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Problem #1. The mean values are removed from the input-output measurements, to obtain zero mean value
sequences of length Ntot. Then the overall experimental data are partitioned in two datasets: one of length Ne for
model identification, the other of length Nv for model validation. For example, the same length may be chosen for
each dataset, i.e., Ne = Nv = Ntot/2 = 1000.
1) The estimation dataset is used to identify ARX , ARMAX and OE models of different orders and delays, and to
look for models that guarantee satisfactory characteristics of whiteness of the residuals:
- ARX models of order na = nb and delay nk ∈ [1, 2, 3] require na ≥ 4 to have few (no more than 3) values of the
autocorrelation function of residuals outside enough the 99% confidence limits;
- ARMAX models of order na = nb = nc and delay nk ∈ [1, 2, 3] require na ≥ 2 to have few (no more than 3) values
of the autocorrelation function of residuals outside enough the 99% confidence limits;
- OE models of order nf = nb and delay nk = 1 or nk ∈ [2, 3] require nf ≥ 3 or nf ∈ [3, 4, 5, 7] , respectively, to have
few (no more than 3) values of the autocorrelation function of residuals outside enough the 99% confidence limits.

2) The validation dataset is then used to compare the identified models and to assess their model quality, by minimizing

the Root Mean Square Error RMSE =

√

1

Nv −N0

Nv
∑

t=N0+1

[y(t)− ŷ(t)]
2
, where y(t) = measured output, ŷ(t) =

simulated (or predicted) output and N0 = 10 is chosen as suitable time instant after which the transient is past. Note
that, in the case of ARX and ARMAX models, the predicted output provides better performance than the simulated
output, since it exploits more information. For this reason, the values of the RMSE using the predicted output only
are here reported for all the models:

Identified model k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
ARX(na = k, nb = k, nk = 1) 0.0691 0.0664 0.0670 0.0660 0.0638 0.0617 0.0603
ARX(na = k, nb = k, nk = 2) 0.0688 0.0647 0.0668 0.0656 0.0638 0.0617 0.0603
ARX(na = k, nb = k, nk = 3) 0.0680 0.0653 0.0662 0.0656 0.0639 0.0618 0.0605
ARMAX(na = k, nb = k, nc = k, nk = 1) 0.0698 0.0540 0.0500 0.0504 0.0500 0.0521 0.0510
ARMAX(na = k, nb = k, nc = k, nk = 2) 0.0697 0.0534 0.0536 0.0502 0.0552 0.0508 0.0524
ARMAX(na = k, nb = k, nc = k, nk = 3) 0.0681 0.0532 0.0510 0.0508 0.0510 0.0549 0.0519
OE(nb = k, nf = k, nk = 1) 0.1234 0.0584 0.0504 0.0507 0.0499 0.0507 0.0511
OE(nb = k, nf = k, nk = 2) 0.1167 0.0976 0.0505 0.0506 0.0509 0.0766 0.0507
OE(nb = k, nf = k, nk = 3) 0.1115 0.0538 0.0514 0.0511 0.0511 0.0737 0.0516

For ARX models, the best trade-off between RMSE and model complexity n = na + nb that guarantees satisfactory
characteristics of whiteness of the residuals is given by the ARX(4, 4, 2), with RMSE = 0.0656 and n = 8.
For ARMAX models, the best trade-off between RMSE and model complexity n = na + nb + nc that guarantees
satisfactory characteristics of whiteness of the residuals is the ARMAX(2, 2, 2, 3), with RMSE = 0.0532 and n = 6.
For OE models, the best trade-off between RMSE and model complexity n = nb + nf that guarantees satisfactory
characteristics of whiteness of the residuals is given by the OE(3, 3, 1), with RMSE = 0.0504 and n = 6.
In summary, the best trade-off between RMSE and model complexity n that at the same time guarantees satisfactory
characteristics of whiteness of the residuals is provided by the OE(3, 3, 1).

3) Using all the experimental data, the following parameters of an ARX(3, 3, 1) model have been estimated by means
of the standard Least-Squares algorithm:

θ̂1= â1=−0.6566, θ̂2= â2=−0.3219, θ̂3= â3=0.1074, θ̂4= b̂1=0.0195, θ̂5= b̂2=0.0328, θ̂6= b̂3=0.0832

Assuming that the output measurements are corrupted by an energy-bounded noise whose 2-norm is less than 4, the
following Estimate Uncertainty Intervals EUI2 are derived:

θ̂1= â1∈ [−1.9391, 0.6260] ; θ̂2= â2∈ [−1.8080, 1.1641] ; θ̂3= â3∈ [−1.0511, 1.2658] ;

θ̂4= b̂1∈ [−0.7246, 0.7636]; θ̂5= b̂2∈ [−0.9347, 1.0004]; θ̂6= b̂3∈ [−0.6985, 0.8650]

Since the fitting error ||y−Φθ̂|| = 3.05 is less than the 2-norm noise bound, the Parameter Uncertainty Intervals PUI2

are given by:

θ̂1= â1∈ [−1.4853, 0.1721] ; θ̂2= â2∈ [−1.2821, 0.6382] ; θ̂3= â3∈ [−0.6411, 0.8558] ;

θ̂4= b̂1∈ [−0.4613, 0.5003]; θ̂5= b̂2∈ [−0.5924, 0.6580]; θ̂6= b̂3∈ [−0.4219, 0.5884]

Assuming that the output measurements are corrupted by an amplitude-bounded noise whose ∞-norm is less than
0.1, the following Estimate Uncertainty Intervals EUI∞ are derived:

θ̂1= â1∈ [−1.7464, 0.4332] ; θ̂2= â2∈ [−1.6435, 0.9996] ; θ̂3= â3∈ [−0.8615, 1.0762] ;

θ̂4= b̂1∈ [−0.3781, 0.4171]; θ̂5= b̂2∈ [−0.5767, 0.6423]; θ̂6= b̂3∈ [−0.3737, 0.5402]



Problem #2. First the steady-state Kalman filterF∞ and the dynamic Kalman 1-step predictor in predictor-
corrector formKpc are designed, assuming x(1) = [50, 100, 50] as initial state of the system S2.
2) The state estimates provided by F∞ and Kpc have been compared by evaluating the Root Mean Square Errors:

RMSEk =
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, k = 1, . . . , 3

where x̂k(t) is the estimate of the state xk(t) and N ′

0 = 100 is chosen as suitable time instant after which the filter or
predictor transient is past.
Note that the values of RMSE depend on the realizations of the white noises v1(t) and v2(t). For example:

- using the dynamic Kalman 1-step predictor Kpc, RMSE =





0.0568
0.1114
0.0552



;

- using the steady-state Kalman filterF∞, RMSE =





0.0561
0.1113
0.0556



.

Note moreover that, if N ′

0 = 0 is chosen, then:

- using the dynamic Kalman 1-step predictor Kpc, RMSE =





3.4358
7.2297
3.7862



;

- using the steady-state Kalman filterF∞, RMSE =





3.6312
7.5607
3.9285



.


