]
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Let us denote by DΘ the set of minimum points of J̄(θ), i.e.:

DΘ =
{
θ̄ : J̄(θ̄) ≤ J̄(θ),∀θ ∈ Θ

}

Result #1 :

if the data generating system S ∈ M, i.e., ∃θo∈ Θ : S = M(θo)⇒ θo∈ DΘ

Result #2 :

1. if S ∈ M and DΘ = {θo} (i.e., DΘ is a singleton) ⇒ θ̂N −−−−−−→
N → ∞

θo

2. if S ∈ M and ∃θ̄ ∈ DΘ : θ̄ 6= θo (i.e.,DΘ is not a singleton) ⇒ asymptotically:

• either θ̂N tends to a point in DΘ (not necessarily θo)

• or it does not converge to any particular point ofDΘ but wanders around inDΘ

3. if S /∈ M and DΘ =
{
θ̄
}

(i.e., DΘ is a singleton) ⇒ θ̂N −−−−−−→
N → ∞

θ̄ and

M(θ̄) is the best approximation of S within M

4. if S /∈ M and DΘ is not a singleton ⇒ asymptotically, either θ̂N tends

to a point in DΘ or it wanders around in DΘ
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To measure the uncertainty and the convergence rate of the estimate θ̂N , we have
to study the random variable θ̂N − θ̄, being θ̄ the limit of θ̂N as N → ∞
Result #3 :
if S ∈ M and DΘ = {θo} ∈ R

n, then:

• θ̂N − θo decays as 1/
√
N for N → ∞

• the random variable
√
N(θ̂N − θo) is asymptotically normally distributed:√
N(θ̂N − θo) ∼ As N

(
0, P̄

)

where

P̄ = V ar[ε(t, θo)]R̄
−1 ∈ R

n×n (asymptotic variance matrix)

R̄ = E
[
ψ(t, θo)ψ(t, θo)

T
]
∈ R

n×n

ψ(t, θ) = −
[

d
dθε(t, θ)

]T
= −

[
d
dθ ŷ(t, θ)

]T ∈ R
n

⇓
θ̂N ∼ As N

(

θo,
1

N
P̄

)
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Note that the asymptotic variance matrix P̄ can be directly estimated from data
as follows, having processed N data points and determined θ̂N :

P̄ = V ar[ε(t, θo)]R̄
−1 ≈ P̂N = σ̂2

N R̂
−1
N

σ̂2
N = 1

N

∑N
t=1 ε(t, θ̂N )2 ∈ R

R̂N = 1
N

∑N
t=1 ψ(t, θ̂N )ψ(t, θ̂N )T ∈ R

n×n

⇒ the estimate uncertainty intervals can be derived from data

System Identification, Estimation and Filtering 21



Politecnico di Torino - DAUIN M. Taragna

Linear regressions and least-squares method
In the case of equation error or ARX models, the optimal predictor is given by:

M̂(θ) : ŷ(t) = [1−A(z)] y(t) +B(z)u(t)

with A(z) = 1 + a1z
−1 + · · ·+ ana

z−na , B(z) = b1z
−1 + · · ·+ bnb

z−nb

⇓

ŷ(t) =
(
−a1z−1− · · · − ana

z−na
)
y(t) +

(
b1z

−1+ · · ·+ bnb
z−nb

)
u(t) =

= −a1y(t−1)− · · · − ana
y(t−na) + b1u(t−1) + · · ·+ bnb

u(t−nb) =

= ϕ(t)T θ = ŷ(t, θ)

where

ϕ(t) = [−y(t−1) · · · − y(t−na) u(t−1) · · · u(t−nb)]
T ∈ R

na+nb

θ = [a1 · · · ana
b1 · · · bnb

]
T ∈ R

na+nb

i.e., it defines a linear regression ⇒ the vector ϕ(t) is known as the regression vector

System Identification, Estimation and Filtering 22
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Since the prediction error at the time instant t is given by:

ε(t, θ) = y(t)− ŷ(t, θ) = y(t)− ϕ(t)T θ, t = 1, . . . , N

and the optimality criterion (assuming τ = 1, for the sake of simplicity) is quadratic:

JN (θ) =
1

N

N∑

t=1
ε(t, θ)2

the optimal parameter vector θ̂N that minimizes JN (θ) over all θ ∈ Θ = R
na+nb

is obtained by solving the normal equation system:
[

N∑

t=1
ϕ(t)ϕ(t)

T

]

θ =
N∑

t=1
ϕ(t) y(t)

• if the matrix

[
N∑

t=1
ϕ(t)ϕ(t)

T

]

is nonsingular (known as identifiability condition),

then there exists a single unique solution given by the least-squares (LS) estimate:

θ̂N =

[
N∑

t=1
ϕ(t)ϕ(t)

T

]−1 N∑

t=1
ϕ(t) y(t)

• otherwise, there are infinite solutions
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Remark: the least-squares method can be applied to any model (not necessarily ARX )
such that the corresponding predictor is a linear or affine function of θ:

ŷ(t, θ) = ϕ(t)T θ + µ(t)

where µ(t)∈R is a known data-dependent vector. In fact, if the identifiability condition

is satisfied, then: θ̂N =

[
N∑

t=1
ϕ(t)ϕ(t)

T

]−1
∑N

t=1 ϕ(t) (y(t)− µ(t))

Such a situation may occur in many different situations:

• when some coefficients of the polynomialsA(z),B(z)of an ARX model are known

• when the predictor (even of a nonlinear model) can be written as a linear function
of θ, by suitably choosing ϕ(t)

Example: given the nonlinear dynamic model

y(t) = ay(t− 1)2 + b1u(t− 3) + b2u(t− 5)3 + e(t), e(·) ∼WN(0, σ2)

the corresponding predictor is linear in the unknown parameters:

M̂(θ) : ŷ(t) = ay(t− 1)2 + b1u(t− 3) + b2u(t− 5)3 = ϕ(t)T θ

with ϕ(t) =
[
y(t−1)2 u(t−3) u(t−5)3

]T
and θ = [a b1 b2]

T
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Probabilistic analysis of the least-squares method
Let the predictor M̂(θ) of M(θ) be stable and u(·), y(·) be stationary processes.
The least-squares method is a PEM method ⇒ the previous asymptotic results hold
⇒ asymptotically, either θ̂N tends to a point in DΘ or wanders around in DΘ, where
DΘ=

{
θ̄ : J̄(θ̄)≤ J̄(θ),∀θ∈Θ

}
is the set of minimum points of J̄(θ)=E

[
ε(t)2

]
.

IfS ∈ M ⇒ ∃θo∈DΘ :S=M(θo) ⇒ y(t)=ϕ(t)Tθo+e(t), e(t)∼WN(0,σ2)
If S ∈ M and DΘ = {θo}, then θ̂N ∼ As N

(
θo, P̄ /N

)
, where:

P̄ = V ar[ε(t, θo)]R̄
−1 = σ2R̄−1

R̄ = E
[
ψ(t, θo)ψ(t, θo)

T
]
= E

[
ϕ(t)ϕ(t)T

]

ψ(t, θ) = −
[

d
dθ ε(t, θ)

]T
= −

[
− d

dθ ŷ(t, θ)
]T

= ϕ(t)

since ŷ(t, θ) = ϕ(t)T θ, ε(t, θ) = y(t)− ŷ(t, θ) = ϕ(t)T (θo − θ) + e(t)

P̄ can be directly estimated from N data as: P̄ = σ2R̄−1 ≈ P̂N = σ̂2
N R̂

−1
N , with

σ̂2
N = 1

N

∑N
t=1 ε(t, θ̂N )2 = 1

N

∑N
t=1[y(t)− ϕ(t)T θ̂N ]2

R̂N = 1
N

∑N
t=1 ψ(t, θ̂N )ψ(t, θ̂N )T = 1

N

∑N
t=1 ϕ(t)ϕ(t)

T
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Note that, under the assumption that S ∈ M, the set DΘ is a singleton that contains

the “ true” parameter vector θo only ⇔ the matrix R̄=E
[
ϕ(t)ϕ(t)T

]
is nonsingular

In the case of an ARX(na, nb) model,

ϕ(t) = [−y(t−1) · · · − y(t−na) u(t−1) · · · u(t−nb)]
T
=




ϕy(t)

ϕu(t)





withϕy(t)=[−y(t−1) · · · −y(t−na)]
T
∈R

na,ϕu(t)=[u(t−1) · · ·u(t−nb)]
T
∈R

nb

⇓

R̄ = E
[

ϕ(t)ϕ(t)T
]

= E









ϕy(t)

ϕu(t)





[

ϕy(t)
T ϕu(t)

T
]



 =

= E









ϕy(t)ϕy(t)
T ϕy(t)ϕu(t)

T

ϕu(t)ϕy(t)
T ϕu(t)ϕu(t)

T







 =





E
[

ϕy(t)ϕy(t)
T
]

E
[

ϕy(t)ϕu(t)
T
]

E
[

ϕu(t)ϕy(t)
T
]

E
[

ϕu(t)ϕu(t)
T
]





=





R̄
(na)
yy R̄yu

R̄uy R̄
(nb)
uu



 =





R̄
(na)
yy R̄yu

R̄T
yu R̄

(nb)
uu



, where R̄
(na)
yy =

[

R̄
(na)
yy

]T
, R̄

(nb)
uu =

[

R̄
(nb)
uu

]T
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For structural reasons, R̄ is symmetric and positive semidefinite, since∀x ∈ R
na+nb :

xT R̄x = xTE
[
ϕ(t)ϕ(t)T

]
x = E

[
xTϕ(t)ϕ(t)Tx

]
= E

[(
xTϕ(t)

)2
]

≥ 0

⇓
R̄ is nonsingular ⇔ R̄ is positive definite (denoted as: R̄ > 0)

Schur’s Lemma : given a symmetric matrix M partitioned as:

M =




M11 M12

MT
12 M22





(where obviouslyM11 and M22 are symmetric), M is positive definite if and only if:

M22 > 0 M11 −M12M
−1
22 M

T
12 > 0

⇓
A necessary condition for the invertibility of R̄ is that R̄uu > 0, i.e., that R̄

(nb)
uu is

nonsingular, since R̄
(nb)
uu is symmetric and positive semidefinite; in fact∀x∈R

nb :

x
T
R̄

(nb)
uu x=x

T
E
[

ϕu(t)ϕu(t)
T
]

x=E
[

x
T
ϕu(t)ϕu(t)

T
x
]

=E

[

(

x
T
ϕu(t)

)2
]

≥0
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R̄
(nb)
uu = E

[

ϕu(t)ϕu(t)
T
]

= E













u(t−1)
.
.
.

u(t−nb)






[u(t−1) · · ·u(t−nb)]






=

=











E
[

u(t−1)2
]

E [u(t−1)u(t−2)] · · · E [u(t−1)u(t−nb)]

E [u(t−2)u(t−1)] E
[

u(t−2)2
]

· · · E [u(t−2)u(t−nb)]
.
.
.

.

.

.
. . .

.

.

.
E [u(t−nb)u(t−1)] E [u(t−nb)u(t−2)] · · · E

[

u(t−nb)
2
]











=

=











ru(t−1, 0) ru(t−1, 1) · · · ru(t−1, nb−1)

ru(t−1, 1) ru(t−2, 0) · · · ru(t−2, nb−2)
.
.
.

.

.

.
. . .

.

.

.
ru(t−1, nb−1) ru(t−2, nb−2) · · · ru(t−nb, 0)











=

=











ru(0) ru(1) · · · ru(nb−1)

ru(1) ru(0) · · · ru(nb−2)
.
.
.

.

.

.
. . .

.

.

.
ru(nb−1) ru(nb−2) · · · ru(0)











where ru(t, τ)=E[u(t)u(t− τ)] is the correlation function of the input u(·), which is

independent of t for any stationary processu(·): ru(t1,τ)=ru(t2,τ)=ru(τ), ∀t1,t2,τ
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A stationary signal u(·) is persistently exciting of order n⇔ R̄
(n)
uu is nonsingular

Examples:

• the discrete-time unitary impulse u(t)=δ (t)=

{

1, if t = 1
0, if t 6= 1

is not persistently exciting of any order, since ru(τ)=0, ∀τ ⇒ R̄
(n)
uu = 0n×n

• the discrete-time unitary step u(t)=ε (t)=

{

1, if t = 1, 2, . . .
0, if t = . . . ,−1, 0

is persistently exciting of order 1 only, since ru(τ)=1, ∀τ ⇒ R̄
(n)
uu = 1n×n

• the discrete-time signal u(t) consisting of m different sinusoids:

u(t) =
m∑

k=1

µk cos(ωkt+ ϕk), where 0 ≤ ω1 < ω2 < . . . < ωm ≤ π

is persistently exciting of order n =







2m, if 0 < ω1 and ωm < π
2m− 1, if 0 = ω1 or ωm = π
2m− 2, if 0 = ω1 and ωm = π

• the white noise u(t) ∼ WN(0, σ2) is persistently exciting of all orders,

since ru(0)=σ
2 and ru(τ)=0, ∀τ 6= 0⇒ R̄

(n)
uu = σ2In
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As a consequence, a necessary condition for the invertibility of R̄ is that the signal u(·)
is persistently exciting of order nb at least

⇓
A necessary condition to univocally estimate the parameters of an ARX(na, nb)
(i.e., to prevent any problem of experimental identifiability related to the choice of u)
is that the signal u(·) is persistently exciting of order nb at least

The matrix R̄ may however be singular also for problems of structural identifiability
related to the choice of the model class M: in fact, even in the case S ∈ M,
if M is redundant or overparametrized (i.e., its orders are greater than necessary),
then an infinite number of models may represent S by means of suitable pole-zero
cancellations in the denominator and numerator of the involved transfer functions

⇓
To summarize, only in the case that S = M(θo) is an ARX(na, nb) (without any
pole-zero cancellation in the transfer function) and M is the class of ARX(na, nb)
models, if the input signal u(·) is persistently exciting of order nb at least, then the
least-squares estimate θ̂N asymptotically converges to the “ true” parameter vector θo
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Least-squares method: practical procedure
1. Starting from N data points of u(·) and y(·), build the regression vector ϕ(t)

and the matrix R̂N = 1
N

∑N
t=1 ϕ(t)ϕ(t)

T −−−−−−→
N → ∞

R̄ if ϕ(·) is stationary;

in compact matrix form, R̂N = 1
NΦTΦ, where Φ =

[
ϕ(1)T...
ϕ(N)T

]

2. Check if R̂N is nonsingular, i.e., if det R̂N 6=0: if there exists the matrix R̂−1
N ,

then the estimate is unique and it is given by: θ̂N = R̂−1
N

1
N

∑N
t=1 ϕ(t) y(t);

in a matrix form, θ̂N = R̂−1
N

1
NΦT y =

(
ΦTΦ

)−1
ΦT y, where y =

[
y(1)...
y(N)

]

3. Evaluate the prediction error of the estimated model ε(t, θ̂N )=y(t)−ϕ(t)T θ̂N
and approximate the estimate uncertainty as: Σθ̂N

=R̂−1
N

1
N2

∑N
t=1 ε(t, θ̂N )2,

where the elements on the diagonal are the variances of each parameter [θ̂N ]i

4. Check the whiteness of ε(t, θ̂N ) by means of a suitable test
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Anderson’s whiteness test
Let ε(·) be the signal under test and N be the (sufficiently large) number of samples

1. Compute the sample correlation function r̂ε(τ)=
1

N

N∑

t=τ+1
ε(t)ε(t−τ), 0≤τ≤ τ̄

(τ̄=25or30), and the normalized sample correlation function ρ̂ε(τ)=
r̂ε(τ)

r̂ε(0)
⇒

if ε(·) is white with zero mean, then ρ̂ε(τ) is asymptotically normally distributed:

ρ̂ε(τ) ∼ As N
(
0, 1

N

)
, ∀τ > 0

moreover, ρ̂ε(τ1) and ρ̂ε(τ2) are asymptotically uncorrelated ∀τ1 6= τ2
2. Fix a confidence level α, i.e., the probability α that asymptotically |ρ̂ε(τ)| ≤ β,

and evaluate β; in particular, it turns out that: β =







1/
√
N, for α=68.3%

2/
√
N, for α=95.4%

3/
√
N, for α=99.7%

3. The test is failed if the number of τ values such that |ρ̂ε(τ)|≤β is less than ⌊ατ̄⌋,

where ⌊x⌋ denotes the biggest integer less than or equal tox, otherwise it is passed
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Recursive least-squares methods
The least-squares estimate referred to a generic time instant t is given by:

θ̂t =
[∑t

i=1 ϕ(i)ϕ(i)
T ]−1∑t

i=1 ϕ(i) y(i) = S(t)−1 ∑t
i=1 ϕ(i) y(i)

where

S(t)=
∑t

i=1ϕ(i)ϕ(i)
T
=
∑t−1

i=1ϕ(i)ϕ(i)
T
+ϕ(t)ϕ(t)

T
=S(t−1)+ϕ(t)ϕ(t)

T

The least-squares estimate referred to the time instant t− 1 is given by:

θ̂t−1 =
[∑t−1

i=1 ϕ(i)ϕ(i)
T ]−1∑t−1

i=1 ϕ(i) y(i) = S(t− 1)−1 ∑t−1
i=1 ϕ(i) y(i)

and then:

θ̂t = S(t)−1
∑t

i=1 ϕ(i) y(i) = S(t)−1
[
∑t−1

i=1 ϕ(i) y(i) + ϕ(t) y(t)
]

=

= S(t)−1[S(t− 1)θ̂t−1 + ϕ(t) y(t)] =

= S(t)−1{[S(t)− ϕ(t)ϕ(t)
T
]θ̂t−1 + ϕ(t) y(t)} =

= θ̂t−1 − S(t)−1ϕ(t)ϕ(t)T θ̂t−1 + S(t)−1ϕ(t) y(t) =

= θ̂t−1 + S(t)−1ϕ(t) [y(t)− ϕ(t)T θ̂t−1]
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Since the estimate can be computed as: θ̂t= θ̂t−1+S(t)
−1ϕ(t)[y(t)−ϕ(t)T θ̂t−1],

a first recursive least-squares (RLS) algorithm (denoted as RLS-1) is the following one:

S(t)= S(t− 1) + ϕ(t)ϕ(t)
T

(time update)

K(t)= S(t)−1ϕ(t) (algorithm gain)

ε(t)= y(t)− ϕ(t)T θ̂t−1 (prediction error)

θ̂t = θ̂t−1 +K(t)ε(t) (estimate update)

An alternative algorithm is derived by considering the matrix R(t)= 1
t

∑t
i=1ϕ(i)ϕ(i)

T
:

R(t) = 1
tS(t) =

1
tS(t− 1) + 1

tϕ(t)ϕ(t)
T
=

=
(

1
t +

1
t−1 − 1

t−1

)

S(t− 1) + 1
tϕ(t)ϕ(t)

T
=

= 1
t−1S(t− 1) +

(
1
t − 1

t−1

)

S(t− 1) + 1
tϕ(t)ϕ(t)

T
=

= R(t− 1) + t−1−t
t(t−1)S(t− 1) + 1

tϕ(t)ϕ(t)
T
=

= R(t− 1)− 1
tR(t− 1) + 1

tϕ(t)ϕ(t)
T =

=
(
1− 1

t

)
R(t− 1) + 1

tϕ(t)ϕ(t)
T
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A second recursive least-squares algorithm (denoted as RLS-2) is then the following one:

R(t)=
(
1− 1

t

)
R(t− 1) + 1

tϕ(t)ϕ(t)
T

(time update)

K(t)= 1
tR(t)

−1ϕ(t) (algorithm gain)

ε(t)= y(t)− ϕ(t)T θ̂t−1 (prediction error)

θ̂t = θ̂t−1 +K(t)ε(t) (estimate update)

The main drawback of RLS-1 and RLS-2 algorithms is the inversion at each step of
the square matrices S(t) and R(t), respectively, whose dimensions are equal to the
number of estimated parameters ⇒ by applying the Matrix Inversion Lemma:

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1

takingA=S(t− 1), B= DT=ϕ(t) , C=1and introducing V (t)=S(t)−1 gives:

V (t) = S(t)−1 =
[
S(t−1) + ϕ(t)ϕ(t)

T ]−1
=

= S(t−1)−1−S(t−1)−1ϕ(t)
[

1+ϕ(t)
T
S(t−1)−1ϕ(t)

︸ ︷︷ ︸

it is a scalar

]−1

ϕ(t)
T
S(t−1)−1=

= V (t− 1)−
[
1 + ϕ(t)

T
V (t− 1)ϕ(t)

]−1
V (t− 1)ϕ(t)ϕ(t)

T
V (t− 1)
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SinceV (t)=S(t)−1=V(t−1)−
[
1+ϕ(t)

T
V(t−1)ϕ(t)

]−1
V(t−1)ϕ(t)ϕ(t)TV(t−1)

a third recursive least-squares algorithm (denoted as RLS-3) is then the following one:

βt−1 = 1 + ϕ(t)
T
V (t−1)ϕ(t) (scalar weight)

V (t)= V (t−1)−β−1
t−1V (t−1)ϕ(t)ϕ(t)

T
V (t−1) (time update)

K(t)= V (t)ϕ(t) (algorithm gain)

ε(t)= y(t)− ϕ(t)
T
θ̂t−1 (prediction error)

θ̂t = θ̂t−1 +K(t)ε(t) (estimate update)

To use the recursive algorithms, initial values for their start-up are obviously required;
in the case of the RLS-3 algorithm:
• the correct initial conditions, at a time instant to whenS(to)becomes invertible, are:

V (to)=S(to)
−1=

[∑to
i=1ϕ(i)ϕ(i)

T ]−1
, θ̂to =V (to)

∑to
i=1ϕ(i) y(i)

• assuming n = dim(θ), a much simpler alternative is to use:

V (0) = αIn, α > 0, and θ̂0 = 0n×1

θ̂t rapidly changes from θ̂0 if α ≈ 1, while θ̂t slowly changes from θ̂0 if α≪ 1
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Model structure selection and validation
A most natural approach to search for a suitable model structure M is simply to test

a number of different ones and to compare the resulting models

Given a model M(θ) ∈ M with complexity n = dim(θ), the cost function

J(θ)(n) = 1
N

∑N
t=1 ε(t)

2 = 1
N

∑N
t=1 (y(t)− ŷ(t, θ))2

provides a measure of the fitting of the data set y provided by M(θ)⇒
if θ̂N =argminJ(θ)(n), thenJ(θ̂N )(n) measures the best fitting of datay provided by

M and represents a subjective (and very optimistic) evaluation of the quality of M

In order to perform a more objective evaluation, it would be necessary to measure

the model class accuracy on data different from those used in the identification ⇒
to this purpose, there are different criteria:
• Cross-Validation
• Akaike’s Final Prediction-Error Criterion (FPE)
• Model Structure Selection Criteria: AIC and MDL (or BIC)
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Cross-Validation

If the overall data set is sufficiently huge, it can be partitioned into two subsets:

• the estimation data are the ones used to estimate the model M(θ̂N ) ∈ M

• the validation data are the ones that have not been used to build any of the

models we would like to compare

For any given model class M, first the model M(θ̂N ) that better reproduces the

estimation data is identified, and then its performance is evaluated by computing

the mean square error on the validation data only: the model that minimizes such

a criterion among different classes M is chosen as the most suitable one

It can be noted that, within any model class, higher order models usually suffer from

overfitting, i.e., they fit too much the estimation data to fit also the noise term and

then their predictive capability on a fresh data set (corrupted by a different noise)

is smaller with respect to lower order models
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Akaike’s Final Prediction-Error Criterion (FPE)
In order to consider any possible realization of data y(t, s) that depends on the

outcome s of the random experiment, let us consider as objective criterion:

J̄(θ) = E[(y(t, s)− ŷ(t, s, θ))
2
]

Since θ̂N = θ̂N (s) depends on a particular data set y(t, s) generated by a

particular outcome s, the Final Prediction Error (FPE) criterion is defined as

the mean on any possible outcome s:
FPE = E[J̄(θ̂N (s))]

In the case of the AR model class, it can be proved that:

FPE =
N + n

N − n
J(θ̂N )(n)

whereJ(θ̂N )(n) is a monotonic decreasing function ofnwhile N+n
N−n →∞ as n→N

⇒ FPE is decreasing for lower values ofn and it is increasing for higher values ofn

⇒ the optimal model complexity corresponds to the minimum of FPE

The same formula is usually used also in the case of other model classes (ARX, ARMAX )
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Akaike’s Information Criterion (AIC)

Such a criterion is derived on the basis of statistical considerations and aims at
minimizing the so-called Kullback distance between the “ true” probability density
function of the data and the p.d.f. produced by a given model M(θ̂N ):

AIC = n 2
N + ln J(θ̂N )(n)

The optimum model order n∗ minimizes the AIC criterion: n∗ = arg min AIC

For large values of N , the FPE and AIC criteria lead to the same result:

lnFPE = ln N+n
N−nJ(θ̂N )(n) = ln 1+n/N

1−n/N J(θ̂N )(n) =

= ln(1 + n/N)− ln(1− n/N) + ln J(θ̂N )(n) ∼=
∼= n/N − (−n/N) + ln J(θ̂N )(n) = n 2

N + ln J(θ̂N )(n) = AIC

AIC criterion is directed to find system descriptions that give the smallest mean-square
error: a model that apparently gives a smaller mean-square (prediction) error fit will
be chosen even if it is quite complex
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Rissanen’s Minimum Description Length Criterion (MDL)
In practice, one may want to add an extra penalty for the model complexity, in order
to reflect the cost of using it

What is meant by a complex model and what penalty should be associated with are
usually subjective issues; an approach that is conceptually related to code theory and
information measures has been taken by Rissanen, who stated that a model should
be sought that allows the shortest possible code or description of the observed data,
leading to the Minimum Description Length (MDL) criterion:

MDL = n lnN
N + ln J(θ̂N )(n)

As in the AIC criterion, the model complexity penalty is proportional to n; however,

while in AIC the constant is 2
N , in MDL the constant is lnN

N > 2
N for any N ≥ 8

⇒ the MDL criterion leads to much more parsimonious models than those selected
by the AIC criterion, especially for large values of N

Such a criterion has also been termed BIC by Akaike
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