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Background: state estimation
In a deterministic noise-free framework

Setup: let us consider a discrete-time, linear time-invariant (LTI1), dynamical system S
described by the state space model:

S { 5’7(75 T 1) — Af(t) + Bu(t) (state equation)

t=1,2, ...
y(t) = Cx(t) + Du(t)  (output equation)

where x(t) € R", u(t) € RP, y(t) € RY are deterministic, and assume that:
o AcR""™ B e R"P (C & RI*™ are known constant matrices
o D = 0,xyp, ie., S is aphysically realizable system
the input u(t) is known Vt > 1

®
e the output y(t) is measured V¢ > 1, without any noise or disturbance
®

the initial state (¢ =1) is unknown

Goal: find a state estimate (¢) that suitably approximates the state z(t), Vi > 1
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Solution #1: use a copy S’ of the system S, fed by the same input u(t) but starting
from a different initial state £(t=1) # x(t=1):

o { #(t +1) = A2(t) + Bu(?)
y(t) = Ci(l)
To evaluate the performances, let us define the state estimation error:
2(t) = x(t) — (1)
that solves the following difference equation:
Tt+ 1) =z(t+1)—x(t+1)=Ax(t) + Bu(t) — [Az(t) + Bu(t)] =
= Az(t) — A2(t) = Az(t) — 2(¢)] = AZ(¢)
Y
T(t) = A 13t=1) = A" z(t=1) - 2(t=1)], Vt>1
Drawback: only if A is asymptotically stable (i.e., such that [\;(A)| < 1, Vi) =
lim Z(t) = 0, V&(t=1)

t— 00
i.e., £(t) asymptotically converges to x(t) independently of Z(t=1)

t=1,2,...
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X(t=1) unknownj:

C
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Solution #2 (Asymptotic State Observer): modify the Solution #1 in order to exploit
the information on (%), using a copy S of the system S, fed by the same input ()
and with initial state Z(t =1) #x(t =1), adding a term that linearly depends on y(t):

SQ{@@+nAﬂw+Bmw+umwmm

. ) t=1,2,...
§(t) = Ci(t)

The state estimation error (t) = x(t) — Z(¢) now solves this difference equation:

T(t+H)=x(t+1)—z(t+1)=Ax(t)+ Bu(t) — {Az(t)+ Bu(t)+ L{y(t)—y(t)] }

— Az(t)— A2(t)— L[Cx(t) —Ci(t)] = A[z(t)—#(t)] — LO[z(t) — 2 (t)]
— (A—LO) [a(t)—i(t)] = (A= LO)i(t)

|
7(t) = (A—LO) ' z2(t=1) = (A—LC)" " [z(t=1) — 2(t=1)],

If A— LC'is such that |\;(A—LC)| < 1,Vi = tli}m z(t) =0,Vz(t=1),

i.e., £(t) asymptotically converges to x(t) independently of Z(t=1)
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X(t=1) unknownj:

C

| Asymptotic

| State Observer
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Main result: if the system S is fully observable, i.e., if the observability matrix
C
CA c anXn

is full rank (i.e., p (Mo ) =n), then the matrix L. € R™*4 can be designed such that

4
lim z(t) = 0,Vz(t=1),ie. z(t) asymptotically converges to x(t) Vz(t=1)

t— o0

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 6
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Kalman filtering problem

Let us consider a discrete-time, linear time-invariant (LT1), dynamical system S
described by the state space model:

S { 2(t+1) = Ax(t) + vy (2)
| y(t) = Cu(t) + v2(t)
where x(t) € R™, y(t) € RY, v1(t) € R", va(t) € RY, and assume that:

e the process noise v1 () and the measurement noise v (t) are white noises with
zero mean value and known variance which are uncorrelated with each other,

i.e., v1(t) ~ WN(0,Vy) and vo(t) ~ WN(O, V) are such that:

vy (t)v1(t2)1] = Vid(ta — t1) (whiteness of v (1))
o (t1)va(ta)l] = Vad(ta — t1) (whiteness of vo (1))
v1(t1)va(t2)?] = Onxg, ViE1,t2  (uncorrelation of vy (t) and v (t))

o Ac R"™"™ (C e R1*™ V; € R*"*"™ V5 € R9%9 gre known matrices

t=1,2, ...

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification
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e the initial state z(¢=1) is an unknown random vector: x(t=1)~ (0,P;),
with known P;€R™*"™ which is uncorrelated with noises v (1) and vs(t)

e the output measurements y(t) are available fort = 1,2,..., N

V,(t) X(t=1) unknown V(1)

+ v X(t+1) ) xgt) J c Toy(t)

+ +

A [

e Goal: estimate the state x(IN + r):

ifr =1 = one-step prediction problem

ifr > 1 = multi-step prediction problem

if =0 = filtering problem

if r <O smoothing (or regularization) problem

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification
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e v(t) and vy (t) are random variables = x(t) and y(t) are random variables too

4

the Bayesian estimate of the state (/N + r) given the N measurements
y(N),y(N —1),...,y(1), is equal to:
(N +r|N)=E[2(N+7)|d] =Z(N +7)+ 2,y 1raXeq (d—d)
where Z(N +r) = E|lx(N +r)] € R”
d=yN = [yN)" y(N -7 .- y(1)T]" € RN

d = E[d] = E[yN] € RN
2gq = b [(d d)(d — d) } e RVaxNa

(

> t(N +7) = 2(N +71)) (d—d)"] € RN

o(N+r)d — [

e vy(t), v2(t) have zero mean value, Vt = x(t), y(t) have zero mean value, V?

4
(N +7IN)=FE[2(N+7)|y" | =2 niryyv Zyn vy
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e The main drawback of the proposed form of the Bayesian estimate
. N —~1 N
TN +rN)=E [z(N+7)|y" | =2, niryyn S n Y
IS that it requires the batch processing of the measurements, since all information
IS iIncorporated in one single step into the estimate

4

this leads to the necessity for inverting ZyNyN e RN9*Na \which may be
a very difficult task when [V is large

To avoid this drawback, recursive or sequential estimation schemes are looked
for, in which the current estimate depends on the previous estimate and the
current measurement I

such schemes rely on sequential processing of data, where the measurements
are processed in stages

e Using the recursive Bayesian estimation method:
— first, the one-step prediction problem will be solved
— then, the multi-step prediction and the filtering problems will be afforded

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 10
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One-step Kalman predictor

T

Goal: given the data vector y = |y(N) y(N — )T .. y(1)*]" ,find a
recursive Bayesian estimate (/N + 1|IV) of the state (/N + 1) starting from
the estimate (/N |IN — 1) of the state 2(/V ) obtained at the previous stage

The innovation of (N + 1) given y” is defined by:
e(N+1)=y(N+1)— E[y(N+1)|y"] € R
where E | y(N + 1)| y™| is the projection of y(N + 1) over the subspace

H[yN] generated by all the components of yN, called past subspace =
e(N + 1) is orthogonal to [V ], i.e., the innovation is orthogonal to the past

y(Nﬂ/‘ @

e(N+1)

E[y(N +1)[y"]

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 11
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e The prediction error of the state  x (/N + 1) is defined by:
F(N+1)=2(N+1)—E[z(N+1)|y"] eR"
where E' | z(N + 1)| y™¥ | is the projection of x:(N + 1) over H[y"] =
Z(N + 1) is orthogonal to H[y"], i.e., it is orthogonal to the past
_ B[#(N +1)] = E[az(N 11y -3
= E[z(N+1)] - %

c(N+1)yN EyNyNy ]

—1 N1 _
c(N+1)yN ZyNyNE[y ] =0

- Var[#(N + )] =B|(Z(N + 1)=E[#(N + 1)]) (N + 1)~ BE(N + 1)))"| =

= E[zZ(N+1Dz(N + 1)1 =P(N+1)

X(N+1) G

E[X(N +1) [y"]
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N + 1) and Z(N + 1) are orthogonal to H [y | =
1) and (N + 1) are parallel, i.e., they are linearly dependent:

e(N+1)=y(N+1) - E[y(N+1)[y"] =
=Czx(N+1)4+v2(N+1)— E[Cz(N +1)+v2(N+1)|y"] =
=Czx(N+1)4+v2(N+1)— E[Cz(N +1)|y"] — E[v2(N + 1)|y"] =
=Cx(N+1)4+v2(N+1)—CE[z(N +1)|y"] — Ev2(N +1)] =

=Cz(N+1)—CE|z(N + 1)]yN] +va(N+1) =
=C(z(N+1)—E[z(N+1)|y"]) +v2(N+1) =
= CZ(N + 1) +v2(N + 1)

where E[UQ(N+ 1)|yN} = Elva(N+1)]=0, since va(t) ~WN(0,V3), Vi

= v9(IN+1) is a random variable with zero mean value and independent of /™

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 13
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e The optimal estimate for the state (N + 1) based on data y*¥ is given by:
F(N+1N)=E[z(N+1)|yV ] =E[z(N+1)|y" " y(N)]

T
where yN =1 = [y(N — )T y(N —2)T ... y(1)T]" e RW=a,
From the recursive Bayesian estimate formula, it results that:

Z(N +1|N) = E|z(N + )|yN 1L y(N)| =
= E| (N + 1)y + E[z(N + 1) e(N)]

where e(N)=y(N)—E|y(N)| y~ ~1]| is the innovation of y(N') given y™¥ ~*
e From the state equatlon of the system S:

Elz(N +1)|yN"t = E[|Az(N) + v1(N)|yV 1] =
= AE[z(N)[y" ] + E[or(N)|yV ] =
= AE|x(N)|yN ] = Az(N|N - 1)
since v1 (IN) is independent of yN =1 = E| vy (N)|y™ | =E[v1(N)]=0

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 14
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e Since F|x(t)] = Fle(t)] = 0, Vi, then:
Ela(N + D] e(N)] = Sy 17000 Ssepn V) = K(V)e(N)

where it can be proved that:
Z:U(N—I—l)e(N) =AP(N)C*
Sonyeny =CP(N)CT + Vs

—1
K(N) =%, ni1)em) Zemey = APN)CT [CP(N)CT+ V5]

P(N)=Var[#(N)] = E[Z(N)Z(N)"]

e The recursive form of the one-step state prediction is then:

%(N + 1|N) = A%(N|N — 1) + K(N)e(N)

where K (V) € R™* 1 is called one-step Kalman predictor gain matrix ~ and
involves the prediction error variance P(IN') € R™*" of the state x (V)

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 15
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e The prediction error variance P(IN) € R™*™ of the state 2(/N) can be
recursively computed using the Difference Riccati Equation (DRE)
which can be written in one of the following equivalent forms:

P(N+1)=[A—K(N)C] P(N)[A—K(N)C]"+ Vi + K(N)VaK(N)T
P(N+1)=AP(N)AT +V; — K(N) [CP(N)CT + V5| K(N)*
assuming P(1) = Var|z(1)] = P; as starting value
e The update equation of the state prediction
(N +1|N) = AZ(N|N — 1) + K(N)e(N)
has to be initialized by assuming as starting value:
#(1|0) = E[z(1)] = 0

e The optimal estimate for the output y(N + 1) based on data yN IS given by:
J(N+1|N) = E[y(N+1)|y" | =E[Cx(N+1) + va(N+1)[ yV ] =
= E[Cax(N +1)|[y"] + Elva(N +1)|y"] =
= CE[z(N +1)|y"] + E[va(N +1)] = C2(N + 1|N)

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 16
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Remarks

Remark #1 : the gain matrix K (/V') is not constant, since it involves the prediction
error variance P (V) of the state that is given by the Difference Riccati equation =
even if the dynamical system S is LTI, the one-step Kalman predictor is time-variant

Remark #2 : under all the above assumptions, the one-step Kalman predictor is the
optimal linear predictor . In fact, the Bayesian estimate of x (/N + 1) given yN

(N +1N)=E[z(N+1)|y" ] =, nynyn Zyn vy

Is a linear function of yN and it minimizes the state prediction error variance

Remark #3: under the further assumptions that:
e the noises v1(t) and v (t) are individually and jointly Gaussian, V?
e the initial state x(t=1) is Gaussian

the state :zz(N + 1) and the data vector yN are individually and jointly Gaussian,
since S is linear = the Bayesian estimate of (/N -+ 1) given y*¥ is optimal =
the one-step Kalman predictor is the optimal predictor in absolute terms

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 18
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Generalization

Let us consider a discrete-time, linear time-variant, dynamical system S with an
exogenous (deterministic and known) input u() described by the state space model:

3:{ ot +1) = A@Rx(t) + Bult) +nit) 4,
y(t) = C(t)x(t) + v2(?)
y(t

where x(t) €R"™ y(t) €RY u(t) ERP, vy (t) €R"™ vy (t) €RE and assume that:

(t
t) and vy (t) are white noises with zero mean value and known variance, i.e.,
v1(t) ~WN(0,V1(t)) and vo(t) ~ WN(0,V5(t)), which may be correlated if
considered at the same time instant but are uncorrelated at different time instants:
Elvy(t1)vi(t2)"] = Vi(t1)d(t2 — t1)

Elvg(t1)va(t2)"] = Va(t1)d(t2 — t1)

E:?}l (tl)vz (tQ)T: — Vlz(tl)é(tz — tl)
)

° A(t) cRX" B(t cR™*P, C(t) e RIxX" Vl(t) cR™X" Vg(t) cRI%4,
Via(t) € R™*? are known matrices V't

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 19
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the initial state «(t=1) is an unknown random vector: z(t=1) ~ (z1,P1),
with known 1€ R™ and P;€ R™*"™, which is uncorrelated with v1 () and vs ()

the output measurements ¥(t) are available fort = 1,2,..., N
the one-step Kalman predictor /C is described by the state space model:

#(N+1|N) = A(N)&(N|N—1) + B(N)u(N) + K(N)e(N)
K:{ §(N|N—1) = C(N)&(N|N—1)
e(N) =y(N) — g(N|N-1)

the one-step Kalman predictor gain matrix K (V) is equal to: »
K(N)=[A(N)P(N)C(N)'+Via(N)] [C(N)P(N)C(N)"'+Va(N)]
where the state prediction error variance P(N) IS given by the following DRE:
P(N+1)= AN)P(N)AN)T +Vi(N)+
o KW [C)PNICENT + V()] KN
the initialization is:
z(1)0) = Efz(1)] =,
P(1) = E[(z(1) —z1)(z(1) — 71)"]

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 20
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Multi-step Kalman predictor

Let us consider a discrete-time, linear time-invariant (LTI), dynamical system S
without any exogenous input, described by the state space model:

S - ZIZ(t—I—l)ZAx(t)—I—Ul(t) t:1,2,...
y(t) = Cx(t) + va(t)
where x(t) €R" y(t) eRY v (t) €R"™ v2(t) € RY and assume that:

e v (t) and v2(t) are white noises with zero mean value that may be correlated if
considered at the same time instant but are uncorrelated at different time instants:

E[Ui(tl)?}j(tg)T] = %jé(tg — tl), 1= 1,2; j = 1,2;
o AcR"* "™ CeRI*" V; e R" "™ Vo e R1°9 V5 € R™* 4 are known matrices

e the initial state (¢ =1) is an unknown random vector: x(t=1)~ (Z1,P),
with known Z1 € R™ and P;€ R™*"™, which is uncorrelated with v1 () and vs (1)

e the output measurements y(t) are available fort = 1,2,..., N
e Goal: estimate the state x(IN +7), 7 > 1

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 22
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e The optimal estimate for the state (/N + r) based on the ]\r} measurements
collectedinthe vectory™¥ = [y(N) T y(N 1) - - y(1)*]” e RN?isgiven by:

E(N+r|N)=E|z(N+r)|y" | =E[Az(N+r—1) + v;(N+r—1)| y"]
=FE [Az(N+r=1)|yY | + E [u(N+r—-1)|y" | =
=AE [x(N+r—1)|y" | + E[vi(N+r—1)] = AZ(N+r—1|N)
since v1 (N +7—1) is independent of y, Vr > 1 =
Elvi(N+r—1)|y" | = E[v1(N+r—1)] = 0= by iterating, it results that:

(N +r|N) = A" '%(N + 1|N)
e The optimal estimate for the output /(N + 1) based on data y*" is given by:
J(N+7IN) = E|y(N+r)|y" | =E|Cx(N+7r) + vo(N+7)|y" ]| =
= E|Cz(N+7)|y"]| + E|va(N +1r)|yV ] =
= CE[z(N +7)|y"]| + E[va(N +1r)] =
= Cz(N +r|N)=CA™12(N + 1|N)
since vz (N +7) is independent of y = E [va(N+7)|y" | = E[v2(N+7)]=0

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 23
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B

+ K K(N+1|N)
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Generalization

Let us consider a discrete-time, linear time-invariant (LT1), dynamical system S with an
exogenous (deterministic and known) input u() described by the state space model:

S r(t+1) = Ax(t) + Bu(t) + v1 (1)
y(t) = Cx(t) + va2(2)
where (1) ER"™ y(t) € RY u(t) eRP, vy (t) € R", vy (t) € RY and assume that:
° u() may possibly depend on the output y() through a causal feedback as

u(t) = flyt),y(t —1),y(t —2),...), Vi

e v1(t) and v2(t) are white noises with zero mean value that may be correlated if
considered at the same time instant but are uncorrelated at different time instants:

E[Ui(tl)?}j(tz)T] = %j&(tz — tl), 1= 1,2; j = 1,2;
e AcR""™ BeR"*P. C'cRI*"™ V; e R"™*™ V5 € R9*9 V15 € R"*? are known

e the initial state (¢ =1) is an unknown random vector: x(t=1)~ (Z1,P),
with known Z1 € R™ and P;€ R™*"™, which is uncorrelated with v1 () and vs (1)

e the output measurements y(t) are available fort = 1,2,..., N

t=1,2,...

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 25
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e The optimal estimate for (N +7), 7 > 1, based on the data vector 3y*" is given by:
Z(N+r|N) :E[:E(]\H—fr)] yN} =
=FE[Ax(N+r—1) + Bu(N+r—1) + vy(N+r—1)|y"] =
=E[Az(N+r-1)|y™+ E[Bu(N+r—1)| y"|+ E|[vy( N+r—1)| y]
=AF [x(N—H“—l)! ?/N} +BE [u(NJrr—l)] yN} +FElv(N+r—1)] =
= AZ(N+r—1|N) + Bu(N+r—1|N)
(vi(N+r—1)isindependentofy” = E [u1(N+r—1)|y" | = E[vi(N+r—1)]=0)
Y

by iterating, it results that: _ ;
u(N+r—1|N)

u(N+r—2|N
F(N+7|N)=A""'2(N+1|N)+ [B AB --- A" *B] ( . )

a(N+1|N)

where u( - ) is predicted up to 7 — 1 steps ahead to have (/N +%| N ) or, ifit cannot
be predicted, then (N +¢|N)=wu(N) is often assumed, for 1 <i< r—1

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 26
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+vy + Y —
‘ Jo ) Y(NIN-1)

+ X X(N+1|N)

X(t=1|0) # x(t=1)
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Kalman filter

Let us consider a discrete-time, linear time-invariant (LTI), dynamical system S
without any exogenous input, described by the state space model:

S - x(t+1):Aw(t)+vl(t) t:1,2,...
y(t) = Cx(t) + va(t)
where x(t) €R" y(t) eRY v (t) €R"™ v2(t) € RY and assume that:

e v (t) and v2(t) are white noises with zero mean value that may be correlated if
considered at the same time instant but are uncorrelated at different time instants:

E[Ui(tl)?}j(tz)T] = %j&(tz — tl), 1= 1,2; j = 1,2;
o AcR"* "™ CeRI*" V; e R" "™ Vo e R1°9 V5 € R™* 4 are known matrices

e the initial state z(¢=1) is an unknown random vector: x(t=1)~ (0,P;),
with known P;€ R™*"™ which is uncorrelated with v1 () and vs ()

e the output measurements y(t) are available fort = 1,2,..., N

e Goal: estimate the state (V)

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 28
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e The optimal estimate for the state z:( V) based on data y/"" is given by:
Z(NIN) = E[z(N)|y" | = E[z(N)|y" 1, y(V)]

where yV 71 = [y(N — 1)1 y(N —2)T .. y(l)T}T c RWN—1a,
From the recursive Bayesian estimate formula, it results that:
Z(N|N) ZIE[:B(N)\ y" L y(N) | =Ez(N)[yY T+ Eln(N)|e(N)] =
=&(N[N —1) + Elz(N)|e(N)]
where ¢(N) = y(N) — §(N|N — 1) is the innovation of y(IN ) given 3y ~1
t

e Since F|z(t)| = FEle(t)] = 0, Vt, then:

Elz(N)|e(N)] = 2 (N)e (N)Ze(N)e(N) e(N) = Ko(N)e(N)
where it can be proved that:

Za:(N)e(N) =P(N)C"

2 (N)e(N) =CP(N)CT +V,
Ko(N) =34 (v)e) Zeme

P(N)=Var[z(N)| = E|i
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e The optimal estimate for the state (/N ) based on data yN can be obtained from
the one-step Kalman predictor as:

%(N|N) = %(N|N — 1) + K, (N)e(N)

where Ky(IN) € R™*9 is called Kalman filter gain matrix ~and involves the
variance P(IN) € R™*™ of the one-step prediction error of the state z(V), i.e.,
T(N)=x(N)—2(N|N—1).Notethat,if Vig =0,,x ¢, then K (N)=AKy(N)

The variance of the filtering error x(IN ) — Z(IN|N ) involves the variance P(N )
of the one-step prediction error as well, since it can be proved that:

Var[z(N)—&(N|N)] = P(N)— P(N)C'[CP(N)C" + V5]~ 'CP(N)
$
Varlz(N) — 2(N|N)| < P(N)
since the estimate (/N |INV) provided by the Kalman filter is based also on the

data sample y( V') with respect to the estimate (/N |/N —1) provided by the
one-step Kalman predictor = the uncertainty on Z(/N|N) has to be lower
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Generalization

Let us consider a discrete-time, linear time-invariant (LT1), dynamical system S with an
exogenous (deterministic and known) input u() described by the state space model:

S r(t+1) = Ax(t) + Bu(t) + v1 (1)
y(t) = Cx(t) + va2(2)
where (1) ER"™ y(t) € RY u(t) eRP, vy (t) € R", vy (t) € RY and assume that:
° u() may possibly depend on the output y() through a causal feedback as

u(t) = flyt),y(t —1),y(t —2),...), Vi

e v1(t) and v2(t) are white noises with zero mean value that may be correlated if
considered at the same time instant but are uncorrelated at different time instants:

E[Ui(tl)?}j(tz)T] = %j&(tz — tl), 1= 1,2; j = 1,2;
e AcR""™ BeR"*P. C'cRI*"™ V; e R"™*™ V5 € R9*9 V15 € R"*? are known

e the initial state (¢ =1) is an unknown random vector: x(t=1)~ (Z1,P),
with known Z1 € R™ and P;€ R™*"™, which is uncorrelated with v1 () and vs (1)

e the output measurements y(t) are available fort = 1,2,..., N

t=1,2,...
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The optimal estimate for the state (/N ) based on the data vector y™N can stil
be obtained from the one-step Kalman predictor as:

#(NIN) = #(N|N — 1) + Ko(N)e(N)

—1
where Ko(N)=P(N)CT|CP(N)C'+ V2| ~€R™ s the Kalman filter
gain matrix involving the state prediction error variance P(N) € R™*" given by:

P(N+1) =AP(N)A" + Vi — K(N) [CP(N)CT + Vo] K(N)"

with the one-step Kalman predictor gain matrix K (V) € R"*? equal to:

K(N)=[AP(N)CT+Vi,] [CP(N)CT+V5]

The overall equations of the Kalman filter are:

y

#(N4+1|N) = AZ(N|N—1)+Bu(N)+ K (N)e(N)
§(N|N—1) = C#(N|N—1)

. )
s Z(N|N) =
)
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Predictor/corrector form of one-step Kalman predictor

The so-called predictor/corrector form provides a numerically reliable formulation of
the equations involved in the one-step Kalman predictor, where the transition from
Z(N|N — 1) to Z(N + 1|N) is performed in two steps:
e first, the filtered estimate (/N |IV) is derived from Z(N|N — 1) making use
of the Kalman filter gain matrix Ko (V)
e then, the one-step prediction (/N +1|NV) is derived by updating z (N | V)
In fact: Z(N+1|N)=AZ(N|N—-1)+Bu(N)+K(N)e(N)=

= A#(N|N—1)+Bu(N)+ [AP(N)CT+ Vi3] [CP(N)CT+ V3] " te(N) =
= A#(N|N—1)+Bu(N)+AP(N)CT [CP(N)CT+Va] " 'e(N)+
+Vi2[CP(N)CT+Va] " e(N) =

= A#(N|N—1)+AP(N)CT [CP(N)CT+V5] " e(N)+Bu(N)+

+Vig2 [CP(N)CT+Va] Le(N) =
:A{:i:(N]N—l)JrP(N)(JT[CP(N)CT+V2]_ e(N)}+Bu N+
+Vio :CP(N)CT+V2 e(N) =
= A[#(N|N—=1)+Ko(N)e(N)]4+Bu(N)+Vi2[CP(N)CT+Va] " e(N) =
= A&(N|N)+Bu(N)+Vi2[CP(N)CT+Va] " e(N)
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Note that, in the case V12 =0,,x, and V5 >0, where K(N)=AKy(N):
T(N+1N)=A[Z(N|N—-1) + Ko(N)e(N)| + Bu(N)=
=AZ(N|N) + Bu(N)
and then the equations are:
lep(N) C’T+V2] ! (filter gain)
[ —KO(N)C] P(N)[I,—Ko(N)C]"+ Ko(N)VaKo(N)T
— [I,,— Ko(N)C]

P(N) (measurement update)

N)—-Cz(N|N —1) (innovation)
— 1)+ Ko(N)e(N) (corrector)
(N)AT +V; (time update)
= AZ(N|N) 4+ Bu(N) (predictor)
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Steady-state Kalman predictor

Let us consider a discrete-time, linear time-invariant (LT1), dynamical system S
without any exogenous input, described by the state space model:

S, x(t+1) = Az(t) + v1(¢) f=1.9....
y(t) = Cu(t) + v2(t)
where x(t) € R"™ y(t) €RY v (t) €R"™ v2(t) € RY and assume that:

e v (t) and vy (t) are white noises with zero mean value that are uncorrelated with
each other, i.e., v1(t) ~ WN(0, V1) and v3(t) ~ WN(0, Vs) are such that:

vy (t)v1(t2)1] = Vid(ta — t1) (whiteness of vy (1))
:’U2 (tl)vg (tQ)T: — Vgé(tg — tl) (whiteness of v9 (t))
v1(t1)va(t2)?] = Onxg, VE1,t2  (uncorrelation of vy (t) and va(t))

e AcR™" CeR¥*" V;=B,Bl e R"™" V€ R?*4 are known matrices

e the initial state (¢t =1) is an unknown random vector: x(t=1)~ (Z1,P),
with known Z1 € R™ and P;€ R™*"™, which is uncorrelated with v1 () and vs (1)
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The output measurements ¥(t) are available fort = 1,2,..., N
Goal: estimate the state (/N + 1) using a linear time-invariant predictor

Question: under which conditions the Kalman predictor gain K(N) converges
to a constant matrix K called steady-state gain , i.e., limpy _soo K(IN) = K ?
Since K (V) involves the variance P(N') computed using the Difference Riccati
Equation (DRE), under which conditions PP (V') converges to a constant matrix P ?
In this case, the DRE becomes static or algebraic and may be written as:

P =APA" +V, — APCT(CPCT + V) tCcpAT

known as Algebraic Riccati Equation (ARE) , whose solution is P
The corresponding steady-state Kalman predictor  /C°° is described by the model:

Z(N+1|N) = AZ(N|N—1) + Ke(N)
K= :9 9(N|IN-1) = CZ(N|N-1)
 e(N) = y(N) - GNIN 1)
where the steady-state gain matrix X € R?*9 s glven by:

K = APCH(CPCT4+V,)™!
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e The predictor IC° is a LTI dynamical system with input y() and state equation:
Z(N+1|N)=AZ(N|N—1)+ Ke(N)= AZ(N|N—1)+ K[y(N) — (N | N—1)]
= AZ(N|N-1)+K[y(N)-CZ(N|N—1)]=(A—- KC)&(N|N—1)+ Ky(N)
the internal asymptotic stability of X.°° depends on the eigenvalues of A — K C:
JC°° is asymptotically stable if and only if ‘)\i(A — l_(C)| <1, Vi
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The asymptotic stability of C°° preserves the predictor performances from disturbances

and uncertainties, as well as it guarantees the boundedness of the state prediction error
In fact, in absence of noise (i.e., assuming v1 (t) = 0 and vo(t) = 0, Vt > 1),
the prediction error of the state (/N + 1) is given by:

i(N+1)::B(N+1)—:i:(N+1|N):

= Az(N) 4+ v (N) - [(A—- KC)

= Ax(N) — (A— KC)Z(N|N —

= (A— KC)z(N) - (A—- KC)2

= (A— KC)[z(N)—2(N|IN —-1)] = (A— KC)Z(N)

4

F(t)=(A—KC) 'i(t=1)=(A-KC)" [a(t=1)—2(t=1|0)],vt>1
If A—KC'is such that | \;(A—KC)| <1,Vi = lim Z(¢)=0, VZ(t=1|0),

t
i.e., £(t) asymptotically converges to x(t) |ndepende—n>tly of z(t=1|0)

Moreover, if C°° is asymptotically stable, then C°° is also BIBO-stable and
z(t) is bounded for any bounded noise v1 (t) and vy (t)
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Result #1 : Let A be asymptotically stable, i.e., [A\;(A)| < 1, Vi. Then:

e for any positive semidefinite initial condition, the DRE solution asymptotically
converges to the same matrix P that solves the ARE

e the steady-state Kalman predictor X is asymptotically stable

Result #2 : Let the data generating system S be such that:

e the couple (A,C") is observable, i.e., the rank of the observability matrix of (4,C)
definedas |[CT ATCT (AT)2CT ... (AT)"~1C"] isequalto n=dim(x)

e the couple (A,B,) is reachable, i.e., the rank of the reachability matrix of (A,B,,)
defined as [B,U AB, A*B, --- A”_lBU} is equal to n, where B, is any
matrix such that the variance of the process noise v1 canbewrittenas V1 =B, Bg

Then:

e for any positive semidefinite initial condition, the DRE solution asymptotically
converges to the same matrix P that solves the ARE

e the matrix P is positive definite
e the steady-state Kalman predictor JC°° is asymptotically stable
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Generalization

Let us consider a discrete-time, linear time-invariant (LT1), dynamical system S with an
exogenous (deterministic and known) input u() described by the state space model:

S:{a:(t+1):Ax(t)+Bu(t)+fu1(t) b 19
y(t) = Cz(t) + Du(t) + v2(t) o
where z(t) ER"™, y(t) € RY u(t) eRP, vy (t) € R", vy (t) € RY and assume that:
e Ac R"™" B e R"P (e RI*"™ D e RY*P are known matrices
° u() may possibly depend on the output y() through a causal feedback as

u(t) = f(y(t),y(t —1),y(t —2),...), Vt
v1(t) and vo () are white noises with zero mean value that may be correlated if
considered at the same time instant but are uncorrelated at different time instants:

E[Ui(tl)?}j(tz)T] = %j&(tz — tl), 1= 1,2; j = 1,2;
Vi = B, Bl € R"*" V, € R9%Y, V5 € R™*4 are known matrices

the initial state «(t=1) is an unknown random vector: z(t=1)~ (z1,P1),
with known Z1 € R™ and P;€ R™*"™, which is uncorrelated with v1 () and vs (1)

the output measurements ¥(t) are available fort = 1,2,..., N
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e The optimal estimate for (/N 4 1) based on the data vector 3*" is given by:
2(N +1|N) = AZ(N|N — 1) + Bu(N) + Ke(N)
with K € R"*9 = steady-state predictor gain matrix, defined as:
K = [APCT + V15 [CPCT + V3]
and P e R™¥™ = steady-state variance of the state prediction error, solution of:

P=APA" + Vi — K [CPCT + V5] K

e The overall equations of the steady-state one-step Kalman predictor are:
Z(N+1|N) = AZ(N|N—1)+Bu(N)+Ke(N)
K= : ¢ §(N|N—1) = CZ(N|N—1)+Du(N)
e(N) =y(N) —g(N|N-1)
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e Note that [C°° is a LTI dynamical system described by the state space model:
Z(N+1|N) = AZ(N|N—1)+Bu(N)+Ke(N) =
= AZ(N|N—-1)+Bu(N)+K[y(N)—g(N|N-1)] =
= AZ(N|N—-1)+Bu(N)+Ky(N)—K[CZ(N|N —1)+Du(N)]
= (A-KC)Z(N|N—-1)+(B—KD)u(N)+Ky(N) =
u(N )]

= (A-KC)&(N N—1)+[B—KD K} [y(N)

o

§(N|N—1) = C2(N|N —1)+Du(N)

— Ao #(N|N—=1) + By [

= Ca(NIN=1)+|D 0y, BE ﬂ:

o

— Ok (N|N—1) + Dyoe [
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e Under MATLAB, the LTI dynamic system S is described by the state space model:
S . { x|n + 1] = Ax|n| 4+ Bun| + Gw|n]
' yn| = Cx|n| + Duln| + Hw|n| + v|n]
that corresponds to the standard state space model of S with:
W v, Vv, G—1,, H<— Oixn

= it can be rewritten as: [ ]
x[n+ 1] = Ax[n] + Bu[n] + Gw[n] = Ax[n]+ [Ba G} [;[2]]

ufn] ]

w(n]|

:Agxmy+33[

= under MATLAB, S can be defined as:
S=ss (A, [B,eye(n)],C, [D,zeros(gq,n)],1)

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 47



8% politecnico di Torino - DET M. Taragna

e Under MATLAB, the steady-state one-step predictor JC°° can be computed as:
[Kalman_pred, Kbar, Pbar, KObar]=kalman (S,V1l,V2,V12)
where:

S — state space model of S = ss(Ag, Bs,Cs,Dgs, 1)
Vi =V, = B, Bl € R"*" = variance matrix of vy
V2 = V5 € R?7%9 = variance matrix of vo

V12 = Vo € R"*9 = covariance matrix of v1 and v9

and:

Kalman pred = state space model of K°° = ss(Ajx By ,Cicoc ,Dicec,1)
Kbar = K = (APCT+V15)(CPCT+V5) "t eR">4
Pbar = P € R™ ™ solution of the ARE
P — APAT+V; — R(CPOT+Vy) KT
KObar = Ky = PC7T [C’PC’T+V2} L eRnxa
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Predictor/corrector form of steady-state predictor

X(t=1) unknown

1
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Linearization of nonlinear dynamic systems

Given a discrete-time, nonlinear, time-variant, dynamical system S described by:

3:{ x(t+1) = f(t,x(t), ul(t)) F=1.92
y(t) = h(t, (), u(t)) o
and the nominal movement Z(t) corresponding to nominal (%) and (), define:
e the state perturbation 0z (t) = x(t) — z(t) = «x(t) = z(t) + dx(t)
e the input perturbation du(t) = u(t) — u(t) = u(t) = u(t) + du(t)
e the output perturbation dy(t) = y(t) — y(t) = y(t) = y(t) + dy(t)
The perturbation dynamics are well approximated by the linearized dynamic system  Sy:

beli +1) = A@Dda(0) + BOID
St { T st Z ety + Dty T B2
_Of(") = . Of()

oy wggi?gg, B t) =~ T ou z(t)=2(t) - Jacobians of f with respectto x and u

w(t)=u(t)
Oh(- _ Oh(-
— 8;) z(t)=%(t)" D(t) = % 2(t)=z(t) * Jacobians of h with respect to x and u
w(t)=a(t) w(t)=u(t)
if 6x(t), du(t)and dy(t) are sufficiently small (note that Sy is linear and time-variant)
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Nonlinear Kalman filtering

Let us consider a discrete-time, nonlinear, time-variant, dynamic system S described by:

S = fha(t) roll) oy g
y(t) = h(t,z(t)) + va(t) o

where x(t) € R™, y(t) € RY, v1(t) € R", va(t) € RY, and assume that:
e v (t) and vo (%) are white noises with zero mean value such that:

'vl(tl)vl(tg) | =Vid(te — 1) (whiteness of v (1))

?Jg (t1)va(ta)l] = Vad(ta — t1) (whiteness of vo (1))
v1(t1)v2(t2)?] = Opxy, Vti,ta2  (uncorrelation of v1 (t) and vo(t))

o f: R” —R™ and h : R™ —R? are known nonlinear functions,
Vi € R" ™ and Vo, € R?7%9 gre known matrices

e the initial state x(t=1) is an unknown random vector: x(t=1) ~ (Z1,P1),
with known Z1 € R™ and P;€ R™*"™, which is uncorrelated with v1 () and vs (1)

e the output measurements y(t) are available fort = 1,2,..., N

e Goal: estimate the state (/N + 1)

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 51




<
4 ﬁ”l\%

S 4
\&;

“%% Politecnico di Torino - DET M. Taragna

Linearized Kalman predictor
e Letthe nominal movement Z(-) be solution of the deterministic difference equation:
r(t+1) = f(t,z(t), z(t=1) =FEz(t=1)]=2z
and the corresponding nominal output () be defined as:

y(t) = h(t,z(t))

Z(-) and (-) can be a priori computed, since they are independent of the data

e The nonlinear system S can be well approximated in the neighborhood of JE()
by the linearized dynamic system Sy described by the state space model:

) Sx(t+1) = A(t)dx(t) + v () B
Se: { oy(t) = C(t)dx(t) + va(t) P=12.

oy(t) = y(t) — y(t)

x(t)=z(t)
and the initial state (¢t =1) is an unknown random vector: dx(t=1) ~ (0,Py)
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The optimal estimate for the state perturbation dx(/N +1) based on N data is
provided by the one-step Kalman predictor described by the state space model:

S2(N+1|N) = A(N)sz(N|N—1) + K(N)e(N)
K:{ Sy(N|IN—1) = C(N)ész(N|N—-1)
e(N) = dy(N) = 3y(N|N ~1)
where the linearized Kalman predictor gain matrix [_((N) IS equal to:
K(N)=A(N)P(N)C(N)T [C(N)P(N)C(N)"+Va]
with the state prediction error variance P(N) given by the following DRE:
P(N+1)=AN)PMNAN)"+Vi—KN) [CN)P(NCN) "+ Vo] K(N)
assuming as initial values: g:;(l]()) =0,P(1) =P
Since dx(t)=x(t)—x(t) = x(t) =2(t)+dx(t), where Z(t) is deterministic
=> the estimate for the state (/N + 1) based on [N data is given by:
#(N+1|N) = Z(N+1) + oz (N+1|N)
where @(J\H—l\N) is provided by the one-step Kalman predictor /C

1
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e The estimate for the state (/N +1) based on /N data can be approximated as:
2(N+1|N) = Z(N+1) + dz(N+1|N) =
= F(N, Z(N))+A(N)3z(N|N—1) +K (N) [5y(J\r)—S§(N|N_1)] ~
~ f(N,#(N|N-1))
FN&(NIN=1)) + K@) [y(V)~5(0) ~CM)dx(NIN ~1)| ~
~ J(N,&(NIN=1)) + KO {y() — | AN, 2(N) +CN)oa(N|N -1) | } ~

~ h(N,2(N|N =1))
~ f(N,2(N|N-1)) + KN [y(N) h(N (NIN 1))]
by exploiting the linearizations of f

ft, z(t) ~ f(t,2(t) + Alt
h(t,z(t)) = h(t,z(t)) + C(
evaluated att = N and x(t) =
f(N,Z(N|N—-1)) =
W(N, #(N|N—1)) ~ h(N x(
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e By summarizing, the estimate for the state (/N + 1) of the nonlinear system S
can be provided by the linearized (or tangent) Kalman predictor ~ L/C described
by the following nonlinear state space model.

[ A(N+1|N) = f(N,#(N|N=1)) + K (N)e(N)
LK :{ §(NIN=1) = h(N, #(N|N=1))
e(N) =y(N) —g(N|N-1)

\

where K(N') depends on the matrices A(IV) and C'(IV) of the linearized system Sy,
which are a priori computed around the nominal movement Z(-) and then do not
take into account the information on the actual state x(-) provided by the data

4

the perturbations introduced by the noises may lead to huge estimation errors

4

the linearized Kalman predictor is not used in the practical applications
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Extended Kalman predictor

Much better results are obtained by linearizing the functions f (¢, x(t)) and h(t, x(t))
around the last state estimate (/N |N —1) instead of the nominal movement Z(t),
i.e., by considering instead of the matrices A(/N) and C'(N) the following matrices:

of(t,x) Oh(t,x)

ox [N CININAD==5 =y

:U(N)::%(N|N—1) z(N)=2#(N|N-1)

which allow to define the extended Kalman predictor £ /C described by the model:
Z(N+1|N) = f(N,#(N|N—1)) 4+ K(N)e(N)
EK:{ §(N|N=1) = h(N,2(N|N—1))
\ e(N) =y(N) — g(N|N—1)
where the extended Kalman predictor gain matrix /' (/V) is equal to:
K(N)=A(N|N-1)P(N)C(N|N-1)"[C(N|N-1)P(N)C(N|N-1)4V;] ™
with the state prediction error variance P(N) glven by the followmg DRE:

P(N+1) = ANIN-1) P(N) ANIN-1) "+ Vi—K (V] C (NIN-1) P (V) C(NIN-1) Vo K (V)

A(NIN-1)=

;
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e From a computational point of view, the extended Kalman predictor is much more
demanding than the linearized one, since the linearizations cannot be computed
off-line and just once, but have to be performed at the run-time, because they
depend on the state estimate provided by the predictor at the previous step

e Extended Kalman predictors are widely used in many practical application fields
where state estimates of nonlinear systems are involved, like in mobile robot
localization, communication systems (e.g., Global Positioning Systems or GPS), etc.

e Extended Kalman predictors allow also to estimate uncertain physical parameters,
which have to be suitably considered as state variables added to the original ones
to produce an augmented state vector

e The variance matrices V7 and V5 play a crucial role in the Kalman filtering:
— V5 is chosen to account for the uncertainty on the measurements

— V7 is chosen to allow a suitable trade-off of the confidence level between the
measurements (i.e., the a posteriori information) and the a priori information
on the initial state (i.e., £1 and )
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