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Estimation problem

The estimation problem refers to the empirical evaluation of an uncertain variable, like
an unknown characteristic parameter or a remote signal, on the basis of observations

and experimental measurements of the phenomenon under investigation.

An estimation problem always assumes a suitable mathematical description (model)

of the phenomenon:

e in the classical statistics, the investigated problems usually involve static models,

characterized by instantaneous (or algebraic) relationships among variables;

® in this course, estimation methods are introduced also for phenomena that are

adequately described by discrete-time dynamic models, characterized by
relationships among variables that can be represented by means of difference

equations (i.e., for simplicity, the time variable is assumed to be discrete).
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Estimation problem

6(t) : real variable to be estimated, scalar or vector, constant or time-varying;
d(t): available data, acquired at N time instants t1,%s, ..., tN;

T = {t1,ta,...,tN} : setof time instants used for observations, distributed with

regularity (in this case, T' = {1, 2, ..., N }) or non-uniformly;

d={d(t1),d(ts),...,d(tn)} : observation set.

An estimator (or estimation algorithm ) is a function f(-) that, starting from data,

associates a value to the variable to be estimated:

The estimate term refers to the particular value given by the estimator when applied

to the particular observed data.
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Estimation problem classification

1) O(t) is constant => parametric identification  problem:
e the estimator is denoted by 9 or by 9T;

e the true value of the unknown variable (if makes sense) is denoted by 6,;

2) 0(t) is a time-varying function:

e the estimator is denoted by 6 (¢t|T°) , or by 0 (t|/N') if the time instants for

observations are uniformly distributed;
e according to the temporal relationship between t and the last time instant £y :
2.a) if ¢ > €y => prediction problem;
2.b) if ¢ = € => filtering problem,;

2.c) if t1 <t <tpn => regularization or interpolation or smoothing problem.

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 3



% politecnico di Torino - DET M. Taragna

Example of prediction problem: time series analysis

Given a sequence of observations (time series or historical data set) of a variable y:

y(1),y(2),..-,y(t)
the goal is to evaluate the next value y(t + 1) of this variable

4

it is necessary to find a good predictor (¢ + 1|t), i.e., a function of available data

that provides the most accurate evaluation of the next value of the variable y:
gt +10t) = f (y(@),y(t =1),...,y(1)) =yt +1)

A predictor is said to be linear if it is a linear function of data:

3(t+111) = ar(Dy(t) +aa(t(t = 1. +ar(y(1) =3 an(Olylt—Fk+1)
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A linear predictor has a finite memory n if it is a linear function of the last n data only:
n
y(t+1|t)=a1(t)y(t)+az(t)y(t—1)+...Fa,(t)y(t—n+1)=> at)y(t—k+1)
k=1

If all the parameters a;(t) are constant, the predictor is also time-invariant:

ary(t —k+1)
=1

g(t+1{t) = ar1y(t) + a2y(t—1) + ... + apy(t—n+1)=
2

and it is characterized by the vector of constant parameters

0=[a ay - ap ) €R"

4

The prediction problem becomes a parametric identification problem.

Questions:
e how to measure the predictor quality?
e how to derive the “best” predictor?
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If the predictive model is linear, time-invariant, with finite memory n much shorter
than the total number of data measured up to time instant ¢, its predictive capability

over the available data y(7), 7 = 1,2, ..., t, can be evaluated in the following way:
e at eachinstant¢ > n, the prediction ¢j(7 + 1|7) of the next value is computed:
G(i+1li)=a1y(i)+ay(i—1)+.. . +apy(i—n+1)=>",_ apy(i—k+1)
and its prediction error € (7 4 1) with respect to (7 + 1) is evaluated:
e(t+1)=y(t+1)—g(e+1]2)
e the model described by 6 is a good predictive model if the error € is “small” over

all the available data = the following figure of merit is introduced:

S (k) (sum of squares of prediction errors)
k=n-+1

e the best predictor is the one that minimizes J and the value of its parameters is:

0" = arg min J(0)

OcR”
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For example, ift = 100 and n = 10 < t,foragiven§ = [qy - -+ ayg ] it results:
§(11]10) = a1y(10) + ... + a10y(1) = e(11) =y(11) — g(11]10)
9(12]11) = a1y(11) 4+ ... 4 a10y(2) = e(12) =y(12) — g(12|11)

| 9(100|99) = a1y(99) + ... + a10y(90) = £(100) = y(100) — §(100]|99)
and then the behaviour of the prediction error sequence 5() IS plotted:

4

I
90 {=100
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Fundamental question: is the predictor minimizing J necessarily a “good” model?

The predictor quality depends on the fact that the temporal behaviour of the

prediction error sequence £(-) has the following characteristics:
® its mean value is zero, i.e., it does not show a systematic error,

e itis “fully random?”, I.e., it does not contain any regularity element.

In probabilistic terms, this corresponds to require that the behaviour of the error £(-)

is that of a white noise (W IN) process, i.e., a sequence of independent random
2.

variables with zero mean value and constant variance o
e(-) =WN (0,0°)

A predictor is a “good” model if 5() has the white noise probabilistic characteristics.
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Example #1: prediction error with constant systematic error
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Example #2: prediction error with sinusoidal systematic error
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Example #3: "fully random" prediction error, with no systematic error
4 !
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Then, the prediction problem can be recast as the study of a stochastic system , i.e.,
a dynamic system whose inputs are probabillistic signals; in fact:

g(tlt —1) = ary(t —1) +a2y(t —2)+ ...+ any(t —n)
e(t) = y() —g(t)t —1)

y(t) = g(tlt = 1) +e(t) = ary(t = 1) + a2yt = 2) + ... + any(t —n) +£(t)

=

represents a discrete-time LTI dynamic system with output ¥(¢) and input £(t)

4

Z-transforming, with Z[y(t—k)] = 27*Y(z) and 27! the unitary delay operator:
Y(2) =a127 Y (2) + a2z %Y (2) + ... + anz  "Y(2) + &(2)

4

1 2™
H(Z) — — —1 —2 “n T n n—1 n—2
e(z) l—arz7l—agz72—...—anz Z"— a1z —anz — . ..—an

represents the transfer function of a LTI dynamic system = in order to be a “good”

model, its input £(-) shall have the white noise probabilistic characteristics.
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Classification of data descriptions

e The actually available information is always:
— bounded = the measurement number /N is necessarily finite;

— corrupted by different kinds of uncertainty (e.g., measurement noise).

e The uncertainty affecting the data can be described:

— In probabilistic terms = we talk about statistical or classical estimation ;

— In terms of set theory, as a member of some bounded set =

we talk about Set Membership or Unknown But Bounded (UBB)estimation .
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Random experiment and random source of data

S : outcome space , i.e., the set of possible outcomes s of the random experiment;

JF : space of results of interest , i.e., the set of the combinations of interest

where the outcomes in .S can be clustered:

P(-) : probability function defined in F that associates to any event in F

a real number between O and 1.

E=(S,F,P(:)) : random experiment
Example: throw a dice with six sides to see if an odd or even number is drawn =
e S=1{1,2,3,4,5,6} is the set of 6 sides of the dice;
e F={A,B,S, 0}, with A ={2,4,6} and B = {1, 3,5} the results of
interest, i.e., the even and odd number sets;
e P(A) = P(B) = 1/2 (if the dice is not fixed), P (S) = 1, P () = 0.
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A random variable of the experiment £ is a variable v whose values depend on the
outcome s of £ through of a suitable function ©(-) : S — V', where V is the set of
possible values of v:
v=(s)
Example: the random variable depending on the outcome of the throw of a dice with

six sides can be defined as
+1 fse A=1{2,4,6}

v =¢(s)
-1 ifse B={1,3,5}

A random source of data produces data that, besides the process under
investigation characterized by the unknown true value 6, of the variable to be

estimated, are also functions of a random variable; in particular, at the time instant ¢,

the datum d(t) depends on the random variable v(%).
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Random source of data;

Random
experiment

Outcome of £

“True” G
(0)

Random

variable (noise)

bf >

d (t) U “Re_al” actual datum
O (noise-corrupted)

parameter l

7 ()

Parametric model “ldeal” datum
of the system (noise-free)
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Probabilistic description of data

In the probabilistic (or classical or statistical) framework, data d are assumed to be
produced by a random source of data S, influenced by:
e the outcome s of a random experiment £

e the “true” value 6, of the unknown variable to be estimated
d=d(s,0,)
Y

data d are random variables, since they are functions of the outcome s

Y
A full probabilistic description of data is constituted by
e its probability distribution  F'(q) = Prob{d(s,0,) < q} or
_ dF(q)
dgq

e its probability density function  f(q)

, often denoted by p.d.f.
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Estimator characteristics

A random source of data S, influenced by the outcome s of a random experiment £

and by the “true” value 6, of the unknown variable to be estimated, produces data d:

d=d(s,0,)
4

data d are random variables, since they are functions of the outcome s

4

the estimator f(-) and the estimate € are random variables too, being functions of d:

é: f(d) — f(d(S,HO))

4

the quality of f() and 9 depends on their probabllistic characteristics.
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Estimator probabilistic characteristics

e No bias (in order to avoid to introduce any systematic estimation error)

e Minimum variance (smaller scattering around the mean value guarantees higher

probability of obtaining values close to the “true” value 0,)

e Asymptotic characteristics (for N — 00):

— guadratic-mean convergence
— almost-sure convergence

— consistency
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Estimator probabilistic characteristics

An estimator is said to be unbiased (or correct) if

B 0] =0,

0
-2

An unbiased estimator does not introduce any systematic estimation error.
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Estimator probabilistic characteristics

. . AL . e . .
An unbiased estimator 6 is said to be efficient (or with minimum variance ) if

Var[é(l)] < Var[9(2)], V9(2) + 9(1)

0.7+
<

Zé\(l) Zs(z)

0.6

05F

0.4

0.3

0.2

0.1

$W1= E§®1=9°

| |
-2 -1 0 1 2 3 4 5
9

Smaller scattering around the mean value = higher probability of approaching 6,,.

0
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Estimator probabilistic characteristics

An unbiased estimator converges in quadratic meanto @, i.e., {sz On=0,,if
— 00

lim E [||9N _ eoﬂ — 0
N — o0

1

where ||z|| = \/2?21 x?, Vx € R™,is the Euclidean norm.

An unbiased estimator such that ]\}im Var {HN} = 0 converges in quadratic mean:
— 00

N = 10000
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Sure and almost-sure convergence, consistency

An estimator is function of both the outcome s of a random experiment £ and 6,:
0=f(d)=f(d(s,0,) = 0=80(s,0,)

If a particular outcome s € S'is considered and the sequence of estimates 6y (s,0,,)

is evaluated for increasing IV, a numerical series 01 (3,0, ), 62(35,0,), . . ., is derived

that may converge to 8, for some s, and may not converge for some other s.

Let A be the set of outcomes S guaranteeing the convergence to 6,:
e if A = 5, then we have sure convergence , since it holds Vs € S’

o if A C S, considering A like an event, the probability P(A) may be defined;
if A is such that P(A) = 1, we say that 9N converges to 8, with probability 1:

lim Oy =6, w.p.1
N —o0

we have almost-sure convergence = the algorithm is said to be consistent .
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Example

Problem: NN scalar data d; with the same mean value F' |d;| = 6, with variances
Var [d;] possibly different but bounded (o € R : Var[d;] < 0% < oo, Vi);

data are uncorrelated, I.e.:

E{d; — E|d;]}{d; — Eld;]}] =0, Vi#j

Estimator #1 (sample mean):

® |t IS an unbiased estimator:
Elon| =B |% SN, d

® it converges in quadratic mean:

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 22
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‘90))2} — ﬁE {(27{\71
sy (di —00)% + 3200 (di — )Zé\le,j#i (dj —
AL E|(di=00) |+ X B[ (di—60) S0 i(d;
w1 Var(d] < 25> ,0°=0°/N
J
2
lim Var [9]@ < 1im Z =0

N — o0 N — 0

Y

the algorithm converges in quadratic mean, since it is unbiased and with lim n_, o Var [
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Estimator #2;

On = d;

® it is an unbiased estimator:

E [éN] = Ed;] = 6,

e it does not converge in quadratic mean:

Var [éN] —E {(éN _E [éNDQ} —E [(dj —90)2} = Var[d;] < o

and then it does not vary with the number [V of data

4

the estimation uncertainty is constant and, in particular, it does not decrease

when the number of data grows.
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Estimator #3 (weighted sample mean):

. N
On = Z o d;

1=1

e itis an unbiased estimator if and only if Z,ﬁil a; = 1, because

Blon| = B|ZY, aidi| = TN, i Bldi] = 60 T i = 00 & T 00 =1

Note: the algorithm #1 corresponds to the case o; = % V1;

the algorithm #2 corresponds to the case ov; = 1 and o; = 0, Vi # j

® it can be proven that the minimum variance unbiased estimator has weights
—1
Q ﬁ\f: 1
Q; = o =
" Varld]’ =1 Var|d;]

Intuitively, more uncertain data are considered as less trusted, with lower weights
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e the variance of the minimum variance unbiased estimator is

Var[in] = 8 [ (o~ 2 [13])"] = B [(£2s 0] =

=E (Zfll aidi — Y0, Owﬁo)Q} =K |:(Z7];\L1 i (di — 0

= B |3l of (di—00)" +30;0 1 oi(di —00) 35514 4 ej(dj—0o

= SN 102 B[(di—00) |+ N i B[ (di—00) 00 4005 (d —00)] =

a? 5 1
arldi] = a Z'I’ 1Va7“[d] B

N 2 N
=Y _aVar|d;|=) :_

== |2 1[di]}_1 <[z %}_1 -

=1 var N

e the minimum variance unbiased algorithm converges in quadratic mean, since

2

lim Var {9]\7} < lim 7 =0
N —00 N—ooo N
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Crameéer-Rao inequality

The estimation precision has its own intrinsic limits, due to the random source of data:
In fact, the variance of any estimator cannot be less than a certain value, since data are
always affected by noises and the corresponding uncertainty reflects into a structural

estimate uncertainty, which cannot be suppressed simply by changing the estimator:

e in the scalar case 0 € R, the following Cramér-Rao inequality holds

for any unbiased estimator 6:

Var { 0 } > m !
where m is the Fisher information quantity  defined as

m=FE {{% In £(d(®, 9)}2}

d(Q)E R are the data generated by the random source for a generic value 6 of the unknown

2
—- _E [8% In f(d(®), 9)] >0

6=0, 0=0

variable, not necessarily the “true” value 6,; f(q,@), qc RN, is the probability density function of g;

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 27
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e in the vector case 8 € R, for any unbiased estimator 0,
the Cramér-Rao inequality becomes

A

Var { 0 } > ML
where M is the nonsingular Fisher information matrix
M = [mw] c R"x"

iy = —F [l W 1@00] _, Vij=12.n

From this inequality it follows that

Var [91} > [M_l}..

, Vi=1,2,....n

17

An unbiased estimator is efficient ifit provides the minimum variance, i.e., ifits variance
achieves the minimal theoretic value assessed by the Cramér-Rao inequality:

Var[@} =m~ ' or Var[@} = M1
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Least Squares estimation method

Linear regression problem : given the measurements of n + 1 real variables y(t)

u1(t), ..., uy(t) over atime interval (e.g., fort = 1,2,..., N), find if possible the

values of n real parameters 01, 0, . . ., 8,, such that the following relationship holds

y(t) = Oruq(t) + ... 4+ O0un(t)

In matrix terms, by defining the real vectors

(V] (t)
0 — :

Un(t)
In the actual problems, there exists always a nonzero error £(t)

$

N
by defining .J(8) = > &(t)*, the problem is solved by finding §*= arg min J(4).
t=1 HERn

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 29
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In order to find the minimum of the figure of merit .J, we have to require that

dJ(o) _ { d.J(0) d.J(0) } _

do df1 don

]2;61 e(t)Ql - t: d;li [a(t)2] N tzl d;lz' {(y(t) e 6)2} N

go(t)T(9> wit) =0, i=1,2,....n &

— )7 0) o))" =
9<P(t) ) zy<>so<t>T—
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The relationship
N

> (¢ ¢()7] 0 = 3 o(0)y(0)

t=1
is a system of n scalar equations involving n scalar unknowns 64, 65, ..., 8,, thatis

called normal equation system
N T N -
e if the matrix Y () ©(t)” is nonsingular (< det > o(t) p(t)" # 0, known

t=1 t=1
as identifiability condition), then the normal equation system has a single unique

solution given by the Least Squares (LS) estimate

rorey B prere)

N
o if S (t) p(t)" is singular,it can be proved that the normal equations have an
t=1

Infinite number of solutions, due to their particular structure.
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The stationarity condition — ;= 419) — () does not guarantee that  is a minimum of J(6)
—> we have to consider the Hessian matrix

TID_ LTPOT 4oy (v - w07 0) "] =

do? do do

25, (00T - T e07)" | =

25Ny (1) + 250, 0(0) ()7 0] =

25> Dot e 0=23 o(t) ()"
t=1 t=1

that turns out to be positive semidefinite, since Vo € R"

2
t=1 t—1 =

4

9 is certainly a (local or global) minimum of J(0).
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The Taylor series expansion of J(H) in the neighborhood of é’ allows to understand if
0 is a local or global minimum:
JO)=J0)+ =55~ 0

dJ(0)
a0 19—

—A)+...=J(é)+§(e—é)Tm (6—0)

d92 o2 |

since the term s zero (9 is a minimum) as well as all the J () derivatives of order greater

than two (J(6) is a quadratic function of )

~ 2 2
w—mT%%@éw—m,iﬁﬁé=2ziﬁmmmﬁ

(0)
d192

2
o if 27]5\;1 o(t) p(t)" is nonsingular = dd‘g(f) s positive definite =
0
the quadratic form is positive definite and it is a paraboloid with a unique minimum

— f is the global minimum of J(0);

J(0) — JO) = 1

IS a positive semidefinite quadratic form, since |s positive semidefinite:

o if 27]5\;1 o(t) p(t)" is singular = the quadratic form is positive semidefinite

and it has an infinite number of local minima, aligned over a line tangent to .J ().
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The obtained results may be rewritten in a compact matrix form by defining:

o))"

p(N)T ]

ur(l) ... wup(l) .
: : ER n, Yy =

| u1 (N)

_y(l)_

c RN

-

4

the normal equation system becomes:

O Ph = oy

and, if ®1 ® is nonsingular (identifiability condition), it has a unique solution given by

the least squares estimate:

OLs = [07®] " ®Ty

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification
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Proof:

émw o(t)T = §

i () W) u(®) un(t)

lur(t) - un(t)] :é

un(t) @) - ()
S i) Y wa () ua() |

SN L un @) - SN ()

; DT [w@) o owm @) ]|
o= [p1) o] | =
_go(N)T_ un(l) ... un(N)_ I

S i) B w @ ua(t)
S un@ui(t) - S uR )
u (¢) S ua () ()
ol SN un () y(t) |

; ) | [ w0 | [ S e @ v |
?y=[e) ]| S |
Ly | (1) () [y | [ S un(®) y() |
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Probabilistic characteristics of least squares estimator

Assumptions:
~1
e the identifiability condition holds: 3 [®1'®]|
e the random source of data has the following structure
T
y(t) =p(t) 0, +v(t), t=1,2,...,N
where v(t) is a zero-mean random disturbance =>

the relationship between y and w1, us, ..., Uy, IS assumed to be linear =

there exists a “true” value 6, of the unknown variable;

In compact matrix form, it results that:
y=®0, +v

v(1)

wherev =| : | € R is a vector random variable with E [v] = O.
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Under these assumptions, the least squares estimator becomes:
0 =[@®Td] 10Ty = [¢TP] 10T (Bh, + v) =
= [®T®]" 10T DO, + [T @] 1dTv =0, + [®T D] 1dTw
and it has the following probabilistic characteristics:

A

e it is unbiased , since its mean value E |0 | = 6,

A

E[f] = E[[@ch] -1 CIDTy] = [6T®] ' oTE[y] = [8T ] ' ®TE[®0, + v] =
= [®T®] " T (90, + E[v]) = [0T®] " 0Td0, = 0,

e If v Is a vector of zero-mean random variables that are uncorrelated and with the
same variance 0% (Varv]|=FE [UUT} —=o2IN), as in the case of disturbance v(-)

given by a white noise WN(0,02) = Var[0] = o2[®T ]!
Varld]= E :(é — E[0))(0 — E[é])T] —E [(é —0,)(0 — eo)T} =
= B|([0T0]1oTy) ([CI)TCI)]_1<I>TU)T] = E[[070] 1 dTuoT d[dTd] 1] =
= @1 @7 1T E[vv!| @[T ]! = [0 @] 1ol o2 In[@T @) 7! =
=o2[®1®] 1ol P[0T P = o2 (@ P] !
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e The variance 0,(2) of the disturbance v is usually unknown =-
: . y ’ : : ~92
under the same previous assumptions, a “reasonable” unbiased estimate o,

(such that E[62] = o2) can be directly derived from data as

2 J0)

v N —n

where N = measurement number, n = number of unknown parameters of 8,
. 12 . .
JO) =Y )| =N |y —e®)T 0] = ly— 00" [y — 20] =

= ((Iy — ®[@T®] " 10T)y)" (Iy — ®[OTP] 10T )y =
=yl'(Iy — ®[@T0] 7101 (Iy — 2[@T D] 10T )y =

=yl'(Iy — 29[ 0] 710" + [T @) 10T @[T D]~ 10T )y =
=y (Iy — 2[dT®] 71Ty

|
Var[d] = o2[®T®) ! = 62 [0T d] !
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Welighted Least Squares estimation method

With the least squares estimation method, all the errors have the same relevance,
since the figure of merit to be minimized is
N 2 T
Jrs(0)=S"N (t)®, where e(t)=y(t) —o®)" 0, t=1,2,...,N.
However, if some measurements are more accurate than some others, different

relevance can be assigned to the errors, by defining the figure of merit

N
Jwrs(0)=>q(t)e(t)” =" Qe
t=1
where q(t) > 0 are the weighting coefficients (or weights) fort = 1,2,..., N,
1) 0 ... 0 |

e
Q=ding(g)=| ~ " U fervoy oo |

c RV,

e(N)
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The Weighted Least Squares (WLS) estimate  minimizes the figure of merit Jyi/ 1, g (6’) ;
A —1
Owirs=|21Q®| " ®'Qy

If the disturbance v is a vector of zero-mean uncorrelated random variables with
variance X, the estimator 0y; 1, has the following probabilistic characteristics:

e it is unbiased , since its mean value E[0y 5] = 6,

Eldwrs|=E [[@TQ@] —1¢TQy} = [67Qd] 'PTQE[y] = [3TQd] 'STQE[D0,+v] =

= [07Qd] " T Q (D0, + Efv]) = [0TQD] " 0T QPI, = 0,
® its variance is
Var[0wrs)=E[(Owrs—E0wrs]) Owrs—Efwrs))T] =
= E[(Owrs—00)0wrs—00)T] = E [([@Tch]—lchQv) ([(IDTQ(I)]_lq)TQv)T} _
=E|[[21Q®] 1o1QuviQte[elQP] ] =
=[21Q®)| 1 ®TQE[wT] Q2[dTQ?] ! = [0TQP]~12TQ%,QP[TQP] !
and then it depends on the disturbance variance >.,;
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e it can be proved that the best choice for Q that minimizes V ar [0y 1.s] is

Q" = arg min Varlfwrs] = 271
Q=diag(q(t)) RN >

and in this case we obtain the so-called Gauss-Markov estimate :

bon= TS 18] '@l 1y

whose variance Is

Varlfau]= [27Q3] 10T Qx,Qe[dT Q]! =

Ty 1P 1T 1Y, QP[PTE 1]t
LEE
If in particular it results that >.,, = O'%IN =

. 1 4
dan = |07 LIyo| @7 Liyy = [070] 0Ty = by
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Maximum Likelihood estimators

The actual data are generated by a random source, which depends on the outcome s
of a random experiment and on the “true” value 6, of the unknown to be estimated.
However, if a generic value 6 of the unknown parameter is considered, the data can

be seen as function of both the value 6 and the outcome s =
the data can be denoted by d(?) (s), with p.d.f. f(g, ) that is function of 6 too.

Let 0 be the particular data observation that corresponds to a particular outcome s of

the random experiment:

5 = d9(3)
The so-called likelihood function is given by the p.d.f. of the data evaluated in 0:

L) = (a.0)],_s

The Maximum Likelihood (ML) estimate is defined as:

QML: arg max L(@)
OcR”
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Random source of data for a generic value 6 of the unknown parameter:

Random
experiment

Outcome of £

Generic 0

Random
! noise
. >
n ( ) J d(g) “Effective”

) e deal it generic datum
arametric model generic datum (noise-corrupted)

of the system (noise-free)

parameter l
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Example : a scalar parameter 0, € R is estimated using a uniqgue measurement

(i.e., N = 1), corrupted by a zero-mean Gaussian disturbance with variance 0%

—> the random source of data has the following structure:

y:90+v

where the noise v is a scalar zero-mean Gaussian random variable with p.d.f.

fla) =N (0,6%) = ——— exp ¢
Y 2O 203
Since v = y — 0, = the p.d.f. of data y generated by a random source where

a generic value 6 is considered instead of 8, is then given by

f(q,0) = \/%JU eXP<_(gg_%9) )z/\/(ﬁ,a%) =

LO) = £(0.0)], s = —— exp(‘<5‘9>):N(5,ai)

2
20%

f(q, 0) translates when the value of 6 changes = L(0) = f(q,0) |q:5 varies too.

270,

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 44



8% politecnico di Torino - DET M. Taragna

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 45



8% politecnico di Torino - DET M. Taragna

Maximum Likelihood estimator properties

The estimate 0, is:

e asymptotically unbiased: E (@ML) . 0,
N — 0o

e asymptotically efficient: Z@ML < X VO it N — oo

=0

e consistent: lim Zé
N — 00 ML

e asymptotically Gaussian (for N — 00)
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Example : let us assume that the random source of data has the following structure:
y(t) = (t,0,) +ot), t=1,2,....N < y=U(0,)+v

where (%, 8, ) is a generic nonlinear function of 6, and the disturbance v is a
vector of zero-mean Gaussian random variables with variance >, and p.d.f.

0=V = );d — exp (—30"%19)
(s € v

Sincev =y — \11(6’0) — the p.d.f. of data generated by a random source where a

generic value @ is considered instead of 6, is then given by

o) E——— R 107 (S R ()

V@m)Y det =,

1
V@m)N det £,

L(0) = f(q,0)|,—s =
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1
J@mY dets,
U

f(q,0)|,—s is an exponential function of 6

L(0) = f(q,0)|=s =

exp (~3 16— w(O) 2, [5 - w(6))

0yrp= arg max L(f) = arg min
HcR™ HER"™

R(0)
Problem: the global minimum of 2(6) has to be found with respect to 8, but R(6)
may have many local minima if ¥ (8) is a generic nonlinear function of the unknown

variable; the standard nonlinear optimization algorithms do not guarantee to find

always the global minimum.
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Particular case: W(6) = linear function of the unknown parameters = ®¢

4
R (6) is a quadratic function of @ : R (0) = [6 — ®0]" X1 [6 — BO]

4
there exists a unique minimum of R (6), if det(®1 X 1®) # 0

Y
((I)Tijlq)) - (I)TZ;15 — Gauss-Markov estimate —= 9GM —

Weighted Least Squares estimate using the disturbance variance 2.,

If 2, = O',%IN, i.e., independent identically distributed (i.i.d.) disturbance:

. . —1
Onir, = Oan = (CIDTCID) d1'§ = Least Squares estimate
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Gauss-Markov estimate properties

The estimate 6 s is:

e unbiased: E/ (@GM) — 0,

e efficient: ZéGM <2 Vo

e consistent: lim Zé =0
N — o0 GM

e Gaussian
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Bayesian estimation method

The Bayesian method allows one to take into account experimental data and a priori
information on the unknown of the estimation problem that, if well exploited, can
Improve the estimate and make up for possible random errors corrupting the data:

e the unknown 6 is considered as a random variable, whose a priori p.d.f. (i.e.,

In absence of data) has some given behaviour, mean value and variance

4

the mean value is a possible initial estimate of £, while the variance represents
the a priori uncertainty;

e as new experimental data arrive, the p.d.f. of 8 is updated on the basis of the new

iInformation: the mean value changes with respect to the a priori one, while the

variance is expected to decrease thanks to the information provided by data.
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Random source of data with a random unknown parameter 6:

Random

experiments
Outcome P

of £; >1 S, Outcome of £,
219,

@, (")

Random l o(s,) Random

parameter V

noise

7 (") D -
d(s,,6(s))

Parametric model “ldeal” datum “Effective” datum

of the system (noise-free) (noise-corrupted)
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A joint random experiment £ = £ X &5 is assumed to exist, whose joint outcome s
is the couple of single outcomes s1 and s3: s = ($1, S2):

e the unknown 6 is generated by a first random source &7 on the basis of
the outcome s7 of the first random experiment&; = 0 = 0(s1);

e the data d are generated by the second random source So, influenced by
— the outcome s, of the second random experiment £o
— the value 6(s1) of the unknown to be estimated

Cl — d(SQ, (9(81))

A generic estimator is a function of data @ = h(d) and its performances improve
as much as the estimate 6 is closer to the unknown to be estimated

4

by considering as figure of merit the mean squared error (MSE)
2
J(h(-)) = E[][0 — h(d)[]"]
the Bayesian optimal estimator is the particular function A* () such that

E[||6 — h*(d)[*] < E[|6 — h(d)|]°], VA()
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It can be proved that such an optimal estimator exists and it is given by:
h*(z) = F[0|d = ]
where z is the current value that the data d may take.

The Bayesian estimator (or conditional mean estimator ) is the function

6 =E[0|d]

and the Bayesian estimate (or conditional mean estimate ) is the numeric value

f=E[0]d=1F

where 0 is the value of the data d that corresponds to a particular outcome of the

joint random experiment £.
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Bayesian estimator in the Gaussian case

Assumption : the data d and the unknown 6 are scalar random variables with zero
mean value and both are individually and jointly Gaussian:

d ~ N 0 Y=Var d|_ |oda oa = their joint p.d.f. is given by:
0 0 0 00d 066

1

7(d,0) =Cexp{—§

Since

2
o o g
det > = det dd a0 :O'ddO'QQ—O'zQ:O'dd U@Q—ﬂ = 0dd 0'2,
00d 000 Odd

(d 0]12" " [d H]T}, C' : suitable constant

where o2 = 000 — O'gd/O'dd < 0gp

U
__[ 7600/0dd —Ude/Udd]

0'2 —O'Qd/O'dd 1
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Y

000/0dd  —040/0dd
—09d/0dd 1

= (C exp |

000/0dd d — q9/04qq 0
. —0¢a/0aa d+0

:C’exp{— . (Oeed —2—d0—|—02>}
20 Odd Tdd

The p.d.f. of the data d is given by:

=(C exp |

/

d2
QOdd

U
the p.d.f. of the unknown 6 conditioned by data d is equal to:

£(d,0) C { | (099 . 2) i }
0d) = — Cexpl—— 2 —2%% g9 4 g _
F(614) f(d) ¢ P 202 \oua 0dd " " 20 44

1 2 1 2
—C"expd—— | 280.q2 — 279 49 1 92| } — C'exp { —— {9 _ %d}
20 Oqd Odd 20 Odd
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f(0]d) = C"exp {—# [0 — —bd
The Bayesian estimator is the function

0 =F[0|d = Z¢d
dd
while the Bayesian estimate corresponding to the particular observation 0 of data d

IS the numerical value

0 =E[0]d=0] =25
Since £ |d] = F |0] = 0=
E[é]:E[MCz — %04 (4] = 0

gdd 9dd

Var(d] = B0 — EB))?) = chai?| = i () = 2l

o%y 0%y Udd

JO)=Varld —0]=E[(0 — 0)?] = E[(0 — %d) | = B[6?—22%46d + "Gd d?] =
dd
2
:E[@Q]—QME[ed]+"9dE[d2] _099—2 9d+mgdd_
;dd ) T4qd ) T3d
96d 4 %8d — 5oy — T8 — 52

—0pg — 2
00 odd odd odd

01RKYQW / 01RKYOQV - Estimation, Filtering and System Identification 57



8% politecnico di Torino - DET M. Taragna

Optimal linear estimator
Assumption : both the data d and the unknown 6 are scalar random variables with

zero mean value and variance matrix Var d| _|oda 0oas |
0 ood 096

Goal: estimate € by means of a linear estimator whose structure is
0 =ad+
with «, 3 real parameters, estimated by minimizing the mean squared error (MSE):

J = E[(6 - 6)°] = E[(0 — ad — 8)*] = J(a, B)

II gradientJ («,8)=0, HessianJ(«,5)>0
— 2 B[ —ad—p)?] [3(9—ad 5)} E[-2(0 — ad — 8)d] =
—2F [Qd] + 2aF [dZ] + 2 d] = —2049 + 2a044 = 0
E[(0 - ad- 8)?] [85 (0—ad—B)?| = B[-2(0 — ad - B)] =
—2E[9]—i—2aE[ ]+25—25—0
(i

{azaed/Udd = 0= 2¢d=FE[f|d]
/BZO Odd
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Generalizations

e |f the data d and the unknown 6 are scalar random variables with nonzero mean
value (F[d]=d R, E[0] =0 €R) and variance matrix V ar d|_|0odd oap |

0 Tod 000
the Bayesian estimator and the optimal linear estimator are given by:

A5, 06d
=0+ (d—d
~(d=d)
2

A

J(0)=Var[d — 0] = E[(0 — 0)*] = gg9 — =22 = 5°

Odd

e If the data d and the unknown @ are vector random variables with nonzero mean

value (E[d] =d e RY, E[0] =0 € R™) and variance matrix V ar d | —|>dd >do
0 Yod 20

the Bayesian estimator and the optimal linear estimator are given by:
0 =0+ 9,5, (d—d)
Var[d — 0] = E[(0 — 0)(0 — 0)"] = Sgp — S94574 Sas
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Proof for the scalar case.
if E[d]=d#0€R and/or E[#] =0#0€cR , then define the random variables

d=d-d = E[d|=E|d-d=E[d—-d=0
f'=0-0 = E|§|=E0—0]=E[H—0=0

The Bayesian estimate 6’ of 8’ based on d’ is given by:

0'=E[60'|d'|=E[6 — 6| d| =E|[6|d'| —6=E[6]|d] -

where
oo = E[(0'=E[0'])(d' —E[d])] = E[¢'d] =
oqpw = E[(d'—E[d])?]

and then:

9/ — Uﬁ’d’ /
O'd/d/
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Remarks
Remark #1 :

e Using the a priori information only (i.e., in absence of data), a reasonable initial
estimate of the unknown is given by the a priori estimate

0=0""" =E[0] =0

and the corresponding a priori uncertainty is Var|0] = Ygg

e Using also the a posteriori information (i.e., the data), the estimate changes and
the a posteriori estimate in the scalar case is given by

(9 _ épostemor _ 9 —|— J0d d—d Apmor U@d d—d
u = )

_ _ _ ~posterior
— ifogqg = 0, i.e., if d and @ are uncorrelated =

~posterior ADPTLOT — _
—ifogg >0 = 0 — 0 and d —d have the same sign

~posterior ~APTLOT

—ifogg <0 = 0 — 6

and d— d have opposite sign
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Remark #2 . the a posteriori estimate in the scalar case is given by
~posterior

N 7 o B ~APTLOT o
o=10 =0+ 2 (d—d) = 0" + 24 (4 q)
— if 044 is high, i.e., if the observation d is affected by great uncertainty =
riorT

0 mainly depends on 9p Instead on the term % (d — CZ)
dd

— if 044 is low, i.e., if the observation d is affected by small uncertainty =
ADTLOT

é’ strongly depends on the term Z¢< (d — CZ) that corrects 0

Odd

Remark #3: the estimation error variance represents the a posteriori uncertainty

J(0)=Var|§—0]=E[(0—0)*) = 0 4g— 2t e ):(799(1—/)2)

06600dd

L 00d . . . .
where p= —==24— is the correlation coefficient between 6 and d, such that p| <1

— if p =0, i.e., if d and 6 are uncorrelated =
the a posteriori uncertainty turns out to be equal to the a priori one
— if p # 0 => the a posteriori uncertainty is smaller than the a priori one
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Geometrical interpretation

e Let (3 be the set of the real scalar random variables v with zero mean value, whose
value v(s) depends on the outcome s of the underlying random experiment £.

e Let G be the vector space defined on (& such that, Vv, v € G and Vi € R, then
v1+v9 € G and puvy € G; let G be equipped with the inner (or scalar) product:
<Ul, 2]2> = F [Ulvz]
that satisfies the following properties, Vv, v1,v9 € G and Vi € R:

(1) (v,v) = Var[v] = 0 (nonnegativity) (positive-definiteness)
(7¢) {(v,v) = 0ifandonlyifv ~ (0,0)
(122) (v,v1 + v9) = (v,v1) + (v,v2) (additivity)
(7v)  (v1, pv2) = p{vi,v2) (homogeneity)
(v)  (v1,v2) = (vg,v1) (Symmetry)
Such an inner product allows to naturally define a norm on G as:

[vll = V/{v,v) = V/Var[y]
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e Any random variable v is a vector in the space G with “length” [|v|| = 1/ Var[v]
e Given two random variables v and v9, the angle & between the corresponding

vectors in G is involved in the inner product, since:

(v1,v2) = [lv1]| ||lv2]| cos

4

I
COS (v — (v1,v2) . [v1v2) —

loill vl /Var[oi] /Var[vs]

— p = 0 < v1 and vy are uncorrelated <
the corresponding vectors in G are orthogonal, i.e., v1 L v

— p = x1 & the vectors corresponding to v1 and vo are parallel, i.e., vq //’02 :
if vo = avy + B, witha, S€Rand o > 0, then p = +1
if vo = avy + B, witha, S€ERand a < 0, then p = —1
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e |n the scalar Gaussian case, the Bayesian estimate of v based on v is:

?AJQ = F [?)2’ ?Jl] = %’01, where 0921 = E [’01’02] y 011 — VCL’I“[’Ul]

4

E[Ulvg] <?}1,?}2>U1: 1 <Ul,U2> 1
|

11

A

U2

o 2
|oa ]

U1 lv2][vr =]

" Var [v1]

[oi]| fJoa] [lvz]]

J/

Ve

cos o
the Bayesian estimate U5 has the same direction of v; with “length” ||v2|| cos a,

i.e., Vo is the orthogonal projection of v over vq
V
" V2
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® The estimation error variance of vy given vy (i.e., the a posteriori uncertainty) Is:
Var[ve —FElvs|vi]]| =022 — i with oo =Var|vs], 001 = Flviva], 011 = Var|vi]
U
Varfvs —Eva|vi]] = Var{vs] — 2202k = ||us |~ || Efva|on]||*= [[v2 — E[va|0n]||?

Var[vi]

i.e., it can be computed by evaluating the “length” of the vector v — E [v2| vl]

through the Pythagorean theorem
Vo

V,~E[Vy|v|

>V1

M e

® The generalization of the geometric interpretation to the vector case is straightforward
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Recursive Bayesian estimation: scalar case

Assumptions :the unknown 6 is a scalar random variable with zero mean value; the data
vector d is a random variable having 2 components d(1), d(2), with zero mean value:

2.0d - ‘
000 (0o1 002) 091 =016

, 2=Var 0160\/011 012 092 =020
= \

Yao=24a
e The optimal linear estimate of # based on d(1) only is given by:

E[6]d(1)] = Z2-a(1)

011

e The optimal linear estimate of # based on d(1) and d(2) is given by:
- 1—1

_ o1 O
E[0]d(1),d(2)] = Sey=itd = (091 oge] | T 712
| 021 022 |
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011
det X434 = det

_ 2 031 o 2
= 011022—051 =011 | 022——— | =011 07,
021

011

02
where 02 = 092 — 21

011
U

o22/011 —012/011

—021/011 1

U

1 oo2/011 —012/011
E[0)d(1),d(2)] =2y, d=[og oo2 | =

0% | —o21/011 1

1 { 0929 021 012 } d(1)
0g1—— —0g2—— 092 — 091 ——
d(2)

011 011 011

0922 1 012
091 —— —092—> d(l) + — <092 — 091 ——

011 011 011
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By adding and subtracting the term E'[0] d(1)] = ﬂd( 1) and recalling that

o
2 11
012 = 0921 and o2 = — 099 — 21 , It results that:
011

E[0]d(1),d(2)] =

1 22
1o 22

091 (

02 ZLYd(1) + L (092 — 001 222)d(2) + Z22d(1) — Z1d(1) =

o)
( 1922 gy T 0L ) d(1) + - (092—001_)d()

011 011

91—— oy T2l — 20l oo 201 021) d(1) + (092—091—)d(2)

011 011 011 011 011

(1) + 52
7OLd(1) + 25
201 (1) +

011 011

- (0'92 091—)d( ) (002 _0'01_)d( )

011

o
1

e d) == 35

Jd(1) + =5 : (002 — 091—) [d(2) o d(1 )} =

]+ 2002 — 001 221) [d(2) — B [d(2)|d(1)]

011

02
L2( 92——|—091 21> d(1) + = (092—091ﬁ 2) =
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Definition : given two scalar random variables d(1) and d(2) with zero mean value,
the innovation of d(2) given d(1) is the scalar random variable defined by:

e = d(2) — E[d(2)] d(1)] = d(2) — 22d(1)

011

Ele] = E|d(2) — 222d(1)| = E[d(2)] - 22X B[d(1)] =

gce = Varle] = E[(e— E[e])ﬂ |: d(2) _021 d(1 )2:|

011

‘E{d%z) 2221d(2)d(1)+ 23 X 1>} B [d2(2)]-2 22 E[d(2)d(1)}+ 221 B [d%(1)]

‘711

2 2
=02—2 2 o+ Fonn=on-— =0 —022<1 21 >—022(1—021)§022

oi 011022

7. = Eloe] = B[0 (A(2) — 22d(1)) | = B[pd(2)] — 221 B[8d(1)] = 042~ 001 22+

011

o1e = Eld(1)e] = E [ (1 )(( )— ‘md(l))] = Eld(1)d(2)] - 2 E[d¥(1)] =

010 — Hall =0 < d(1) and e are uncorrelated, as well as ' [ d(2)| d(1)] and e are

From the definition, it follows that: d(2) = E [d(2)|d(1)]+e =
the term e represents the only new information provided by d(2) with respect to d(1)
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By exploiting the definition and the properties of the innovation e, it follows that:

E[0]d(1),d(2)] =E[0]|d(1)] + % <092—091 E)

011/
S _

= E[6|d(1)] + E[6] ]

i.e., the optimal linear estimate of # based on d(1) and d(2) is equal to the sum of:
e the optimal linear estimate of # based on the observation d(1) only
e the optimal linear estimate of 6 based on the innovation e = d(2) — 22Ld(1),
which depends on data d(1) and d(2)

It can be proved as well that:

E[0]d(1),e] =E[60]|d(1),d(2)] =E[8]|d(1)] + E[0]e]
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Geometrical interpretation

e Let us consider any random variable as a vector in the normed vector space §
—> the Bayesian estimate of 6/ based on d is the orthogonal projection of & over d
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Geometrical interpretation

e Let us consider any random variable as a vector in the normed vector space §
—> the Bayesian estimate of 6/ based on d is the orthogonal projection of & over d

o Let H|d(1),d(2)] be the plane defined by the vectors d(1) and d(2)

G

J1d(1),d(2)]
>
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Geometrical interpretation

e Let us consider any random variable as a vector in the normed vector space §
—> the Bayesian estimate of 6/ based on d is the orthogonal projection of & over d

o Let H|d(1),d(2)] be the plane defined by the vectors d(1) and d(2)
e The Bayesian estimate E'|d(2)| d(1)] is the projection of d(2) over d(1)

G

J[d(1),d(2)]
>
d(1)
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Geometrical interpretation

Let us consider any random variable as a vector in the normed vector space §
—> the Bayesian estimate of 6/ based on d is the orthogonal projection of & over d
Let H|d(1), d(2)] be the plane defined by the vectors d(1) and d(2)

The Bayesian estimate F/[d(2)| d(1)] is the projection of d(2) over d(1)

The innovation e = d(2) — E[d(2)| d(1)] is the vector given by the difference
between d(2) and the projection of d(2) over d(1) and it is orthogonal to d(1)

% G
\
J1d(1),d(2)]
>
d(1)
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e The Bayesian estimate E'|0| d(1)] is the orthogonal projection of & over d(1)

G

J1d(1),d(2)]
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e The Bayesian estimate E'|0| d(1)] is the orthogonal projection of & over d(1)

e The Bayesian estimate F'| 8| e] is the orthogonal projection of # over e and then
it is orthogonal to F/[ 0| d(1)]

G

J1d(1),d(2)]
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e The Bayesian estimate E'|0| d(1)] is the orthogonal projection of & over d(1)

e The Bayesian estimate F'| 8| e] is the orthogonal projection of # over e and then
it is orthogonal to F/[ 0| d(1)]

e The Bayesian estimate E'| 0| d(1), d(2)] is the orthogonal projection of € over
the plane H|[d(1), d(2)] and it is the vector sum of F/[0|d(1)] and E[8)] e]:

E[0]d(1),d(2)] = E]6]d(1)] + E[0] e] = E[0]d(1), €]

G
J1d(1),d(2)]
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Recursive Bayesian estimation: vector case

e If the unknown @ and the data d are vector random variables with zero mean value:

)
v, 291 :Z{e

X =Var | Yoo :Z%
\ Y12="29,

d
by defining the innovation of d(2) given d(1) as the vector random variable:

e =d(2) - E[d(2)|d(1)] = d(2) — X X7 d(1)
the optimal linear estimate of 6 based on d(1) and d(2) is given by:
E[0]d(1),d(2)] = S, 217 d(1) + Be. X e = E[0] d(1)] + E[0] ]
where

Yoo = Yoo — Y0121 B12, Vg = Va2 — Be131] D12
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e Ifthe unknown @ and the data d are vector random variables with nonzero mean value:

_ (

2106 2201 2262 Yo1 =31
,Z:VCLT 219 211 212 2022259
_d(2)_ _220 221 222_ \ Yo =24

by defining the innovation of d(2) given d(1) as the vector random variable:
e = d(2)—d(2)~B[d(2)-d(2) |d(1)~d(1)] = d(2)~d(2) =2 T1; [d(1)—d(1)]
the optimal linear estimate of 6 based on d(1) and d(2) is given by:

E10]d(1), d(2)] = 8 + S, S [d(1) — d(1)] +3,, Sorle =

E[6] d(1)]

E[6] ¢
= E[0]d(1)] + E[0] ] — 0
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