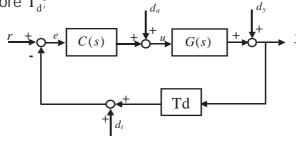

Controlli Automatici (AUT) - 09AKSBL

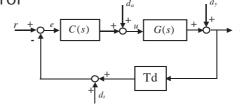

Sistemi retroazionati

- Definizioni
- Legami anello aperto / anello chiuso

Struttura semplificata

- Il contributo dell'attuatore è inglobato nell'impianto attraverso la fdt G(s);
- Il guadagno del trasduttore Td si suppone uguale ad 1.
- Il contributo del filtro di condizionamento è inglobato nella fdt del trasduttore T_d;

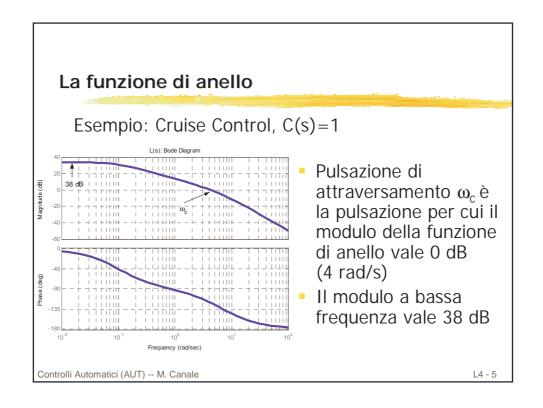
Controlli Automatici (AUT) -- M. Canale

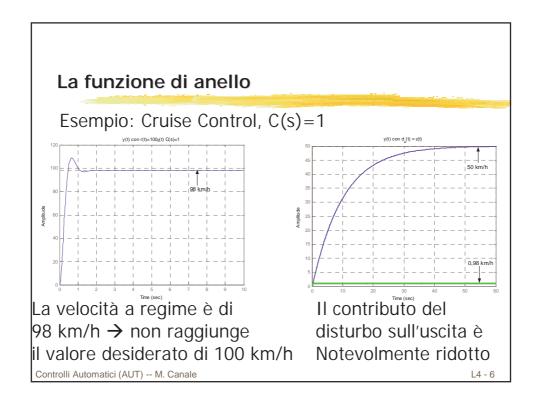

L4 - 3

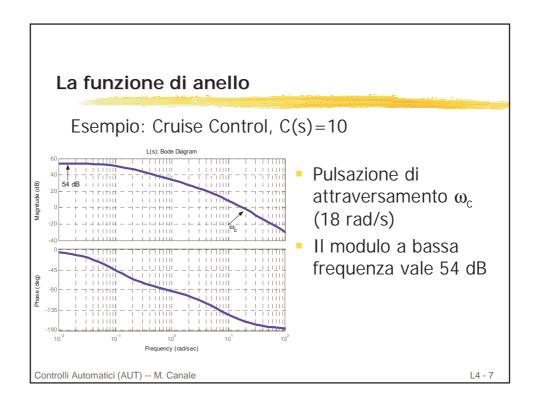
La funzione di anello

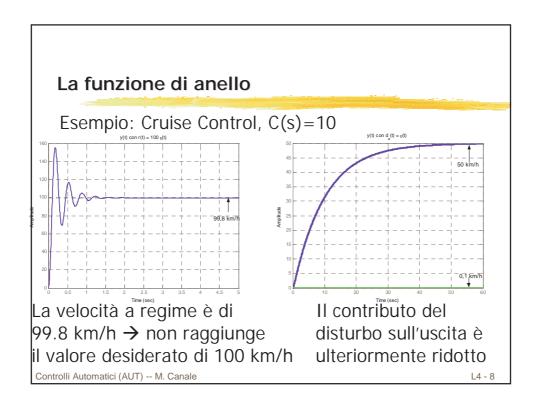
• Funzione di anello: L(s) = C(s)G(s)

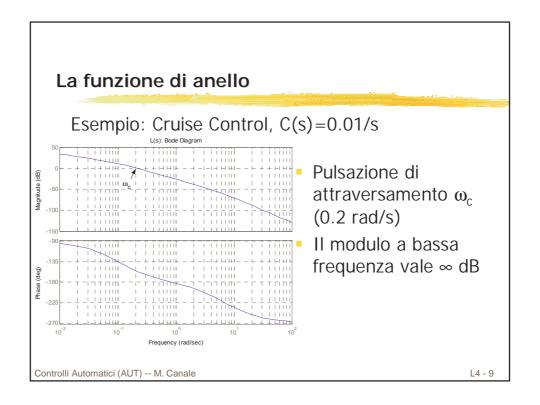
Esempio: Cruise Control

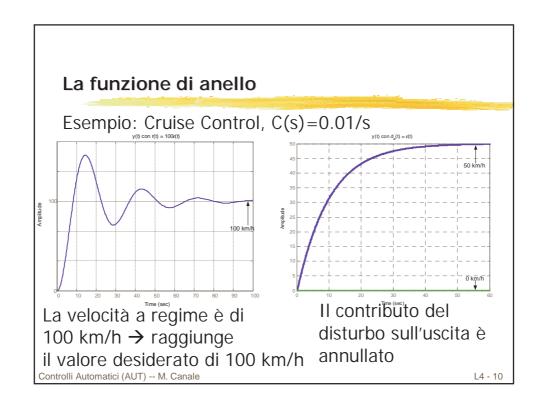

$$G(s) = \frac{33}{(s+0.1)(s+6.6)}$$

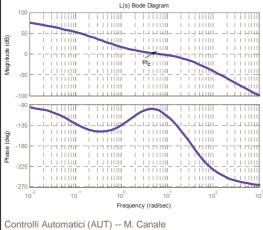

$$C\left(s\right)=1,\quad T_{_{d}}=1$$


 $d_a(t) = \varepsilon(t)$


Controlli Automatici (AUT) -- M. Canale


L4 - 4

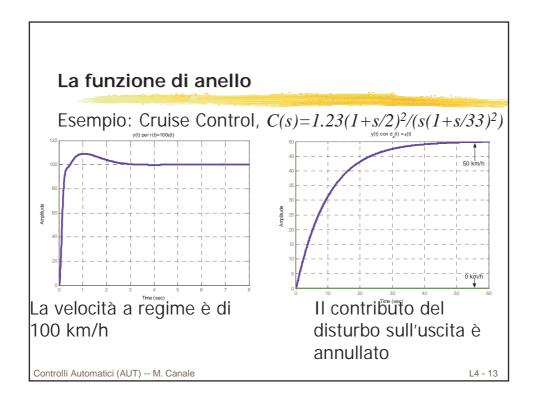



La funzione di anello $L(j\omega)$

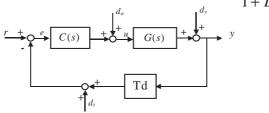
- Il valore del modulo a bassa frequenza stabilisce la precisione in regime permanente
- Aumentare troppo il modulo della funzione di anello a bassa frequenza può compromettere le caratteristiche di precisione in regime transitorio
- se si desidera mantenere alto il valore del modulo della funzione di anello a bassa freguenza occorre modificare e complicare la forma di C(s)

Controlli Automatici (AUT) -- M. Canale

La funzione di anello


Esempio: Cruise Control, $C(s)=1.23(1+s/2)^2/(s(1+s/33)^2)$

- Pulsazione di attraversamento ω_c (6 rad/s)
- Il modulo a bassa frequenza vale ∞ dB

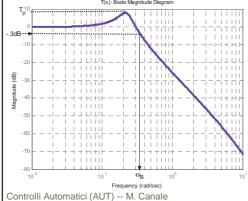

L4 - 12

M. Canale 14 - 6

La funzione ad anello chiuso

Funzione ad anello chiuso: 1 + L(s)

- Descrive per Td= 1, il comportamento tra il riferimento e l'uscita (y(s)/r(s))
- Descrive, per Td= 1 e a meno di un segno, il comportamento, tra il rumore di misura e l'uscita $(y(s)/d_t(s))$ Controlli Automatici (AUT) -- M. Canale

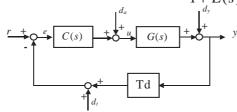

L4 - 14

M. Canale L4 - 7

La funzione ad anello chiuso

Funzione ad anello chiuso: $T(s) = \frac{L(s)}{1 + L(s)}$ Esempio: Cruise Control, C(s)=0.01/s

Diagramma di Bode del modulo



- Banda passante ω_B è la pulsazione per cui il modulo della funzione di anello vale - 3 dB (0.32 rad/s)
- Picco di risonanza T_p è il massimo valore del modulo

L4 - 15

La funzione di sensibilità

• Funzione di sensibilità: S(s) =

- Descrive per Td= 1, il comportamento tra il riferimento ed errore (e(s)/r(s))
- Descrive, per Td= 1, il comportamento, tra il disturbo sull'uscita e l'uscita (y(s)/dy(s))

Controlli Automatici (AUT) -- M. Canale

L4 - 16

M. Canale 14 - 8

La funzione di sensibilità

Funzione ad anello chiuso:

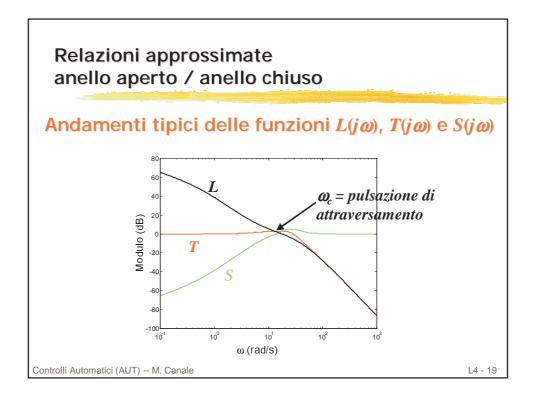
Esempio: Cruise Control, C(s)=0.01/s Diagramma di Bode del modulo

$$S(s) = \frac{1}{1 + L(s)}$$

S(s): Bode Magnitude Diagram

S(s):

 Picco di risonanza S_p è il massimo valore del modulo


14 47

Altre funzioni di interesse per lo studio di sistemi retroazionati

- effetto del disturbo d_a sull'uscita: $T_{d_a,y}(s) = \frac{G(s)}{1 + L(s)}$
- effetto del riferimento sul comando (funzione di sensibilità del controllo): $R(s) = \frac{C(s)}{1 + L(s)}$

Controlli Automatici (AUT) -- M. Canal

L4 - 18

Relazioni approssimate anello aperto / anello chiuso

- Andamento tipico di $|L(j\omega)|$:
- a bassa frequenza ($\omega <<\omega_c$), $|L(j\omega)|>>1$
- ad alta frequenza $(\omega>>\omega_c)$, $|L(j\omega)|<<1$

Controlli Automatici (AUT) -- M. Canale

L4 - 20

M. Canale L4 - 10

Relazioni approssimate anello aperto / anello chiuso

$$|S(j\omega)| = \left| \frac{1}{1 + L(j\omega)} \right| \underset{|L(j\omega)| > 1}{\approx} \frac{1}{|L(j\omega)|}$$

• Legami (approssimati) tra
$$L(j\omega)$$
, $T(j\omega)$ e $S(j\omega)$

$$|S(j\omega)| = \frac{1}{1+L(j\omega)}| \approx \frac{1}{|L(j\omega)|}$$
• A bassa frequenza:
$$|L(j\omega)| >>1$$

$$|T(j\omega)| = \frac{L(j\omega)}{1+L(j\omega)}| \approx 1$$
• Ad alta frequenza:
$$|L(j\omega)| <<1$$

$$|S(j\omega)| = \frac{1}{1+L(j\omega)}| \approx 1$$

$$|L(j\omega)| <<1$$

$$|S(j\omega)| = \frac{1}{1+L(j\omega)}| \approx 1$$

$$|L(j\omega)| <<1$$

$$|S(j\omega)| \ll 1$$

$$|S(j\omega)| = \left| \frac{1}{1 + L(j\omega)} \right| \underset{|L(j\omega)| < 1}{\approx} 1$$

L4 - 21

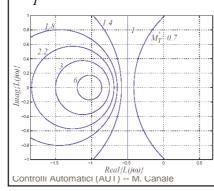
Relazioni anello aperto / anello chiuso

- Legame tra $L(j\omega)$ e $T(j\omega)$
- è possibile dedurre il comportamento di $T(j\omega)$ a partire da quello di $L(j\omega)$?

$$T(j\omega) = M(\omega)e^{j\phi(\omega)} = \frac{L(j\omega)}{1 + L(j\omega)} = \frac{1}{1 + L(j\omega)} \frac{u + jv}{1 + u + jv}$$

$$M(\omega) = \left| \frac{u + jv}{1 + u + jv} \right| \qquad \left(u - \frac{M^2(\omega)}{1 - M^2(\omega)} \right)^2 + v^2 = \left(\frac{M(\omega)}{1 - M^2(\omega)} \right)^2$$

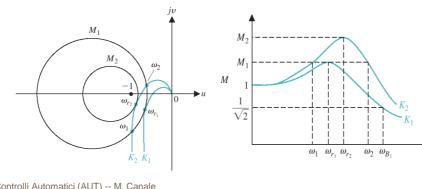
Nel piano u, v → circonferenza di centro $C = (M^2/(1-M^2), 0)$ e raggio $r = |M/(1-M^2)|$


Controlli Automatici (AUT) -- M. Canale

L4 - 22

M. Canale 14 - 11

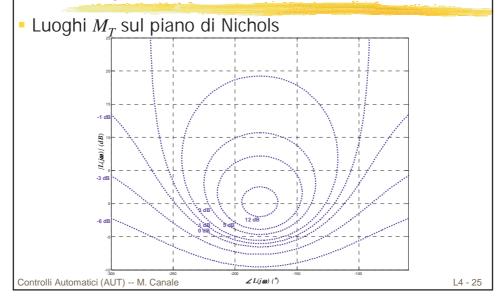
Relazioni anello aperto / anello chiuso


- Legame tra $L(j\omega)$ e $T(j\omega)$
- nel piano $u=Re(L(j\omega))$, $v=Im(L(j\omega))$ i luoghi a modulo di $T(i\omega) = M$ costante sono circonferenze dette "cerchi M_T ".

- I cerchi M_T hanno "dimensioni" via via più piccole mano a mano che aumenta il modulo.
- I cerchi M_T riportati sul piano di Nyquist rappresentano una scala di lettura per il modulo di $T(j\omega)$

Relazioni anello aperto / anello chiuso

- Legame tra $L(j\omega)$ e $T(j\omega)$
- è quindi possibile leggere direttamente sul diagramma polare di $L(j\omega)$ l'andamento del modulo di $T(j\omega)$



Controlli Automatici (AUT) -- M. Canale

L4 - 24

14 - 12 M. Canale

Relazioni anello aperto / anello chiuso

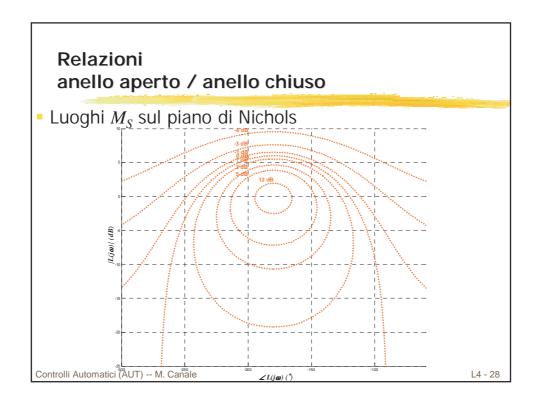
- Legame tra $L(j\omega)$ e $S(j\omega)$
- è possibile dedurre il comportamento di $S(j\omega)$ a partire da quello di $L(j\omega)$?

$$S(j\omega) = M_S(\omega)e^{j\phi(\omega)} = \frac{1}{1 + L(j\omega)} = \frac{1}{\sum_{L(j\omega) = u + jv} \frac{1}{1 + u + jv}}$$

$$M_{S}(\omega) = \left| \frac{1}{1 + u + jv} \right| \qquad (u+1)^{2} + v^{2} = \frac{1}{M_{S}^{2}(\omega)}$$

■ Nel piano $u, v \rightarrow$ circonferenza di centro C=(-1,0) e raggio $r=1/M_S$

Controlli Automatici (AUT) -- M. Canale


L4 - 26

Relazioni anello aperto / anello chiuso • Legame tra $L(j\omega)$ e $S(j\omega)$ • nel piano $u=Re(L(j\omega))$, $v=Im(L(j\omega))$ i luoghi a modulo di $S(j\omega)=M_S$ costante sono circonferenze dette "cerchi M_S ". • I cerchi M_S hanno "dimensioni" via via più piccole mano a mano che aumenta il modulo. • I cerchi M_S riportati sul piano di Nyquist rappresentano una scala di lettura per il modulo di

 $S(j\omega)$

 $Real\{L(j\omega)\}$

Controlli Automatici (AUT) -- M. Canale

