Controlli Automatici (AUT) - 09AKSBL

Analisi della precisione in regime transitorio

Analisi della precisione in regime transitorio

Le specifiche considerate per la precisione in regime transitorio sono:

- La sovraelongazione massima \hat{S} (precisione)
- Il tempo di salita t_s (rapidità di innesco)
- Il tempo di assestamento $t_{a,\alpha\%}$ (rapidità di estinzione)

Controlli Automatici (AUT) -- M. Canale

18-2

- Queste caratteristiche dipendono da T(s) che sarà nota solo al termine del progetto.
- È necessario tradurre questi requisiti in specifiche per la funzione ad anello aperto L(s).
- Per questo occorre introdurre delle approssimazioni.
- Supponiamo che T(s) sia approssimabile con una funzione del secondo ordine del tipo:

$$T(s) = \frac{1}{1 + \frac{2\zeta}{\omega_n} s + \frac{s^2}{\omega_n^2}}$$

Controlli Automatici (AUT) -- M. Canale

L8 - 3

Analisi della precisione in regime transitorio

 Questo corrisponde ad una funzione di trasferimento di anello pari a:

$$T(s) = \frac{1}{1 + \frac{2\zeta}{\omega_n} s + \frac{s^2}{\omega_n^2}} \Longrightarrow L(s) = \frac{\frac{\omega_n}{(2\zeta)}}{s(1 + \frac{s}{2\zeta\omega_n})}$$
$$L(s) = \frac{T(s)}{1 - T(s)}$$

• In questo caso la pulsazione di attraversamento ω_c del sistema ad anello aperto è data da:

$$\omega_c = \omega_n \sqrt{\sqrt{1 + 4\zeta^4} - 2\zeta^2} = f_{\omega_c}(\zeta, \omega_n)$$

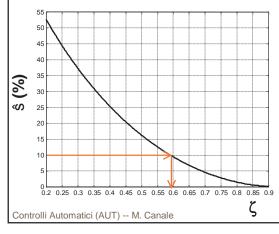
Controlli Automatici (AUT) -- M. Canale

L8 - 4

• In un sistema del secondo ordine le quantità $\hat{\mathcal{S}}$, t_s e $t_{a,\alpha\%}$ dipendono dai parametri ζ ed ω_n .

$$\hat{S} = e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} = f_{\hat{S}}(\zeta)$$

$$t_s = \frac{1}{\omega_n} \frac{1}{\sqrt{1-\zeta^2}} \operatorname{arctg}\left(\pi - \frac{\sqrt{1-\zeta^2}}{\zeta}\right) = f_{t_s}(\zeta, \omega_n)$$


$$t_{a,\alpha\%} = \frac{1}{\omega_n \zeta} \ln\left(\alpha/100\right)^{-1} = f_{t_a}(\zeta, \omega_n, \alpha)$$

Controlli Automatici (AUT) -- M. Canale

L8 - 5

Analisi della precisione in regime transitorio

• È possibile tracciare l'andamento della sovraelongazione \hat{s} in funzione dello smorzamento ζ .

- Da tale grafico è possibile dedurre il valore di smorzamento necessario per avere un livello desiderato sovraelongazione
- Ad es. ŝ < 10% richiede
 ζ > 0.6

L8 - 6

 Si considerino le funzioni di trasferimento ad anello chiuso T(s) e S(s)

$$T_{p} = \max_{\omega} |T(j\omega)|$$

$$\omega_{b} = \arg\min_{\omega} \{ \omega : |T(j\omega)| \le 1/\sqrt{2} \}$$

$$S_{p} = \max_{\omega} |S(j\omega)|$$

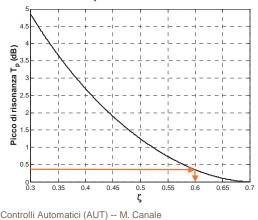
Controlli Automatici (AUT) -- M. Canale

L8 - 7

Analisi della precisione in regime transitorio

• In modo analogo anche le quantità T_p , ω_b e S_p sono legate ai parametri ζ ed ω_n tramite relazioni note:

$$T_{p} = \frac{1}{2\zeta\sqrt{1-\zeta^{2}}} = f_{T_{p}}(\zeta)$$

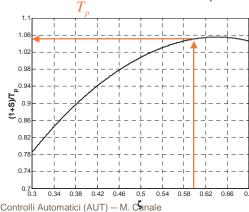

$$\omega_{b} = \omega_{n}\sqrt{1-2\zeta^{2} + \sqrt{2-4\zeta^{2} + 4\zeta^{4}}} = f_{\omega_{b}}(\zeta, \omega_{n})$$

$$S_{p} = \frac{2\zeta\sqrt{2+4\zeta^{2}+2\sqrt{1+8\zeta^{2}}}}{\sqrt{1+8\zeta^{2}+4\zeta^{2}-1}} = f_{S_{p}}(\zeta)$$

Controlli Automatici (AUT) -- M. Canale

L8 - 8

• È possibile tracciare l'andamento del picco di risonanza T_p in funzione dello smorzamento ζ .

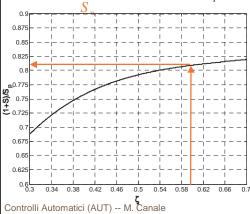


- Da tale grafico è possibile dedurre il valore di smorzamento necessario per avere un livello desiderato del picco di risonanza
- Ad es. $T_p < 0.4$ dB richiede $\zeta > 0.6$

L8 - 9

Analisi della precisione in regime transitorio

• È possibile legare l'andamento della sovraelongazione \hat{S} e del picco di risonanza T_p in funzione dello smorzamento ζ tramite la quantità: $\frac{1+\hat{S}}{1+\hat{S}}$ (\hat{S} non in % T_p non in dB)



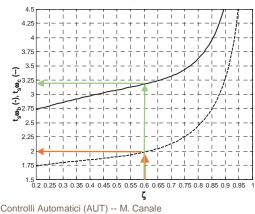
- Da tale grafico si può dedurre il valore del picco risonanza T_p a partire dal valore desiderato di \hat{S} e del corrispondente valore di ζ .
- Ad esempio per un fissato valore di smorzamento:

$$\zeta = 0.6 \text{ si ha}$$

 $(I + \hat{S})/T_p = 1.058$

L8 - 10

• È possibile legare l'andamento della sovraelongazione \hat{S} e del picco di risonanza S_p in funzione dello smorzamento ζ tramite la quantità: $\frac{1+\hat{S}}{1+\hat{S}}$ (\hat{S} non in % S_p non in dB)


- Da tale grafico si può dedurre il valore del picco risonanza S_p a partire dal valore desiderato di \hat{S} e del corrispondente valore di ζ .
- Ad esempio per un fissato valore di smorzamento:

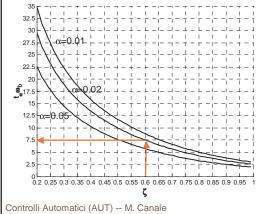
$$\zeta = 0.6 \text{ si ha}$$

 $(I + \hat{S})/S_p = 0.81$

L8 - 11

Analisi della precisione in regime transitorio

• Confrontando le espressioni f_{ts} , f_{ab} ed f_{ac} si trovano legami tra il tempo di salita t_s , la banda passante ω_b e la pulsazione di attraversamento ω_c mediante i prodotti: $t_s \omega_b$ e $t_s \omega_c$

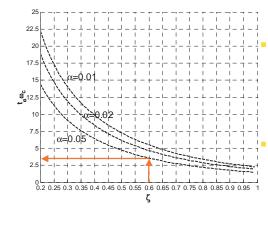


- Da tale grafico si può dedurre il valore dei prodotti $t_s \omega_b$ e $t_s \omega_c$ a fronte di un determinato valore di ζ .
- Ad esempio per un fissato valore di smorzamento:

$$\zeta = 0.6$$
 si ha $t_s \omega_b = 3.2$, $t_s \omega_c = 2$

L8 - 12

• Confrontando le espressioni f_{ta} , f_{ab} ed f_{ac} si trovano legami tra il tempo di assestamento $t_{a,\alpha\%}$, la banda passante a_b e la pulsazione di attraversamento a_c mediante i prodotti: $t_a a_b$ e $t_a a_c$



- Da tale grafico si può dedurre il valore del prodotto $t_{a,\alpha\%}\omega_b$ a fronte di un determinato valore di ζ .
- Ad esempio per un fissato valore di smorzamento:

 $\zeta = 0.6 \text{ si ha } t_{a.2\%} \omega_{b} = 7.5$

L8 - 13

Analisi della precisione in regime transitorio

- Da tale grafico si può dedurre il valore del prodotto $t_{a,\alpha\%}\omega_c$ a fronte di un determinato valore di ζ .
- Ad esempio per un fissato valore di smorzamento:

 $\zeta = 0.6 \text{ si ha } t_{a.2\%} \omega_c = 4.8$

Controlli Automatici (AUT) -- M. Canale

L8 - 14