System I dentification Toolbox
 For Use with MATLA ${ }^{\text {® }}$

Lennart Ljung

Computation

Visualization

Programming

User's Guide

How to Contact The MathW orks:

508-647-7000
508-647-7001

Phone

Fax
The MathWorks, Inc. \quad Mail
24 Prime Park Way
Natick, MA 01760-1500
htt p: / / mwn. mat hworks. com
ftp. nathworks. com
comp. sof t-sys. mat lab

Web
 Anonymous FTP server
 Newsgroup

(C) support @nat hworks.com
suggest @nat hworks.com
bugs @nat hworks. com
doc@mat hwor ks. com
subscri be@nat hwor ks.com
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Subscribing user registration
servi ce@nat hworks.com
i nf o@nt hworks.com

Order status, license renewals, passcodes

Sales, pricing, and general information
System Identification Tool box User's Guide

© COPYRIGHT 1988-1997 by The MathWorks, Inc. All Rights Reserved.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S. Government, the following shall apply: (a) For units of the Department of Defense: the Government shall have only the rights specified in the license under which the commercial computer software or commercial software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclosure are as set forth in Clause 52.227-19 (c)(2) of the FAR.
MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow and Target Language Compiler are trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:	April 1988	First printing J uly 1991 M ay 1995
	Second printing Third printing	
	August 1995	Reprint

The System Identification Problem

1

What is System I dentification? 1-2
How is that done? 1-2
How do you know if the model is any good? 1-2
Can the quality of the model be tested in other ways? 1-2
What models are most common? 1-2
Do you have to assume a model of a particular type? 1-2
What does the System I dentification Toolbox contain? 1-2
Isn't it a big limitation to work only with linear models? 1-3
How do I get started? 1-3
Is this really all there is to System Identification? 1-3
The Signals 1-5
The Basic Dynamic M odel 1-6
Variants of Model Descriptions 1-6
How to I nterpret the N oise Source 1-7
Terms to Characterize the M odel Properties 1-9
Impulse Response 1-9
Step Response 1-9
Frequency Response 1-9
Zeros and Poles 1-9
Model Unstable 1-13
Feedback in Data 1-13
Noise Model 1-13
Model Order 1-14
Additional Inputs 1-14
Nonlinear Effects 1-14
Still Problems? 1-14
Fit Between Simulated and Measured Output 1-15
Residual Analysis Test 1-15
Pole Zero Cancellations 1-15
What Model Structures Should be Tested? 1-15
Multivariable Systems 1-16
Available M odels 1-16
Working with Subsets of the I nput Output Channels 1-17
Some Practical Advice 1-17
Reading More About System Identification 1-19
The Graphical User Interface
2
The M odel and Data Boards 2-2
The Working Data 2-3
The Views 2-3
The Validation Data 2-4
The Work Flow 2-4
Management Aspects 2-4
Workspace Variables 2-5
Help Texts 2-6
Data Representation 2-7
Getting Data into the GUI 2-8
Taking a Look at the Data 2-10
Preprocessing Data 2-10
Detrending 2-10
Selecting Data Ranges 2-11
Prefiltering 2-11
Resampling 2-11
Quickstart 2-12
Checklist for Data Handling 2-12
Simulating Data 2-12
The Basics 2-14
Direct Estimation of the Impulse Response 2-14
Direct Estimation of the F requency Response 2-15
Estimation of Parametric M odels 2-17
Estimation Method 2-18
Resulting Models 2-19
How to Know Which Structure and Method to Use 2-19
ARX Models 2-20
The Structure 2-20
Entering the Order Parameters 2-20
Estimating Many M odels Simultaneously 2-20
Estimation Methods 2-21
Multi-Output Models 2-21
ARMAX, Output-Error and Box-J enkins Models 2-22
The General Structure 2-22
The Special Cases 2-22
Entering the M odel Structure 2-23
Estimation Method 2-23
State-Space M odels 2-24
The M odel Structure 2-24
Entering Black-Box State-Space M odel Structures 2-24
Estimating Many M odels Simultaneously 2-24
Estimation Methods 2-25
User Defined M odel Structures 2-25
State-Space Structures 2-25
Any Model Structure 2-26
Views and Models 2-27
The Plot Windows 2-28
File 2-28
Options 2-28
Style 2-29
Channel 2-29
Help 2-29
Frequency Response and Disturbance Spectra 2-29
Transient Response 2-29
Poles and Zeros 2-30
Compare M easured and M odel Output 2-30
Residual Analysis 2-31
Text Information 2-32
Present 2-32
Modify 2-32
Further Analysis in the MATLAB Workspace 2-32
Mouse Buttons and Hotkeys 2-34
The Main ident Window 2-34
Plot Windows 2-34
Troubleshooting in Plots 2-35
Layout Questions and idprefs.mat 2-35
Customized Plots 2-36
Import from and Export to Workspace 2-36
What Cannot be Done Using the GUI 2-37

Tutorial

Impulse Responses, Frequency Functions, and Spectra 3-8
Polynomial Representation of Transfer F unctions 3-10
State-Space Representation of Transfer Functions 3-13
Continuous-Time State-Space M odels 3-14
Estimating Impulse Responses 3-15
Estimating Spectra and F requency F unctions 3-16
Estimating Parametric M odels 3-17
Subspace M ethods for Estimating State-Space M odels 3-18
Data Representation 3-19
Correlation Analysis 3-20
Spectral Analysis 3-20
ARX Models 3-22
AR Models 3-23
General Polynomial Black-Box Models 3-23
State-Space M odels 3-25
Optional Variables 3-26
Polynomial Black-Box M odels 3-29
Multivariable ARX M odels 3-30
State-Space M odels with F ree Parameters 3-33
Discrete-Time Innovations F orm 3-33
System Dynamics Expressed in Continuous Time 3-33
The Black-Box, Discrete-Time Case 3-34
State-Space M odels with Coupled Parameters 3-36
State-Space Structures: Initial Values and Numerical Derivatives 3-37
Some Examples of User-Defined M odel Structures 3-38
Theta Format: th 3-40
Frequency Function F ormat: ff 3-41
Zero-Pole Format: zp 3-43
State-Space F ormat: ss 3-43
Transfer Function Format: tf 3-44
Polynomial Format: poly 3-45
The ARX Format: arx 3-45
Transformations Between Discrete and Continuous Models 3-46
Continuous-Time Models 3-46
Discrete-Time M odels 3-46
Transformations 3-47
Simulation and Prediction 3-47
Comparing Different Structures 3-49
Checking Pole-Zero Cancellations 3-51
Residual Analysis 3-52
Noise-F ree Simulations 3-53
Assessing the M odel Uncertainty 3-53
Comparing Different Models 3-54
Conditioning of the Prediction Error Gradient 3-55
Selecting M odel Structures for Multivariable Systems 3-55
Offset Levels 3-58
Outliers 3-58
Filtering Data 3-58
Feedback in Data 3-59
Delays 3-59
The Basic Algorithm 3-61
Choosing an Adaptation Mechanism and Gain 3-62
Available Algorithms 3-65
Segmentation of Data 3-67
Time Series M odeling 3-68
The Sampling Interval 3-70
Out of Memory 3-71
Memory-Speed Trade-Offs 3-72
Regularization 3-72
Local Minima 3-73
Initial Parameter Values 3-73
Linear Regression Models 3-74
Spectrum Normalization and the Sampling Interval 3-75
Interpretation of the Loss F unction 3-77
Enumeration of Estimated Parameters 3-78
Complex-Valued Data 3-79
Strange Results 3-79
Command Reference

The System Identification Problem

Basic Questions About System Identification 1-2
Common Terms Used in System Identification 1-4
Basic Information About Dynamic Models 1-5
The Basic Steps of System Identification 1-10
A Startup Identification Procedure 1-12
Reading More About System Identification 1-18

1. Basic Questions About System Identification

What is System Identification?

System Identification allows you to build mathematical models of a dynamic system based on measured data.

How is that done?

Essentially by adjusting parameters within a given model until its output coincides as well as possible with the measured output.

How do you know if the model is any good?

A good test is to take a close look at the model's output compared to the measured one on a data set that wasn't used for the fit ("Validation Data").

Can the quality of the model be tested in other ways?

It is also valuabletolook at what the model couldn't reproducein the data ('the residuals"). This should not be correlated with other available information, such as the system's input.

What models are most common?

The techniques apply to very general models. Most common models are difference equations descriptions, such as ARX and ARMAX models, as well as all types of linear state-space models.

Do you have to assume a model of a particular type?

For parametric models, you have to specify the structure. However, if you just assume that the system is linear, you can directly estimate its impulse or step response using Correlation Analysis or its frequency response using Spectral Analysis. This allows useful comparisons with other estimated models.

What does the System Identification Toolbox conta in?

It contains all the common techniques to adjust parameters in all kinds of linear models. It also allows you to examine the models' properties, and to check if they are any good, as well as to preprocess and polish the measured data.

Isn't it a big limitation to work only with linear models?

No, actually not. Most common model nonlinearities are such that the measured data should be nonlinearly transformed (like squaring a voltage input if you think that it's the power that is the stimuli). U se physical insight about the system you are modeling and try out such transformations on models that are linear in the new variables, and you will cover a lot!

How do I get started?

If you are a beginner, browse through Chapter and then try out a couple of the data sets that come with the tool box. Use the graphical user interface (GUI) and check out the built-in help functions to understand what you are doing.

Is this really all there is to System Identification?

Actually, there is a huge amount written on the subject. Experience with real data is the driving force to understand more. It is important to remember that any estimated model, no matter how good it looks on your screen, has only picked up a simple reflection of reality. Surprisingly often, however, this is sufficient for rational decision making.

2. Common Terms Used in System Identification

This section defines some of the terms that are frequently used in System Identification.

- Estimation Data is the data set that is used to fit a model to data. In the GUI this is the same as the Working Data.
- Validation Data is the data set that is used for model validation purposes. This includes simulating the model for these data and computing the residuals from the model when applied to these data.
- Model Views are various ways of inspecting the properties of a model. They include looking at zeros and poles, transient and frequency response, and similar things.
- Data Views are various ways of inspecting properties of data sets. A most common and useful thing is just to plot the data and scrutinize it. So-called outliers could be detected then. These are unreliable measurements, perhaps arising from failures in the measurement equipment. The frequency contents of the data signals, in terms of periodograms or spectral estimates, is also most revealing to study.
- Model Sets or Model Structures are families of models with adjustable parameters. Parameter Estimation amounts to finding the "best" values of these parameters. The System Identification problem amounts to finding both a good model structure and good numerical values of its parameters.
- Parametric Identification Methods are techniques to estimate parameters in given model structures. Basically it is a matter of finding (by numerical search) those numerical values of the parameters that give the best agreement between the model's (simulated or predicted) output and the measured one.
- Nonparametric Identification Methods are techniques to estimate model behavior without necessarily using a given parametrized model set. Typical nonparametric methods include Correlation analysis, which estimates a system's impulse response, and Spectral analysis, which estimates a system's frequency response.
- Model Validation is the process of gaining confidence in a model. Essentially this is achieved by "twisting and turning" the model to scrutinize all aspects of it. Of particular importance is the model's ability to reproduce the behavior of the Validation Data sets. Thus it is important to inspect the properties of the residuals from the model when applied to the Validation Data.

3. Basic Information About Dynamic Models

System I dentification is about building Dynamic Models. Some knowledge about such models is therefore necessary for successful use of the toolbox.The topic is treated in several places in the Chapter and there is a wide range of textbooks available for introductory and in-depth studies. F or basic use of the tool box, it is sufficient to have quite superficial insights about dynamic models. This section describes such a basic level of knowledge.

The Signals

Models describe relationships between measured signals. It is convenient to distinguish between input signals and output signals. The outputs are then partly determined by the inputs. Think for example of an airplane where the inputs would be the different control surfaces, ailerons, elevators, and the like, while the outputs would be the airplane's orientation and position. In most cases, the outputs are also affected by more signals than the measured inputs. In the airplane example it would be wind gusts and turbulence effects. Such "unmeasured inputs" will be called disturbance signals or noise. If we denote inputs, outputs, and disturbances by \mathbf{u}, \mathbf{y}, and \mathbf{e}, respectively, the relationship can be depicted in the following figure.

Figure 1-1: Input Signals u, Output Signals \boldsymbol{y}, and Disturbances e All these signals are functions of time, and the value of the input at time t will be denoted by $u(t)$. Often, in theidentification context, only discrete-time points are considered, since the measurement equipment typically records the signals just at discrete-time instants, often equally spread in time with a sampling interval of T time units. The modeling problem is then to describe how the three signals relate to each other.

The Basic Dynamic Model

The basic relationship is the linear difference equation. An example of such an equation is the following one.

$$
\mathrm{y}(\mathrm{t})-1.5 \mathrm{y}(\mathrm{t}-\mathrm{T})+0.7 \mathrm{y}(\mathrm{t}-2 \mathrm{~T})=0.9 \mathrm{u}(\mathrm{t}-2 \mathrm{~T})+0.5 \mathrm{u}(\mathrm{t}-3 \mathrm{~T})+\mathrm{e}(\mathrm{t})(\mathrm{ARX})
$$

Such a relationship tells us, for example, how to compute the output $y(t)$ if the input is known and the disturbance can be ignored:

$$
\mathrm{y}(\mathrm{t})=1.5 \mathrm{y}(\mathrm{t}-\mathrm{T})-0.7 \mathrm{y}(\mathrm{t}-2 \mathrm{~T})+0.9 \mathrm{u}(\mathrm{t}-2 \mathrm{~T})+0.5 \mathrm{u}(\mathrm{t}-3 \mathrm{~T})
$$

The output at time t is thus computed as a linear combination of past outputs and past inputs. It follows, for example, that the output at time t depends on the input signal at many previous time instants. This is what the word dynamic refers to. The identification problem is then to use measurements of u and y to figure out

- The coefficients in this equation (i.e., -1.5, 0.7 , etc.)

How many delayed outputs to use in the description (two in the example: $y(t-T)$ and $y(t-2 T))$

- The time delay in the system is (2T in the example: you see from the second equation that it takes 2T time units before a change in u will affect y) and
- How many delayed inputs to use (two in the example: u(t-2T) and u(t-3T))

Variants of Model Descriptions

The model given above is called an ARX model. There are a handful of variants of this model known as Output-E rror (OE) models, AR MAX models, FIR models, and Box-J enkins (BJ) models. These are described later on in the manual. At a basic level it is sufficient to think of them as variants of the ARX model allowing also a characterization of the properties of the disturbances e.

General linear models can be described symbolically by

$$
\mathrm{y}=\mathrm{Gu} \mathrm{+He}
$$

which says that the measured output $y(t)$ is a sum of one contribution that comes from the measured input $u(t)$ and one contribution that comes from the noise $H e$. The symbol G then denotes the dynamic properties of the system, that is, how the output is formed from the input. For linear systems it is called the transfer function from input to output. The symbol H refers to the noise
properties, and is called the noise model. It describes how the disturbances at the output are formed from some standardized noise source $e(t)$.

State-space models are common representations of dynamical models. They describe the same type of linear difference relationship between the inputs and the outputs as in the ARX model, but they are rearranged so that only one delay is used in the expressions. To achieve this, some extra variables, the state variables, are introduced. They are not measured, but can be reconstructed from the measured input-output data. This is especially useful when there are several output signals, i.e., when $\mathrm{y}(\mathrm{t})$ is a vector. Chapter gives more details about this. F or basic use of the tool box it is sufficient to know that the order of the state-space model relates to the number of delayed inputs and outputs used in the corresponding linear difference equation. The state-space representation looks like

$$
\begin{aligned}
& x(t+1)=A x(t)+B u(t)+K e(t) \\
& y(t)=C x(t)+D u(t)+e(t)
\end{aligned}
$$

Herex(t) is the vector of state variables. The matrix K determines the noise properties. N otice that if $K=0$, then the noise source $e(t)$ affects only the output, and no specific model of the noise properties is built. This corresponds to $\mathrm{H}=1$ in the general description above, and is usually referred to as an Output-Error model. Notice also that $\mathrm{D}=0$ means that there is no direct influence from $u(t)$ to $y(t)$. Thus the effect of the input on the output all passes via $x(t)$ and will thus be delayed at least one sample. The first value of the state variable vector $x(0)$ reflects the initial conditions for the system at the beginning of the data record. When dealing with models in state-space form, a typical option is whether to estimate D, K, and $\mathrm{x}(0)$ or to let them be zero.

How to Interpret the Noise Source

In many cases of system identifi cation, the effects of the noise on the output are insignificant compared to those of the input. With good signal-to-noise ratios (SNR), it is less important to have an accurate noise model. Nevertheless it is important to understand the role of the noise and the noise source e(t), whether it appears in the ARX model or in the general descriptions given above.

There are three aspects of the noise that should be stressed:

- understanding white noise
- interpreting the noise source
- using the noise source when working with the model

These aspects are discussed one by one.
How can we understand white noise? From a formal point of view, the noise source e(t) will normally be regarded as white noise. This means that it is entirely unpredictable. In other words, it is impossible to guess the value of $\mathrm{e}(\mathrm{t})$ no matter how accurately we have measured past data up to timet-1.

How can we interpret the noise source? The actual noise contribution to the output, H e(t), has real significance. It contains all the influences on the measured y, known and unknown, that are not contained in the input u. It explains and captures the fact that even if an experiment is repeated with the same input, the output signal will typically be somewhat different. However, the noise source $e(t)$ need not have a physical significance. In the airplane example mentioned earlier, the noise effects are wind gusts and turbulence. Describing theseas arising from a white noise source via a transfer function H , is just a convenient way of capturing their character.

How can we deal with the noise source when using the model? If the model is used just for simulation, i.e., the responses to various inputs are to be studied, then the noise model plays no immediate role. Since the noise source e(t) for new data will be unknown, it is taken as zero in the simulations, so as to study the effect of the input al one (a noise-free simulation). Making another simulation with e(t) being arbitrary white noise will reveal how reliable the result of thesimulation is, but it will not give a more accuratesimulation result for the actual system's response.

The need and use of the noise model can be summarized as follows:

- It is, in most cases, required to obtain a better estimate for the dynamics, G.
- It indicates how reliable noise-free simulations are.
- It is required for reliable predictions and stochastic control design.

Terms to Characterize the Model Properties

The properties of an input-output relationship like the ARX model follow from the numerical values of the coefficients, and the number of delays used. This is however a fairly implicit way of tal king about the model properties. Instead a number of different terms are used in practice:

Impulse Response

The impulse response of a dynamical model is the output signal that results when the input is an impulse, i.e., $u(t)$ is zero for all values of t except $t=0$, where $u(0)=1$. It can be computed as in the equation following (ARX), by letting t be equal to $0,1,2, \ldots$ and taking $\mathrm{y}(-\mathrm{T})=\mathrm{y}(-2 \mathrm{~T})=0$ and $\mathrm{u}(0)=1$.

Step Response

The step response is the output signal that results from a step input, i.e., u(t) is zero for negative values of t and equal to one for positive values of t. The impulse and step responses together are called the model's transient response.

Frequency Response

The frequency response of a linear dynamic model describes how the model reacts to sinusoidal inputs. If we let the input $u(t)$ be a sinusoid of a certain frequency, then the output $y(t)$ will also be a sinusoid of this frequency. The amplitude and the phase (relative to the input) will however be different. This frequency response is most often depicted by two plots; one that shows the amplitude change as a function of the sinusoid's frequency and one that shows the phase shift as function of frequency. This is known as a Bode plot.

Zeros and Poles

The zeros and the poles are equivalent ways of describing the coefficients of a linear difference equation like the ARX model. The poles relate to the "output-side" and the zeros relate to the "input-side" of this equation. The number of poles (zeros) is equal to number of sampling intervals between the most and least delayed output (input). In the ARX example in the beginning of this section, there are consequently two poles and one zero.

4. The Basic Steps of System Identification

The System Identification problem is to estimate a model of a system based on observed input-output data. Several ways to describe a system and to estimate such descriptions exist. This section gives a brief account of the most important approaches.

The procedure to determine a model of a dynamical system from observed input-output data involves three basic ingredients:

- The input-output data
- A set of candidate models (the model structure)
- A criterion to select a particular model in the set, based on the information in the data (the identification method)

The identification process amounts to repeatedly selecting a model structure, computing the best model in the structure, and evaluating this model's properties to see if they are satisfactory. The cycle can be itemized as follows:

1 Design an experiment and collect input-output data from the process to be identified.

2 Examinethe data. Polish it so as to remove trends and outliers, select useful portions of the original data, and apply filtering to enhance important frequency ranges.

3 Select and define a model structure (a set of candidate system descriptions) within which a model is to be found.

4 Compute the best model in the model structure according to the input-output data and a given criterion of fit.

5 Examine the obtained model's properties
6 If the model is good enough, then stop; otherwise go back to Step 3 to try another model set. Possibly also try other estimation methods (Step 4) or work further on the input-output data (Steps 1 and 2).

The System Identification Tool box offers several functions for each of these steps.

F or Step 2 there are routines to plot data, filter data, and remove trends in data.

For Step 3 the System I dentification Tool box offers a variety of nonparametric models, as well as all the most common black-box input-output and state-space structures, and al so general tailor-made linear state-space models in discrete and continuous time.

For Step 4 general prediction error (maximum likelihood) methods as well as instrumental variable methods and sub-space methods are offered for parametric models, while basic correlation and spectral analysis methods are used for nonparametric model structures.

To examine models in Step 5, many functions allow the computation and presentation of frequency functions and poles and zeros, as well as simulation and prediction using the model. F unctions are also included for transformations between continuous-time and discrete-time model descriptions and to formats that are used in other MATLAB tool boxes, like the Control System Tool box and the Signal Processing Tool box.

5. A Startup Identification Procedure

There are no standard and secure routes to good models in System I dentification. Given the number of possibilities, it is easy to get confused about what to do, what model structures to test, and so on. This section describes one route that often works well, but there are no guarantees. The steps refer to functions within the GUI, but you ca6n also go through them in command mode. See Chapter for the basic commands.

Step 1 Looking at the Data

Plot the data. Look at them carefully. Try to see the dynamics with your own eyes. Can you see the effects in the outputs of the changes in the input? Can you see nonlinear effects, like different responses at different levels, or different responses to a step up and a step down? Are there portions of the data that appear to be "messy" or carry no information. Use this insight to select portions of the data for estimation and validation purposes.

Do physical levels play a role in your model? If not, detrend the data by removing their mean values. The models will then describe how changes in the input give changes in output, but not explain the actual levels of the signals. This is the normal situation.

The default situation, with good data, is that you detrend by removing means, and then select the first half or so of the data record for estimation purposes, and use the remaining data for validation. This is what happens when you apply Quickstart under the pop-up menu Preprocess in the main ident window.

Step 2 Getting a Feel for the Difficulties

Apply Quickstart under pop-up menu Estimate in the main ident window. This will compute and display the spectral analysis estimate and the correlation analysis estimate, as well as a fourth order ARX model with a delay
estimated from the correlation analysis and a default order state-space model computed by n4sid. This gives three plots. Look at the agreement between the

- Spectral Analysis estimate and the ARX and state-space models' frequency functions
- Correlation Analysis estimate and the ARX and state-space models' transient responses
- Measured Validation Data output and the ARX and state-space models' simulated outputs
If these agreements are reasonable, the problem is not so difficult, and a relatively simple linear model will do a good job. Some fine tuning of model orders, and noise models have to be made and you can proceed to Step 4. Otherwise go to Step 3.

Step 3 Examining the Difficulties

There may be several reasons why the comparisons in Step 2 did not look good. This section discusses the most common ones, and how they can be handled:

Model Unstable

The ARX or state-space model may turn out to be unstable, but could still be useful for control purposes. Change to a 5 - or 10-step ahead prediction instead of simulation in the Model Output View.

Feedback in Data

If there is feedback from the output to the input, due to some regulator, then the spectral and correlations analysis estimates are not reliable. Discrepancies between these estimates and the ARX and state-space models can therefore be disregarded in this case. In the Model Residuals View of the parametric models, feedback in data can also be visible as correlation between residuals and input for negative lags.

Noise Model

If the state-space model is clearly better than the ARX model at reproducing the measured output, this is an indication that the disturbances have a substantial influence, and it will be necessary to model them carefully.

Model Order

If a fourth order model does not give a good Model Output plot, try eighth order. If the fit clearly improves, it follows that higher order models will be required, but that linear models could be sufficient.

Additional Inputs

If the Model Output fit has not significantly improved by the tests so far, think over the physics of the application. Are there more signals that have been, or could be, measured that might influence the output? If so, include these among the inputs and try again a fourth order ARX model from all the inputs. (Note that the inputs need not at all be control signals, anything measurable, including disturbances, should be treated as inputs).

Nonlinear Effects

If the fit between measured and model output is still bad, consider the physics of the application. Are there nonlinear effects in the system? In that case, form the nonlinearities from the measured data. This could be as simple as forming the product of voltage and current measurements, if you realize that it is the electrical power that is the driving stimulus in, say, a heating process, and temperature is the output. This is of course application dependent. It does not take very much work, however, to form a number of additional inputs by reasonable nonlinear transformations of the measured ones, and just test if inclusion of them improves the fit.

Still Problems?

If none of these tests leads to a model that is able to reproduce the Validation Data reasonably well, the conclusion might be that a sufficiently good model cannot be produced from the data. There may be many reasons for this. The most important one is that the data simply do not contain sufficient information, e.g., due to bad signal to noise ratios, large and nonstationary disturbances, varying system properties, etc. The reason may also be that the system has some quite complicated nonlinearities, which cannot be realized on physical grounds. In such cases, nonlinear, black box models could be a solution. Among the most used models of this character are the Artificial Neural Networks (ANN).

Otherwise, use the insights of which inputs to use and which model orders to expect and proceed to Step 4.

Step 4 Fine Tuning Orders and Noise Structures

For real data there is no such thing as a "correct model structure." However, different structures can givequite different model quality. The only way to find this out is to try out a number of different structures and compare the properties of the obtained models. There are a few things to look for in these comparisons:

Fit Between Simulated and Measured Output

Keep the Model Output View open and look at the fit between the model's simulated output and the measured one for the Validation Data. F ormally, you could pick that model, for which this number is the lowest. In practice, it is better to be more pragmatic, and also take into account the model complexity, and whether the important features of the output response are captured.

Residual Analysis Test

You should require of a good model, that the cross correlation function between residuals and input does not go significantly outside the confidence region. A clear peak at lag k shows that the effect from input $u(t-k)$ on $y(t)$ is not properly described. A rule of thumb is that a slowly varying cross correlation function outside the confidence region is an indication of too few poles, while sharper peaks indicate too few zeros or wrong delays.

Pole Zero Cancellations

If the pole-zero plot (including confidence intervals) indicates pole-zero cancellations in the dynamics, this suggests that lower order models can be used. In particular, if it turns out that the orders of ARX models have to be increased to get a good fit, but that pol e-zero cancellations are indicated, then the extra poles are just introduced to describe the noise. Then try ARMAX, OE, or BJ model structures with an A or F polynomial of an order equal to that of the number of noncanceled poles.

What Model Structures Should be Tested?

Well, you can spend any amount of time to check out a very large number of structures. It often takes just a few seconds to compute and evaluate a model in a certain structure, so that you should have a generous attitude to the testing. However, experience shows that when the basic properties of the system's behavior have been picked up, it is not much use to fine tune orders in absurdum just to press the fit by fractions of percents.

Many ARX models: There is a very cheap way of testing many ARX structures simultaneously. E nter in the Orders text field many combinations of orders, using the colon (":") notation. When you select E stimate, models for all combinations (easily several hundreds) are computed and their (prediction error) fit to Validation Data is shown in a special plot. By clicking in this plot the best models with any chosen number of parameters will be inserted intothe Model Board, and evaluated as desired.

Many State-space models: A similar feature is also available for black-box state-space models, estimated using n4si d. When a good order has been found, try the PEM estimation method, which often improves on the accuracy.

ARMAX, OE , and BJ models: Once you have a feel for suitable delays and dynamics orders, if is often useful to try out ARMAX, OE, and/or BJ with these orders and test some different orders for the noise transfer functions (C and D). Especially for poorly damped systems, the OE structure is suitable.

There is a quite extensive literature on order and structure selection, and anyone who would like to know more should consult the references.

Multivariable Systems

Systems with many input signals and/or many output signals are called multivariable Such systems are often morechallenging to model. In particular systems with several outputs could be difficult. A basic reason for the difficulties is that the couplings between several inputs and outputs lead to more complex models. The structures involved are richer and more parameters will be required to obtain a good fit.

Available Models

The System Identification Toolbox as well as the GUI handles general, linear multivariablemodels. All earlier mentioned models are supported in the single output, multiple input case. F or multiple outputs ARX models and state-space models are covered. Multi-output ARMAX and OE models are covered via state-space representations: ARMAX corresponds to estimating the K-matrix, while OE corresponds to fixing K to zero. (These are pop-up options in the GUI model order editor.)

Generally speaking, it is preferable to work with state-space models in the multivariable case, since the model structure complexity is easier to deal with. It is essentially just a matter of choosing the model order.

Working with Subsets of the Input Output Channels

In the process of identifying good models of a system, it is often useful to select subsets of the input and output channels. Partial models of the system's behavior will then be constructed. It might not, for example, be clear if all measured inputs have a significant influence on the outputs. That is most easily tested by removing an input channel from the data, building a model for how the output(s) depends on the remaining input channels, and checking if there is a significant deterioration in the model output's fit to the measured one. See also the discussion under Step 3 above.

Generally speaking, the fit gets better when more inputs are included and worse when more outputs are included. To understand the latter fact, you should realize that a model that has to explain the behavior of several outputs has a tougher job than one that just must account for a single output. If you have difficulties obtaining good models for a multi-output system, it might be wise to model one output at a time, to find out which are the difficult ones to handle.

Models that are just to be used for simulations could very well be built up from single-output models, for one output at a time. However, models for prediction and control will be able to produce better results if constructed for all outputs simultaneously. This follows from the fact that knowing the set of all previous output channels gives a better basis for prediction, than just knowing the past outputs in one channel.

Some Practical Advice

The GUI is particularly suited for dealing with multivariable systems since it will do useful bookkeeping for you, handling different channels. You could follow the steps of this agenda:

- Import data and create a data set with all input and output channels of interest. Do the necessary preprocessing of this set in terms of detrending, prefiltering, etc., and then select a Validation Data set with all channels.
- Then select a Working Data set with all channels, and estimate state-space models of different orders using n4si d for these data. Examine the resulting model primarily using the Model Output view.
- If it is difficult to get a good fit in all output channels or you would like to investigate how important the different input channels are, construct new data sets using subsets of the original input/output channels. Usethe pop-up menu Preprocess >Select Channels for this. Don't change the Validation

Data. The GUI will keep track of the input and output channel numbers. It will "do the right thing" when evaluating the channel-restricted models using the Validation Data. It might also be appropriate to see if improvements in the fit are obtained for various model types, built for one output at a time.

- If you decide for a multi-output model, it is often easiest to use state-space models. Use n4si d as a primary tool and try out pemwhen a good order has been found. Note that n4si d does not provide confidence intervals for the model views.

Reading More About System Identification

There is substantial literature on System Identification. The following textbook deals with identification methods from a similar perspective as this tool box, and also describes methods for physical modeling.

- Ljung L. and T. Glad. Modeling of Dynamic Systems, Prentice Hall, Englewood Cliffs, N.J. 1994.
For more details about the algorithms and theories of identification:
- Ljung L.. System Identification - Theory for the User, Prentice Hall, Englewood Cliffs, N.J . 1987.
- Söderström T. and P. Stoi ca. System Identification, Prentice H all I nternational, London. 1989.

For more about system and signals:

- OppenheimJ. and A.S. Willsky. Signals and Systems, Prentice H all, Englewood Cliffs, N.J . 1985.

The following textbook deals with the underlying numerical techniques for parameter estimation.

- Dennis, J.E. J r. and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, N.J . 1983.

1 The System Identification Problem

The Graphical User Interface

The Big Picture 2-2
Handling Data 2-7
Estimating Models 2-14
Examining Models 2-27
Some F urther GUI Topics 2-34

1. The Big Picture

The System Identification Toolbox provides a graphical user interface (GUI). The GUI covers most of the tool box's functions and gives easy access to all variables that are created during a session. It is started by typing
i dent
in the MATLAB command window.

Figure 2-1: The Main ident Information Window

The Model and Data Boards

System I dentification is about data and models and creating model s from data. The main information and communication window ident, is therefore dominated by two tables:

- A table over available data sets, each represented by an icon.
- A table over created models, each represented by an icon.

These tables will be referred to as the "Model B oard" and the "Data Board" in this chapter. Y ou enter data sets into the Data Board by

- Opening earlier saved sessions.
- Importing them from the M ATLAB workspace.
- Creating them by detrending, filtering, selecting subsets, etc., of another data set in the Data Board.

Imports are handled under the pop-up menu Data while creation of new data sets is handled under the pop-up menu Preprocess. "Handling Data" on page 2-7 deals with this in more detail.

The models are entered into the summary board by

- Opening earlier saved sessions.
- Importing them from the MATLAB workspace.
- Estimating them from data.

Imports are handled under the pop-up menu Models, while all the different estimation schemes are reached under the pop-up menu Estimate. M ore about this in "Estimating Models" on page 2-14.

The Data and Model Boards can be rearranged by dragging and dropping. More boards open automatically when necessary or when asked for (under menu Options).

The Working Data

All data sets and models are created from the Working Data set. This is the data that is given in the center of the ident window. To change the Working Data set drag and drop any data set from the Data Board on the Working Data icon.

The View s

Below the Data and M odel Boards are buttons for different views. These control what aspects of the data sets and models you would liketo examine, and are described in more detail in "H andling Data" on page 2-7 and in "Examining Models" on page 2-27. To select a data set or a model, so that its properties are displayed, click on its icon. A selected object is marked by a thicker line in the icon. To deselect, click again. An arbitrary number of data/model objects can be examined simultaneously. To have more information about an object, double-click on its icon.

The Validation Data

The two model views Model Output and Model Residuals illustrate model properties when applied to the Validation Data set. This is the set marked in the box below these two views. To change the Validation Data, drag and drop any data set from the Data Board on the Validation Data icon.

It is good and common practice in identification to evaluate an estimated model's properties using a "fresh" data set, that is, one that was not used for the estimation. It is thus good advice to let the Validation Data be different from the Working Data, but they should of course be compatible with these.

The Work Flow

You start by importing data (under pop-up menu Data); you examine the data set using the Data Views. You probably remove the means from the data and select subsets of data for estimation and validation purposes using the items in the pop-up menu Preprocess. You then continue to estimate models, using the possibilities under the pop-up menu Estimate, perhaps first doing a quickstart. You examine the obtained models with respect to your favorite aspects using the different Model Views. The basic idea is that any checked view shows the properties of all selected models at any time. This function is "live" so models and views can be checked in and out at will in an online fashion. Y ou select/deselect a model by clicking on its icon.

Inspired by the information you gain from the plots, you continue to try out different model structures (model orders) until you find a model you are satisfied with.

Management Aspects

Diary: It is easy to forget what you have been doing. By double-clicking on a data/model icon, a complete diary will be given of how this object was created, along with other key information. At this point you can also add comments and change the name of the object and its color.

Layout: To have a good overview of the created models and data sets, it is good practice to try rearranging the icons by dragging and dropping. In this way models corresponding to a particular data set can be grouped together, etc. Y ou can also open new boards (Options menu Extra model/data boards) to further rearrange the icons. These can be dragged across the screen between different windows. The extra boards are also equipped with notepads for your comments.

Sessions: The Model and Data Boards with all models and data sets together with their diaries can be saved (under menu item File) at any point, and rel oaded later. This is the counterpart of save/load workspace in the command-driven MATLAB. The four most recent sessions are listed under File for immediate open.

Cleanliness: The boards will hold an arbitrary number of models and data sets (by creating clones of the board when necessary). It is however advisable to clear (delete) models and data sets that no longer are of interest. Dothat by dragging the object to the Trash Can. (Double-clicking on the trash can will open it up, and its contents can be retrieved.)

Window Culture: Dialog and plot windows are best managed by the GUI's cl ose function (submenu item under File menu, or select Close, or check/ uncheck the corresponding View box). They may also be"quitted" by the specific window system's quit/cl ose function. This does no harm, but "quit" will not be properly acknowledged by the GUI, and the window will have to be re-created next time it is to be used.

It is generally not suitable to iconify the windows - the GUI's handling and window management system is usually a better alternative.

Workspace Variables

The models and data sets created within the GUI are normally not available in the MATLAB workspace. Indeed, the workspace is not at all littered with variables during the sessions with the GUI. The variables can however be exported at any time to the workspace, by dragging and dropping the object icon on the To Workspace box. They will then carry the name in the workspace that marked the object icon at the time of export. Y ou can work with the variables in the workspace, using any MATLAB commands, and then perhaps import modified versions back into the GUI. Note that models have a specific internal structure and should be dealt with using the MATLAB commands present, th2ff, th2ss, etc. See "M odel Conversions" on page 4-5 of the "Command Reference" chapter.

The GUI's names of data sets and models are suggested by default procedures. Normally, you can enter any other name of your choice at the time of creation of the variable. Names can be changed (after double-clicking on theicon) at any time. Unlike the workspace situation, two GUI objects can carry the same name (i.e., the same string in their icons).

The GUI produces a handful of global workspace variables for management purposes. They all start with the prefix XI D.

NOTE: Do not clear all or cl ear gl obal during a GUI session! This would mean that you lose control over the objects that you have created. The same disaster occurs if you do cl g or qui t the main ident window. It is however safe to cl ear (without adding all or gl obal) the workspace at any time.

Help Texts

The GUI contains some 100 help texts that are accessible in a nested fashion, when required. The main ident window contains general help topics under the Help menu. This is also the case for the various plot windows. In addition, every dialog box has a Help push button for current help and advice.

2. Handling Data

Data Representation

In the System Identification Tool box (SITB), signals and observed data are represented as column vectors, e.g.,

$$
u=\left[\begin{array}{c}
u(1) \\
u(2) \\
\ldots \\
\ldots \\
u(N)
\end{array}\right]
$$

The entry in row number k, i.e., u(k), will then bethesignal's value at sampling instant number k . It is generally assumed in the toolbox that data are sampled at equidistant sampling times, and the sampling interval T is supplied as a specific argument.

We generally denote the input to a system by the letter u and the output by y. If the system has several input channels, the input data is represented by a matrix, where the columns are the input signals in the different channels:

$$
u=\left[\begin{array}{llll}
u 1 & u 2 & \ldots & u m
\end{array}\right]
$$

The same holds for systems with several output channels.
The observed input-output data record is represented in the SITB by a matrix, where the first column(s) is the output, followed by the input column(s):

$$
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
$$

When you work with the GUI, you only need to think of these representation issues when you insert the data set into the summary board. TheGUI will then handle the data representation automatically.

Getting Data into the GUI

The information about a data set that should be supplied to the GUI is as follows:

1 The input and output signals
2 The name you give to the data set
3 The starting time
4 The sampling interval
5 Data notes

NOTE: Items 3 and 4 are used only to ensure correct time and frequency scales when you plot data and model characteristics.

These are notes for your own information and bookkeeping that will follow the data and all models created from them.

As you select the pop-up menu Data and choose the item I mport..., a dialog box will open, where you can enter the information items 1-5, just listed. This box has six fields for you to fill in:

\square	Import Data						-
Input Output Variables							
Enter workspace variable names.							
	Input:	42					
	Output:	$y 2$					
Optional Data Information							
Data name: Dryer Starting time: 0 Sampling interval: 0.08 Notes:							
\% This is the 'Hair Dryer' data set $\%$ The input is the electric power and the \% output is the outlet air temperature. load dryer2							
Import Reset Close Help							

Figure 2-2: The Dialog for Importing Data into the GUI
Input and Output: Enter the variable names of the input and output respectively. These should be variables in your MATLAB workspace, so you may have to load some disk files first.
Actually, you can enter any MATLAB expressions in these fields, and they will be evaluated to compute the input and the output before inserting the data into the GUI.

Data name: Enter the name of the data set to be used by the GUI. This name can be changed later on.

Starting time and Sampling interval: Fill these out for correct time and frequency scales in the plots.
Note that you can enter any text you want to accompany the data for bookkeeping purposes.

Finally, select I mport to insert the data into the GUI. When no more data sets are to be inserted, select Close to close the dialog box. Reset will empty all the fields of the box.

Taking a Look at the Data

The first thing to do after having inserted the data set into the Data Board is to examine it. By checking the Data View item Plot Data, a plot of the input and output signals will be shown for the data sets that are selected. Y ou select/ deselect the data sets by clicking on them. F or multivariable data, the different combinations of input and output signals are chosen under menu item
Channel in the plot window. Using the zoomfunction (drawing rectangles with the left mouse button down) different portions of the data can be examined in more detail.

To examine the frequency contents of the data, check the Data View item Data Spectra. Thefunction is analogous to Plot Data, but the signals' spectra are shown instead. By default the periodograms of the data are shown, i.e., the absolute square of the Fourier transforms of the data. The plot can be changed to any chosen frequency range and a number of different ways of estimating spectra, by the Options menu item in the spectra window.

The purpose of examining the data in these ways is to find out if there are portions of the data that are not suitable for identification, if the information contents of the data is suitable in the interesting frequency regions, and if the data have to be preprocessed in some way, before using them for estimation.

Preprocessing Data

Detrending

Detrending the data involves removing the mean values or linear trends from the signals (the means and the linear trends are then computed and removed from each signal individually). This function is accessed under the pop-up menu Preprocess, by selecting item Remove Means or Remove Trends. More advanced detrending, such as removing piecewise linear trends or seasonal variations cannot be accessed within the GUI. It is generally recommended that you always remove at least the mean values of the data before the estimation phase, unless physical insight involving actual signal levels is built into the models.

Selecting Data Ranges

It is often the case that the whole data record is not suitable for identification, due to various undesired features (missing or "bad" data, outbursts of disturbances, level changes etc.), so that only portions of the data can be used. In any case, it is advisable to select one portion of the measured data for estimation purposes and another portion for validation purposes. The pop-up menu item Preprocess >Select Range... opens a dialog box, which facilitates the selection of different data portions, by typing in the ranges, or marking them by drawing rectangles with the mouse button down.
For multivariable data it is often advantageous to start by working with just some of the input and output signals. The menu item Preprocess $>$ Select Channels... allows you to select subsets of the inputs and outputs. This is done in such a way that the input/output numbering remains consistent when you evaluate data and model properties, for models covering different subsets of the data.

Prefiltering

By filtering the input and output signals through a linear filter (the same filter for all signals) you can focus the model's fit to the system to specific frequency ranges. This is done by selecting the pop-up menu item Preprocess >Filter... in the main window. The dialog is quite analogous to that of selecting data ranges in the time domain. Y ou mark with a rectangle in the spectral plots the intended passband or stop band of the filter, you select a button to check if the filtering has the desired effect, and then you insert the filtered data into the GUI's Data Board.

Prefiltering is a good way of removing high frequency noise in the data, and also a good alternative to detrending (by cutting out low frequencies from the pass band). Depending on the intended model use, you can also make sure that the model concentrates on the important frequency ranges. For a model that will be used for control design, for example, the frequency band around the intended closed-loop bandwidth is of special importance.

Resampling

If the data turn out to be sampled too fast, they can be decimated, i.e., every k-th value is picked, after proper prefiltering (antialias filtering). This is obtained from menu item Preprocess $>$ R esample.

You can also resample at a faster sampling rate by interpolation, using the same command, and giving a resampling factor less than one.

Quickstart

The pop-up menu item Preprocess >Quickstart performs the following sequence of actions: It opens the Time plot Data view, removes the means from the signals, and it splits these detrended data into two halves. The first one is made Working Data and the second one becomes Validation Data. All the three created data sets are inserted into the Data Board.

Checklist for Data Handling

- Insert data into the GUI's Data Board.
- Plot the data and examine it carefully.
- Typically detrend the data by removing mean values.
- Possibly prefilter the data to enhance and suppress various frequency bands.
- Select portions of the data for Estimation and for Validation. Drag and drop these data sets to the corresponding boxes in the GUI.

Simulating Data

The GUI is intended primarily for working with real data sets, and does not itself provide functions for simulating synthetic data. That has to be done in command mode, and you can use your favorite procedure in SIMULINK, the Signal Processing Tool box, or any other tool box for simulation and then insert the simulated data into the GUI as described above.

The System I dentification Tool box also has several commands for simulation. You should check idi nput, i dsimpol y2th, modst ruc, and ms 2 th in Chapter 4, "Command Reference," for details. The following example shows how the ARMAX model
$\mathrm{y}(\mathrm{t})-1.5 \mathrm{y}(\mathrm{t}-1)+0.7 \mathrm{y}(\mathrm{t}-2)=\mathrm{u}(\mathrm{t}-1)+0.5 \mathrm{u}(\mathrm{t}-2)+\mathrm{e}(\mathrm{t})-\mathrm{e}(\mathrm{t}-1)+0.2 \mathrm{e}(\mathrm{t}-2)$
is simulated with a binary random input u :

```
model 1 = pol y2th([[1-1.5 0. 7],[0 1 0. 5],[ 1 -1 0. 2]);
u = i di nput(400,'rbs',[ 0 0.3]);
e = randn(400, 1);
y = i dsi m([u e],nodel 1);
```

The input, u, and the output, y, can now be imported into the Graphical User Interface as data, and the various estimation routines can be applied to them. By also importing the simulation model, nodel 1, into the GUI, its properties can be compared to those of the different estimated models.
To simulate a continuous-time state-space model:

$$
\begin{aligned}
& \dot{x}=A x+B u+K e \\
& y=C x+e
\end{aligned}
$$

with the same input, and a sampling interval of 0.1 seconds, do the following in the System I dentification Tool box:
$\mathrm{A}=[-11 ;-0.50] ; \mathrm{B}=1 ; 0.5] ; \mathrm{C}=10] ; \mathrm{D}=0 ; \mathrm{K}=[0.5 ; 0.5]$;
model $2=n$ n 2 th (modstruc($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{K})$, ' c') ;
model 2=sett (nodel 2, 0.1) ;
$y=$ dsi m([ue], nodel 2);

3. Estimating Models

The Basics

Estimating models from data is the central activity in the System Identification Tool box. It is also the one that offers the most variety of possibilities and thus is the most demanding one for the user.

All estimation routines are accessed from the pop-up menu Estimate in the ident window. The models are always estimated using the data set that is currently in the Working Data box.

One can distinguish between two different types of estimation methods:

- Direct estimation of the Impulse or the Frequency Response of the system. These methods are often also called nonparametric estimation methods, and do not impose any structure assumptions about the system, other than that it is linear.
- Parametric methods. A specific model structure is assumed, and the parameters in this structure are estimated using data. This opens up a large variety of possibilities, corresponding to different ways of describing the system. Dominating ways are state-space and several variants of difference equation descriptions.

Direct Estimation of the Impulse Response

A linear system can be described by the impulse response g_{t}, with the property that

$$
y(t)=\sum_{k=1}^{\infty} g_{k} u(t-k)
$$

The name derives from the fact that if the input $u(t)$ is an impulse, i.e., $u(t)=1$ when $t=0$ and 0 when $t>0$ then the output $y(t)$ will be $y(t)=g_{t}$. For a multivariable system, the impulse response g_{k} will be a p by matrix, where p is the number of outputs and m is the number of inputs. Its i-j element thus described the behavior of the i-th output after an impulse in the j-th input.

By choosing menu item Estimate >Correlation Model and then selecting
Estimate in the dialog window that opens, impulse response coefficients are estimated directly from the input/output data using so called correlation
analysis. The actual method is described under the command cra in the Command Reference chapter. An option that determines the order of a prewhitening filter can al so be set in the dialog window. It is not very sensitive in most cases, and the default choice is often good enough. To obtain the default choice without opening the dialog window, you can also just type the letter c in the ident window. This is the "hotkey" for correlation analysis.

The resulting impulse response estimate is placed in the M odel Board, under the default name cra_d. (The name can be changed by double-clicking on the model icon and then typing in the desired name in the dialog box that opens.)

The best way to examine the result is to select the Model View Transient Response. This gives a graph of the estimated response. This view offers a choice between displaying the I mpulse or the Step response. For a multivariable system, the different channels, i.e., the responses from a certain input to a certain output, are selected under menu item Channel.

The number of lags for which the impulse response is estimated, i.e., the length of the estimated response, is determined as one of the options in the Transient Response View.

Direct Estimation of the Frequency Response

The frequency response of a linear system is the F ourier transform of its impulse response. This description of the system gives considerable engineering insight into its properties. The relation between input and output is often written

$$
\mathrm{y}(\mathrm{t})=\mathrm{G}(\mathrm{z}) \mathrm{u}(\mathrm{t})+\mathrm{v}(\mathrm{t})
$$

where G is the transfer function and v is the additive disturbance. The function

$$
G\left(e^{i \omega T}\right)
$$

as a function of (angular) frequency ω is then the frequency response or frequency function. T is the sampling interval. If you need more details on the different interpretations of the frequency response, consult See "The System Identification Problem" on page 3-8. in the Tutorial or any textbook on linear systems.

The system's frequency response is directly estimated using Spectral Analysis by the menu item Estimate >Spectral Model, and then selecting the Estimate button in the dialog box that opens. The result is placed on the Model

Board under the default name spa_d. The best way to examine it is to plot it using the Model View F requency Response. This view offers a number of different options on how to graph the curves. The frequencies for which to estimate the response can also be selected as an option under the Options menu in this View window.

The Spectral Analysis command also estimates the spectrum of the additive disturbance $\mathrm{v}(\mathrm{t})$ in the system description. This estimated disturbance spectrum is examined under the Model View item Noise Spectrum.

The Spectral Analysis estimate is stored in the SITB's freqf unc format. If you need to further work with the estimates, you can export the model to the MATLAB workspace and retrieve the responses by the command get $f f$. See freqf unc and get $f f$ in Chapter 4, "Command Reference," for more information. (A model is exported by dragging and dropping it over the To Workspace icon.)

Two options that affect the spectral analysis estimate can be set in the dialog box. The most important choice is a number, M, (the size of the lag window) that affects the frequency resolution of the estimates. Essentially, the frequency resolution is about $2 \pi / \mathrm{M}$ radians/(sampling interval). The choice of M is a trade-off between frequency resolution and variance (fluctuations). A large value of M gives good resolution but fluctuating and less reliable estimates. The default choice of M is good for systems that do not have very sharp resonances and may have to be adjusted for more resonant systems.

The options also offer a choice between the Blackman-Tukey windowing method spa (which is default) and a method based on smoothing direct F ourier transforms, et fe . et fe has an advantage for highly resonant systems, in that it is more efficient for Iarge values of M . It however has the drawbacks that it requires linearly spaced frequency values, does not estimate the disturbance spectrum, and does not provide confidence intervals. The actual methods are described in more detail in Chapter 4, "Command Reference," under spa and et $f e$. To obtain the spectral analysis model for the current settings of the options, you can just type the hotkey s in the ident window.

Estimation of Parametric Models

The SITB supports a wide range of model structures for linear systems. They are all accessed by the menu item Estimate >Parametric Models... in the ident window. This opens up a dialog box Parametric Models, which contains the basic dialog for all parametric estimation as shown on the following page

Figure 2-3: The Dialog Box for Estimating Parametric Models
The basic function of this box is as follows:
As you select Estimate, a model is estimated from the Working Data. The structure of this model is defined by thepop-up menu Structure together with the edit box Orders. It is given a name, which is written in the edit box Name.

The GUI will always suggest a default model name in the Name box, but you can change it to any string before selecting the E stimate button. (If you intend to export the model later, avoid spaces in the name.)

The interpretation of the model structure information (typically integers) in the Order box, depends on the selected Structure in the pop-up menu. This covers, typically, six choices:

- ARX models
- ARMAX model
- Output-Error (OE) models
- Box-J enkins (BJ) models
- State-space models
- M odel structure defined by Initial M odel (User defined structures)

These are dealt with one by one shortly.
You can fill out the Order box yourself at any time, but for assistance you can select Order Editor... This will open up another dialog box, depending on the chosen Structure, in which the desired model order and structure information can be entered in a simpler fashion.

You can also enter a name of a MATLAB workspace variable in the order edit box. This variable should then have a value that is consistent with the necessary orders for the chosen structure.

NOTE: For the state-space structure and the ARX structure, several orders and combination of orders can be entered. Then all corresponding models will be compared and displayed in a special dialog window for you to select suitable ones. This could be a useful tool to select good model orders. This option is described in more detail later in this section. When it is available, a button Order selection is visi ble.

Estimation Method

A common and general method of estimating the parameters is the prediction error approach, where simply the parameters of the model are chosen so that the difference between the model's (predicted) output and the measured output is minimized. This method is available for all model structures. Except for the ARX case, the estimation involves an iterative, numerical search for the best fit.

To obtain information from and interact with this search, select Iteration control... This also gives access to a number of options that govern the search process. (See auxvar in the Chapter 4, "Command Reference,".)

For some model structures (the ARX model, and black-box state-space models) methods based on correlation are also available: Instrumental Variable (IV) and Sub-space (N4SID) methods. The choice between methods is made in the Parametric Models dialog box.

Resulting Models

The estimated model is inserted into the GUI's M odel Board. You can then examine its various properties and comparethem with other models' properties using the Model View plots. M ore about that in "Examining M odels" on page 2-27.

To take a look at the model itself, double-click on the model's icon (middle/right mouse button or alt- double-click). The Data/Model Info window that then opens gives you information about how the model was estimated. You can then also select Present button, which will list the model, and its parameters with estimated standard deviations in the MATLAB command window.

If you need to work further with the model, you can export it by dragging and dropping it over the To Workspace icon, and then apply any MATLAB and tool box commands to it. (See, in particular, the commands th2ss, th2tf, th2par, and thd2t hc in Chapter 4, "Command Reference,".)

How to Know Which Structure and Method to Use

There is no simple way to find out "the best model structure"; in fact, for real data, there is no such thing as a "best" structure. Some routes to find good and acceptable model are described in "A Startup Identification Procedure" on page 1-12 in the introductory chapter. It is best to be generous at this point. It often takes just a few seconds to estimate a model, and by the different validation tools described in the next section, you can quickly find out if the new model is any better than the ones you had before. There is often a significant amount of work behind the data collection, and spending a few extra minutes trying out several different structures is usually worth while.

ARX Models

The Structure

The most used model structure is the simple linear difference equation

$$
y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)=b_{1} u(t-n k)+\ldots+b_{n b} u(t-n k-n b+1)
$$

which relates the current output $\mathrm{y}(\mathrm{t})$ to a finite number of past outputs $\mathrm{y}(\mathrm{t}-\mathrm{k})$ and inputs $u(t-k)$.

The structure is thus entirely defined by the three integers na, nb, and nk. na is equal to the number of poles and nb-1 is the number of zeros, while nk is the pure time-delay (the dead-time) in the system. For a system under sampled-data control, typically nk is equal to 1 if there is no dead-time.

For multi-input systems nb and nk are row vectors, where the i-th element gives the order/delay associated with the i-th input.

Entering the Order Parameters

The orders na, nb, and nk can either be directly entered into the edit box Orders in the Parametric Models window, or selected using the pop-up menus in the Order Editor.

Estimating Many Models Simultaneously

By entering any or all of the structure parameters as vectors, using MATLAB's col on notation, like na=1: 10, etc., you define many different structures that correspond to all combinations of orders. When selecting E stimate, models corresponding to all of these structures are computed. A special plot window will then open that shows thefit of these models to Validation Data. By clicking in this plot, you can then enter any models of your choice into the M odel Board.

Multi-input models: For multi-input models you can of course enter each of the input orders and delays as a vector. The number of models resulting from all combinations of orders and delays can however be very large. As an alternative, you may enter one vector (like nb=1: 10) for all inputs and one vector for all delays. Then only such models are computed that have the same orders and delays from all inputs.

Estimation Methods

There are two methods to estimate the coefficients a and b in the ARX model structure:

Least Squares: Minimizes the sum of squares of the right-hand side minus the left-hand side of the expression above, with respect to a and b. This is obtained by selecting ARX as the Method.

Instrumental Variables: Determines a and b so that the error between the right- and left- hand sides becomes uncorrelated with certain linear combinations of the inputs. This is obtained by selecting I V in the Method box.

The methods are described in more detail in Chapter 4, "Command Reference," under ar x and i v4.

Multi-Output Models

For a multi-output ARX structure with NY outputs and NU inputs, the difference equation above is still valid. The only change is that the coefficients a are NY by NY matrices and the coefficients b are NY by NU matrices.

The orders [NA NB NK] define the model structure as follows:
NA: an NY by NY matrix whose i-j entry is the order of the polynomial (in the delay operator) that relates the j-th output to the i-th output
NB: an NY by NU matrix whose i-j entry is the order of the polynomial that relates the j-th input to the i-th output

NK: an NY by NU matrix whose i-j entry is the delay from thej-th input to the i-th output

The Order Editor dialog box allows the choices

$$
\begin{aligned}
& N A=n a * o n e s(N Y, N Y) \\
& N B=n b * o n e s(N Y, N U) \\
& N K=n k * o n e s(N Y, N U)
\end{aligned}
$$

where na, nb, and nk are chosen by the pop-up menus.
For tailor-made order choices, construct a matrix [NA NB NK] in the MATLAB command window and enter the name of this matrix in the Order edit box in the Parametric Models window.

Note that the possibility to estimate many models simultaneously is not available for multi-output ARX models.
See "Defining M odel Structures" on page 3-29 for more information on multi-output ARX models.

ARMAX, Output-Error and Box-J enkins Models

There are several elaborations of the basic ARX model, where different noise models are introduced. These include well known model types, such as ARMAX, Output-Error, and Box-J enkins.

The General Structure

A general input-output linear model for a single-output system with input u and output y can be written:

$$
A(q) y(t)=\sum_{i=1}^{n u}\left[B_{i}(q) / F_{i}(q)\right] u_{i}\left(t-n k_{1}\right)+[C(q) / D(q)] e(t)
$$

Here u_{i} denotes input \#, and $\mathrm{A}, \mathrm{B}_{i}, \mathrm{C}, \mathrm{D}$, and F_{i}, are polynomials in the shift operator (z or q). (Don't get intimidated by this: It is just a compact way of writing difference equations; see below.)
The general structure is defined by giving the time-delays nk and the orders of these polynomials (i.e., the number of poles and zeros of the dynamic model from u to y, as well as of the noise model from e to y).

The Special Cases

Most often the choices are confined to one of the following special cases:
$A R X: \quad A(q) y(t)=B(q) u(t-n k)+e(t)$
ARMAX: $A(q) y(t)=B(q) u(t-n k)+C(q) e(t)$
OE: $\quad y(t)=[B(q) / F(q)] u(t-n k)+e(t) \quad$ (Output-Error)
$B J: \quad y(t)=[B(q) / F(q)] u(t-n k)+[C(q) / D(q)] e(t) \quad$ (Box-J enkins)
The "shift operator polynomials" are just compact ways of writing difference equations. F or example the ARMAX model in longhand would be:

$$
\begin{aligned}
& y(t)+a_{1}(t-1)+\ldots+a_{n a} y(t-n a)=b_{1} u(t-n k)+\ldots b_{n b} u(t-n k-n b+1)+e(t) \\
& +c_{1} e(t-1) \\
& +\ldots+e_{n c} e(t-n c)
\end{aligned}
$$

Note that A(q) corresponds to poles that are common between the dynamic model and the noise model (useful if noise enters the system "close to" the input). Likewise $F(q)$ determines the poles that are unique for the dynamics from input $\# i$, and $D(q)$ the poles that are unique for the noise.

The motivation for introducing all these model variants is to provide for flexibility in the noise description and to allow for common or different poles (dynamics) for the different inputs.

Entering the Model Structure

Use the Structure pop-up menu in the Parametric Models dialog to choose between the ARX, ARMAX, Output-Error, and Box-J enkins structures. Note that if the Working Data set has several outputs, only the first choice is available. For time series (data with no input signal) only AR and ARMA are available among these choices. These are the time series counterparts of ARX and ARMAX.

The orders of the polynomials are selected by the pop-up menus in the Order Editor dialog window, or by directly entering them in the edit box Orders in the Parametric Models window. When the order editor is open, the default orders, entered as you change the model structure, are based on previously used orders.

Estimation Method

The coefficients of the polynomials are estimated using a prediction error/ Maximum Likelihood method, by minimizing the size of the error term "e" in the expression above. Several options govern the minimization procedure. These are accessed by activating Iteration Control in the Parametric Models window, and selecting Option.

The algorithms are further described in Chapter 4, "Command Reference," under ar max, auxvar, bj , oe, and pem See also "Parametric M odel Estimation" on page 3-22 and "Defining Model Structures" on page 3-29.

NOTE: These model structures are available only for the scalar output case. For multi-output models, the statespace structures offer the same flexibility. Also note that it is not possible to estimate many different structures simultaneously for the input-output models.

State-Space Models

The Model Structure

The basic state-space model in innovations form can be written

$$
\begin{aligned}
& x(t+1)=A x(t)+B u(t)+K e(t) \\
& y(t)=C x(t)+D u(t)+e(t)
\end{aligned}
$$

The SITB supports two kinds of parametrizations of state-space models: black-box, free parametrizations, and parametrizations tailor-made to the application. The latter is discussed below under the heading "U ser Defined Model Structures." First we will discuss the black-box case.

Entering Black-Box State-Space Model Structures

The most important structure index is the model order, i.e., the dimension of the state vector x .

Use the pop-up menu in the Order E ditor to choose the model order, or enter it directly into the Orders edit box in the Parametric Models window. Using the other pop-up menus in the Order E ditor, you can further affect the chosen model structure:

- Fixing K to zero gives an Output-Error method, i.e., the difference between the model's simulated output and the measured one is mi nimized. F ormally, this corresponds to an assumption that the output disturbance is white noise.
- Fixing D to zero means that there is a delay of (at least) one samplefrom the input to the output. F or physical systems that are driven by piece-wise constant inputs, this is a natural assumption.
- Fixing the initial value $x(0)$ to zero means that the initial state is not estimated. Otherwise this initial state is estimated from the data. (Note that the estimated value of $x(0)$ is something that relates to the Working Data, and is not necessarily a good value of $x(0)$ for the Validation Data.)

Estimating Many Models Simultaneously

By entering a vector for the model order, using MATLAB's col on notation, (such as " $1: 10$ ") all indicated orders will be computed using a preliminary method. You can then enter models of different orders into the M odel Board by clicking in a special graph that contains information about the models.

Estimation Methods

There are two basic methods for the estimation:
PEM: Is a standard prediction error/maximum likelihood method, based on iterative minimization of a criterion. The iterations are started up at parameter values that are computed from n4sid. The parametrization of the matrices A, B, C, D, and K follows a default canonical form. The search for minimum is controlled by a number of options. These are accessed from the Option button in the Iteration Control window.

NASI D: Is a subspace-based method that does not use iterative search. The quality of the resulting estimates may significantly depend on an auxiliary order (like a prediction horizon). This auxiliary order can be given within parenthesis after the order in the edit box Orders (like "4 (9)"). If the auxiliary order is not given, a default value is used.

If the auxiliary order is given as a vector (like " 4 (5:17)"), models for all these auxiliary orders are computed and evaluated using the Working Data set. The model that gives the best fit is chosen. A figure is shown that illustrates the fit as a function of auxiliary order. (The fit is a simulation error fit if $K=0$ is chosen, otherwise a one-step ahead prediction error fit.)

See n4si d and pemin Chapter 4, "Command Reference," for more information.

User Defined Model Structures

State-Space Structures

The SITB supports user-defined linear state-space models of arbitrary structure. Using the command $m \$ 2 t h$, known and unknown parameters in the A, B, C, D, K, and XO matrices can be easily defined both for discrete- and continuous-time models. The command nf 2 t h allows you to use a completely arbitrary structure, defined by an M-file. fi xpar and unf i xpar can be used to manipulate structures. See Chapter 4, "Command Reference," and "Defining M odel Structures" on page 3-29

To use these structures in conjunction with the GUI, just define the appropriate structure in the MATLAB command window. Then use the Structure pop-up menu to select By Initial Model and enter the variable name of the structure in the edit box Initial Model in the Parametric Models window and select Estimate.

Any Model Structure

Arbitrary model structures can be defined using several commands in the System Identification Tool box:

- pol y2t h: Creates Input-output structures for single-output models
- ms 2 th : Creates Linear State-space models with arbitrary, free parameters
- mf 2t h: Creates completely arbitrary parametrizations of linear systems
- arx2t h: Creates multivariable ARX structures
- fi xpar/unf i xpar: M odifies structures by fixing or unfixing parameters

In addition, all estimation commands create model structures in terms of the resulting models.

Enter the name of any model structure in the box Orders (or Initial model) in the window Parametric Models and then select Estimate. Then the parameters of the model structure are adjusted to the chosen Working Data set. The method is a standard prediction error/maximum likelihood approach that iteratively searches for the minimum of a criterion. Options that govern this search are accessed by the Option button in the Iteration Control window.

The name of the initial model must be a variable either in the workspace or in the M odel Board. In the latter case you can just drag and drop it over the Orders/I nitial model edit box.

4. Examining Models

Having estimated a model is just a first step. It must now be examined, compared with other models, and tested with new data sets. This is primarily done using the six Model View functions, at the bottom of the main ident window:

- Frequency response
- Transient response
- Zeros and poles
- Noise spectrum
- Model output
- Model residuals

In addition, you can double-click on the model's icon to get Text Information about the model. Finally, you can export the model to the MATLAB workspace and use any commands for further analysis and model use.

Views and Models

The basic idea is that if a certain View window is open (checked), then all models in the M odel Summary Board that are sel ected will be represented in the window. The curves in the View window can be clicked in and out by selecting and deselecting the models in an online fashion. You select and deselect a model by clicking on its icon. An selected model is marked with a thicker line in its icon.

On color screens, the curves are col or coded al ong with the model icons in the Model Board. B efore printing a plot it might be a good idea to separate the line styles (menu item under Style). This could also be helpful on black and white screens.

Note that models that are obtained by spectral analysis only can be represented as frequency response and noise spectra, and that models estimated by correlation analysis only can be represented as transient response.

The Plot Windows

The six views all give similar plot windows, with several common features. They have a common menu bar, which covers some basic functions.

First of all, note that thereis a zoom function in the plot window. By dragging with the left mouse button down, you can draw rectangles, which will be enlarged when the mouse button is released. By double-clicking, the original axis scales are restored. F or plots with two axes, the x-axes scales are locked to each other. A single click on the left mouse button zooms in by a factor of two, while the middle button zooms out. The zoom function can be deactivated if desired. J ust select the menu item Zoom under Style.

Second, by pointing to any curve in the plot, and pressing the right mouse button, the curve will be identified with model name and present coordinates.

The common menu bar covers the following functions:

File

File allows you to copy the current figure to another, standard MATLAB figure window. This might be useful, e.g., when you intend to print a customized plot. Other File items cover printing the current plot and closing the plot window.

Options

Options first of all covers actions for setting the axes scaling. This menu item also gives a number of choices that are specific for the plot window in question, like a choice between step response or impulse response in the Transient response window.
A most important option is the possibility to show confidence intervals. Each model property has some uncertainty. This can also beestimated from data. By checking Show confidence intervals, a confidence region around the nominal curve(model property) will be marked (by dash-dotted lines). Thelevel of confidence can also be set under this menu item.

[^0]
Style

The style menu gives access to various ways of affecting the plot. You can add gridlines, turn the zoom on and off, and change the linestyles. The menu also covers a number of other options, like choice of units and scale for the axis.

Channel

For multivariate systems, you can choose which input-output channel to examine. The current choice is marked in the figure title.

Help

The Help menu has a number of items, which explain the plot and its options.

Frequency Response and Disturbance Spectra

All linear models that are estimated can be written in the form

$$
\mathrm{y}(\mathrm{t})=\mathrm{G}(\mathrm{z}) \mathrm{u}(\mathrm{t})+\mathrm{v}(\mathrm{t})
$$

where $G(z)$ is the (discrete-time) transfer function of the system and $v(t)$ is an additive disturbance. The frequency response or frequency function of the system is the complex-valued function $G\left(e^{j \omega T}\right)$ viewed as a function of angular frequency ω.

This function is often graphed as a Bode diagram, i.e., the logarithm of the amplitude (the absolute value) $\mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{T}}\right)$ as well as the phase arg (the argument) $\mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{T}}\right)$ are plotted against the logarithm of frequency ω in two separate plots. These plots are obtained by checking the Model View Frequency Response in the main ident window.

The estimated spectrum of the disturbance vis plotted as a power spectrum by choosing the Model View Noise Spectrum.

If the data is a time series y (with no input u), then the spectrum of y is plotted under Noise Spectrum, and no frequency functions are given.

Transient Response

Good and simple insight into a model's dynamic properties is obtained by looking at its step response or impulseresponse. This is the output of the model when the input is a step or an impulse. These responses are plotted when the Model View Transient Response is checked.

It is quite informative to compare the transient response of a parametric model, with the one that was estimated using correlation analysis. If there is good agreement between the two, you can be quite confident that some essentially correct features have been picked up. It is useful to check the confidence intervals around the responses to see what "good agreement" could mean quantitatively.
Many models provide a description of the additive disturbance $\mathrm{v}(\mathrm{t})$:

$$
\mathrm{v}(\mathrm{t})=\mathrm{H}(\mathrm{z}) \mathrm{e}(\mathrm{t})
$$

Here $\mathrm{H}(\mathrm{z})$ is a transfer function that describes how the disturbance $\mathrm{v}(\mathrm{t})$ can be thought of as generated by sending white noise e(t) through it. To display the properties of H, you can choose channels (in the Channel menu) that have noise components as inputs.

Poles and Zeros

The poles of a system are the roots of the denominator of the transfer function $\mathrm{G}(\mathrm{z})$, while the zeros are the roots of the numerator. In particular the poles have a direct influence on the dynamic properties of the system.

The poles and zeros of G (and H) are plotted by choosing the Model View Poles and Zeros.

It is useful to turn on the confidence intervals in this case. They will clearly reveal which poles and zeros could cancel (their confidence regions overlap). That is an indication that a lower order dynamic model could be used.

For multivariable systems it is the poles and zeros of the individual input/ output channels that are displayed. To obtain the so called transmission zeros, you will have to export the model, extract a state-space description by th2ss, and then apply the command tzer o from the Control System Tool box.

Compare Measured and Model Output

A very good way of obtaining insight into the quality of a model is to simulate it with the input from a fresh data set, and compare the simulated output with the measured one. This gives a good feel for which properties of the system have been picked up by the model, and which haven't.

This test is obtained by checking the Model View Model Output. Then the data set currently in the Validation Data box will be used for the comparison.

The fit will also be displayed. This is computed as the root of the mean square value of the difference between measured and simulated output.

If the model is unstable, or has integration or very slow time constants, the levels of the simulated and the measured output may drift apart, even for a model that is quite good (at least for control purposes). It is then a good idea to evaluate the model's predicted output rather than the simulated one. With a prediction horizon of k, the k-step ahead predicted output is then obtained as follows:

The predicted value $\mathrm{y}(\mathrm{t})$ is computed from all available inputs $u(s)(s \leq t)$ (used according to the model) and all available outputs up to time $\mathrm{t}-\mathrm{k}, y(s)(s \leq t-k)$. The simulation case, where no past outputs at all are used, thus formally corresponds to $\mathrm{k}=\infty$. To check if the model has picked up interesting dynamic properties, it is wisetolet the predicted time horizon (kT, T being the sampling interval) be larger than the important time constants.

N ote here that different models use theinformation in past output data in their predictors in different ways. This depends on the noise model. F or example, so called Output-E rror models (obtained by fixing K to zero for state-space models and setting $n a=n c=n d=0$ for input output models, see the previous section) do not use past outputs at all. The simulated and the predicted outputs, for any value of k, thus coincide.

Residual Analysis

In a model

$$
y(t)=G(z) u(t)+H(z) e(t)
$$

the noise source e(t) represents that part of the output that the model could not reproduce. It gives the "left-overs" or, in Latin, the residuals. For a good model, the residuals should be independent of the input. Otherwise, there would be more in the output that originates from the input and that the model has not picked up.

To test this independence, the cross-correlation function between input and residuals is computed by checking the Model View Model Residuals. It is wise to also display the confidence region for this function. For an ideal model the correlation function should lie entirely between the confidence lines for positive lags. If, for example, there is a peak outside the confidence region for lag k, this means that there is something in the output $y(t)$ that originates from $u(t-k)$ and that has not been properly described by the model. Thetest is carried
out using theValidation Data. If these were not used to estimate the model, the test is quite tough. See also "M odel StructureSelection and Validation" on page 3-49.

For a model also to give a correct description of the noise properties (i.e., the transfer function H), the residuals should be mutually independent. This test is also carried out by the view Model Residuals, by displaying the auto-correlation function of the residuals (excluding lag zero, for which this function by definition is one). F or an ideal model, the correlation function should be entirely inside the confidence region.

Text Information

By double-clicking (middle/right mousebutton or alt-double-click) on the model icon, a Data/model Info dialog box opens, which contains some basic information about the model. It also gives a diary of how the model was created, along with the notes that originally were associated with the estimation data set. At this point you can do a number of things:

Present

Selecting the Present button displays details of the model in the MATLAB command window. The model's parameters along with estimated standard deviations are displayed, as well as some other notes.

Modify

You can simply type in any text you want anywhere in the Diary and Notes editable text field of the dialog box. You can also change the name of the model just by editing the text field with the model name. The color, which the model is associated with in all plots, can also be edited. Enter RGB-values or a color name (like 'y') in the corresponding box.

Further Analysis in the MATLAB Workspace

Any model and data object can be exported to the MATLAB workspace by dragging and dropping its icon over the To Workspace box in the ident window.

Once you have exported the model to the workspace, there are lots of commands by which you can further transform it, examine it, and convert it to other formats for use in other tool boxes. Some examples of such commands are thd 2 t hc Transform to continuous time.
th2ss Convert to state-space representation.
$t h 2 t f \quad$ Convert to transfer function form.
th2poly Convert to polynomial input/output form.
Also, if you need to preparespecialized plots that are not covered by the Views, all the SITB commands for computing and extracting simulations, frequency functions, zeros and poles, etc., are available. See Chapter 3, "Tutorial," and Chapter 4, "Command Reference,".

5. Some Further GUI Topics

This section discusses a number of different topics.

Mouse Buttons and Hotkeys

The GUI uses three mouse buttons. If you have fewer buttons on your mouse, the actions associated with the middle and right mouse buttons are obtained by shift-click, alt-click or control-click, depending on the computer.

The Main ident Window

In the main ident window the mouse buttons are used to drag and drop, to select/deselect models and data sets, and to double-click to get text information about the object. You can use the left mouse button for all of this. A certain speed-up is obtained if you use the left button for dragging and dropping, the right one for selecting models and data sets, and the middle one for double-clicking. On a slow machine a double-click from the left button might not be recognized.

The ident window also has a number of hotkeys. By pressing a keyboard letter when it is the current window, some functions can be quickly activated. These are

- s: Computes Spectral Analysis Model using the current options settings. (These can be changed in the dialog window that opens when you choose Spectral Model in the Estimate pop-up menu.)
- c: Computes Correlation Analysis Model using the current options settings. (These can be changed in the dialog window that opens when you choose Correlation Model in the Estimate pop-up menu.)
- q : Computes the models associated with the Quickstart.
- d: Opens a dialog window for importing Data that are in the SITB data format.

Plot Windows

In the various plot windows the action of the mouse buttons depends on whether the zoom is activated or not:

Zoom Active: Then the left and middle mouse buttons are associated with the zoom functions as in the standard MATLAB zoom. Left button zooms in and the middle one zooms out. In addition, you can draw rectangles with the left
button, to define the area to be zoomed. Double-clicking restores the original plot. Theright mouse button is associated with special GUI actions that depend on the window. In the View plots, the right mouse button is used to identify the curves. Point and click on a curve, and a box will display the name of the model/data set that the curve is associated with, and al so the current coordinate values for the curve. In the Model Selection plots the right mouse button is used to inspect and select the various models. In the Prefilter and Data Range plots, rectangles are drawn with this mouse button down, to define the selected range.

Zoom not active: The special GUI functions just mentioned are obtained by any mouse button.

The zoom is activated and deactivated under the menu item Style. The default setting differs between the plots. Don't activate the zoom from the command line! That will destroy the special GUI functions. (If you happen to do so anyway, "quit" the window and open it again.)

Troubleshooting in Plots

The function Auto-range, which is found under the menu item Options, sets automatic scales to the plots. It is al so a good function to invoke when you think that you have lost control over the curves in the plot. (This may happen, for example, if you have zoom in a portion of a plot and then change the data of the plot).

If the view plots don't respond the way you expect them to, you can always "quit" the window and open it again. By quit here we mean using the underlying window system's own quitting mechanism, which is called different things in the different platforms. This action will not be acknowledged by the corresponding check box in the ident window, so you will haveto first uncheck, and then check it. The normal way to close a window is to use the Close function under the menu item File, or to uncheck the corresponding check box.

Layout Questions and idprefs.mat

The GUI comes with a number of preset defaults. These include the window sizes and positions, the colors of the different models, and the default options in the different View windows.

The window sizes and positions, as well as the options in the plot windows, can of course be changed during the session in the standard way. If you want the

GUI to start with your current window layout and current plot options, select menu item

> Options > Save preferences
in the main ident window. This saves the information in a file i dpref s. mat . This file also stores information about the four most recent sessions with ident. This allows the session File menu to be correctly initialized. The session information is automatically stored upon exit. The layout and preference information is only saved when the indicated option is selected.
Thefilei dpr ef s. mat is created the first time you open the GUI. It is by default stored in the same directory as your st art up. mfile. If this default does not work, a warning is issued. This can be ignored, but then session and preference information cannot be stored.

To change or select a directory for i dpr ef s. mat, use the command midpr ef s. See Chapter 4, "Command Reference," for details.

To change model col ors and default options to your own customized choice, make a copy of the M-filei dl ayout . mto your own directory (which should be before the basic i dent directory in the MATLABPATH), and edit it according to its instructions.

Customized Plots

If you need to prepare hardcopies of your plots with specialized texts, titles and so on, make a copy of the figure first, using Copy Figure under the File menu item. This produces a copy of the current figure in a standard MATLAB figure format.

For plots that are not covered by the View windows, (like, e.g., Nyquist plots), you have to export the model to the MATLAB workspace and construct the plots there.

Import from and Export to Workspace

As you export a model or a data set to the MATLAB workspace by dropping its icon over the To Workspace icon, it will become a workspace variable with the same name as in ident, say mymodel. At the same time another workspace variable will be created with the name mymdel _i nfo. This contains all diary and note information. This will be quite useful if you want to manipulate the
model using MATLAB commands and then import it back into ident. The use is illustrated by the following example:

Export model with name mymodel to workspace. Execute the following at the MATLAB command line:

```
mynodel c=t hd2t hc( mymodel );
    \% converting the model to continuous time
mymodel c_i \(\mathrm{nf} 0=\) st 2 2mat ( mymodel _i nf o, . .
    ' my nodel c=t hd2t hc( mynodel ) ' );
    \% adding the info of how the new variable was created
```

Now select pop-up menu Model >1 mport, enter the variable name mymodel c, and select I mport.
This will enter the continuous-time model into ident al ong with the relevant information.

What Cannot be Done Using the GUI

The GUI covers primarily everything you would like to do to examine data, estimate models and evaluate and compare models. It does not cover

- Generation (simulation) of data sets
- Model creation (other than by estimation)
- Model manipulation and conversions
- Recursive (on-line) estimation algorithms

Check Chapter 3, "Tutorial," as well as the headings Simulation and Prediction, Model Structure Creation, Manipulating Model Structures, Model Conversions, and Recursive Parameter Estimation in the beginning of Chapter 4, "Command Reference," to see what M-files are available in the tool box for these functions.

Note that at any point you can export a data set or a model to the MATLAB workspace (by dragging and dropping its icon on the To Workspace icon). There you can modify and manipulate it any way you want and then import it back into ident. Y ou can, for example, construct a continuous-time model from an estimated discrete-time one (using thd2t hc) and then use the model views to compare the two.

2 The G raphical User Interface

Tutorial

The Toolbox Commands 3-3
An Introductory Example to Command Mode 3-5
The System Identification Problem 3-8
Nonparametric Model Estimation 3-19
Parametric Model Estimation 3-22
Defining Model Structures 3-29
Examining Models 3-40
Model Structure Selection and Validation 3-49
Dealing with Data 3-58
Recursive Parameter Estimation 3-61
Some Special Topics 3-68

This chapter has two purposes. It describes the commands of the System Identification Tool box, their syntax and use. If you use the graphical user interface (GUI), you will not have to bother about these aspects. The chapter also describes the underlying methods and algorithms used. The commands that are not reached from the GUI, i.e., the recursive algorithms and more advanced model structure definitions, are also treated here.

1. The Toolbox Commands

It may be useful to recognize several layers of the System Identification Toolbox. Initially concentrate on the first layer of basic tools, which contains the commands from the System Identification Toolbox that any user must master. Y ou can proceed to the next levels whenever an interest or the need from the applications warrants it. The layers are described in the following paragraphs:

Layer 1: Basic Tools. Thefirst layer contains thebasictools for correlation and spectral analysis, and the estimation of so-called ARX models using the least-squares method. It also contains the basic tools for examining the obtained models. The commands are:

```
ar, arx, bodepl ot, compare, cra, dtrend, ffpl ot
idsim present, resid, spa, th2arx, th2ff, th2zp, zppl ot
```

The corresponding background is given in the following sections: 3,4,5,6,7 and 8 of this chapter.

Layer 2: Model Structure Selection. The second layer of the tool box contains some useful techniques to select orders and delays, and to estimate more general input-output model structures. The commands are:
armax, arxstruc, bj, etfe, idfilt, iv4, n4sid
oe, pol y2th, sel struc, th2poly
Note that the commands ar x and i v4 also apply to multi-input, multi-output systems. The corresponding background is given in the sections $3,5,6,8$ and 9 of this chapter.

Layer 3: More Methods To Examine Models and Multi-Input Systems. This third layer contains transformations between continuous and discrete time, and functions for estimating completely general multi-input model structures. The commands are:

```
pe, pem predict, th2ss, th2tf, thc2thd, thd2thc
```

The corresponding background is given in section 7 of this chapter.

Layer 4: Recursive Identification. Recursive (adaptive, online) methods of parameter estimation are covered by the commands:

```
rar mmx, rarx, rbj, roe, rpem rpl r
```

The corresponding background is given "Recursive Parameter Estimation" on page 3-61.

Layer 5: State-Space Modeling. To build models in state-space form (both continuous and discrete time), and to handle more advanced multi-output structures, there are the commands:
canstart, fixpar, nf 2th, modstruc, ns $2 t h$, unfixpar
The corresponding theory is covered in sections 3, 5, 6, and 8 of this chapter.
(See the beginning of the Chapter 4, "Command Reference," for a completelist of available functions.)

2. An Introductory Example to Command Mode

A demonstration M-file called i ddeno. mprovides several examples of what might be typical sessions with the System Identification Toolbox. To start the demo, execute i ddeno from inside MATLAB.

Before giving a formal treatment of the capabilities and possibilities of the tool box, this example is designed to get you using the software quickly. This example is essentially the same as demo \#2 in i ddemo. Y ou may want to invoke MATLAB at this time, execute i ddemo1, and follow along.

Data have been collected from a laboratory scale process. (F eedback's Process Trainer PT326; see page 440 in Ljung, 1987 and "Reading More About System Identification" on page 1-18 for references.) The process operates much like a common hand-held hair dryer. Air is blown through a tube after being heated at the inlet to the tube. The input to the process is the power applied to a mesh of resistor wires that constitutes the heating device. The output of the process is the air temperature at the outlet measured in volts by a thermocouple sensor.

One thousand input-output data points were collected from the process as the input was changed in a random fashion between two levels. The sampling interval is 80 ms . The data were loaded into MATLAB in ASCII form and are now stored as the vectors y2 (output) and u2 (input) in the file dryer 2. mat .

First load the data:
I oad dryer2
This example selects the first 300 data points for building a model. For convenience, the input-output vectors are merged into a matrix:

$$
z 2=[y 2(1: 300) u 2(1: 300)] ;
$$

Take a look at the data,
i dpl ot (z2)
The tool box makes frequent use of default arguments. Default values are used when trailing arguments are omitted. In the case above, by default, all data points are graphed and the sampling interval is one time unit.

You can select the values between sample numbers 200 and 300 for a closeup, and at the same time obtain correct time scales, with
i dpl ot (z2, 200: 300, 0. 08)
Remove the constant levels and make the data zero mean with

```
z2 = dtrend(z2);
```

Now, fit to the data a model of the form:

$$
\begin{equation*}
y(t)+a_{1} y(t-T)+a_{2} y(t-2 T)=b_{1} u(t-3 T)+b_{2} u(t-4 T) \tag{2.1}
\end{equation*}
$$

where T is the sampling interval (here 0.08 seconds). This model, known as an ARX model, tries to explain or compute the value of the output at timet, given previous values of y and u. Later on, especially in Section 8, are discussions of how to decide upon suitable model orders (structures).
The best values of the coefficients a_{1}, a_{2}, b_{1} and b_{2} can be computed with

The numbers in the second argument tell ar x to find a model (2.1) with two a-parameters, two b-parameters, and three delays. The result is stored in the matrix t in a somewhat coded form. To specify the actual sampling interval, enter

$$
\text { th }=\operatorname{sett}(\mathrm{th}, 0.08) ;
$$

There are several ways to display and illustrate the computed model. With

```
present(th)
```

the coefficient values of (2.1) and their estimated standard deviations are presented on the screen.

Next, you might ask how to evaluate how well the model fits the data. A simple test is to run a simulation whereby real input data is fed into the model, and compare the simulated output with the actual measured output. For this, select a portion of the data that was not used to build the model, for example, from sample 700 to 900 :

```
u = dtrend(u2( 700: 900));
y = dtrend(y2(700: 900));
```

```
ysi m = i dsi m( u, th) ;
pl ot ([y( 100: 200) ysi m( 100: 200)] )
```

Note that the function compar e does this sequence of commands more efficiently.

You see that the model is quite capable of describing the system, even for data that were not used in calculating the fit.

To compute and graph the poles and zeros of the model, use

```
zpth = th2zp(th);
zppl ot(zpth)
```

If you want to know the frequency response, you can compute the frequency function of the model and present it as a Bode plot by entering

```
gth = th2ff(th);
bodepl ot (gt h)
```

Compare this transfer function with a transfer function obtained from a nonparametric, spectral analysis method. Such an estimateis obtained di rectly from the data

```
gs = spa(z2);
gs = sett(gs,0.08);
```

The sampling interval, 0.08 , is set by the second command in order to obtain correct frequency scales. The function spa also allows you to select window sizes, frequency ranges, etc. All these have here been given default values.

You can compare the estimate of the transfer function obtained by spectral analysis and the one obtained from the model (2.1) with

```
bodepl ot([gs gth])
```

The agreement is quite good.
Finally, plot the step response of the model. The model comes with an estimate of its own uncertainty. Ten different step responses are computed and graphed. They correspond to "possible" models, drawn from the distribution of the true system (according to our model):

```
step = ones( 30,1);
i dsi m¢d(step,th)
```


3. The System Identification Problem

This section discusses different basic ways to describe linear dynamic systems and also the most important methods for estimating such models.

Impulse Responses, Frequency Functions, and Spectra

The basic input-output configuration is depicted in the figure above. Assuming unit sampling interval, there is an input signal

$$
u(t) ; t=1,2, \ldots \ldots \ldots, N
$$

and an output signal

$$
y(t) ; t=1,2, \ldots \ldots ., . N
$$

Assuming the signals are related by a linear system, the relationship can be written

$$
\begin{equation*}
y(t)=G(q) u(t)+v(t) \tag{3.1}
\end{equation*}
$$

where q is the shift operator and $G(q) u(t)$ is short for

$$
\begin{equation*}
G(q) u(t)=\sum_{k=1}^{\infty} g(k) u(t-k) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
G(q)=\sum_{k=1}^{\infty} g(k) q^{-k} ; \quad q^{-1} u(t)=u(t-1) \tag{3.3}
\end{equation*}
$$

The numbers $\{g(k)\}$ are called the impulse response of the system. Clearly, $g(k)$ is the output of the system at time k if the input is a single (im)pulse at time zero. The function $G(q)$ is called the transfer function of the system. This function evaluated on the unit circle $\left(q=e^{i \omega}\right)$ gives the frequency function

$$
\begin{equation*}
G\left(e^{i \omega}\right) \tag{3.4}
\end{equation*}
$$

In (3.1) $v(t)$ is an additional, unmeasurable disturbance (noise). Its properties can be expressed in terms of its (auto) spectrum

$$
\begin{equation*}
\Phi_{v}(\omega) \tag{3.5}
\end{equation*}
$$

which is defined by

$$
\begin{equation*}
\Phi_{v}(\omega)=\sum_{\tau=-\infty}^{\infty} R_{v}(\tau) e^{-i w t} \tag{3.6}
\end{equation*}
$$

where $R_{v}(\tau)$ is the covariance function of $v(t)$:

$$
\begin{equation*}
R_{v}(\tau)=E v(t) v(t-\tau) \tag{3.7}
\end{equation*}
$$

and E denotes mathematical expectation. Alternatively, the disturbance $v(t)$ can be described as filtered white noise:

$$
\begin{equation*}
v(t)=H(q) e(t) \tag{3.8}
\end{equation*}
$$

where $e(t)$ is white noise with variance λ and

$$
\begin{equation*}
\Phi_{v}(\omega)=\lambda\left|H\left(e^{i \omega}\right)\right|^{2} \tag{3.9}
\end{equation*}
$$

Equations (3.1) and (3.8) together give a timedomain description of the system:

$$
\begin{equation*}
y(t)=G(q) u(t)+H(q) e(t) \tag{3.10}
\end{equation*}
$$

while (3.4) and (3.5) constitute a frequency domain description:

$$
\begin{equation*}
G\left(e^{i \omega}\right) ; \quad \Phi_{v}(\omega) \tag{3.11}
\end{equation*}
$$

The impulse response (3.3) and the frequency domain description (3.11) are called nonparametric model descriptions since they are not defined in terms of a finite number of parameters. The basic description (3.10) also applies to the multivariable case; i.e., to systems with several (say nu) input signals and several (say ny) output signals. In that case $G(q)$ is an ny by nu matrix while $H(q)$ and $\Phi_{v}(\omega)$ are ny by ny matrices.

Polynomial Representation of Transfer Functions

Rather than specifying the functions G and H in (3.10) in terms of functions of the frequency variable ω, you can describe them as rational functions of q^{-1} and specify the numerator and denominator coefficients in some way.

A commonly used parametric model is the ARX model that corresponds to

$$
\begin{equation*}
G(q)=q^{-n k} \quad \frac{B(q)}{A(q)} ; \quad H(q)=\frac{1}{A(q)} \tag{3.12}
\end{equation*}
$$

where B and A are polynomials in the delay operator q^{-1} :

$$
\begin{align*}
& A(q)=1+a_{1} q^{-1}+\ldots \ldots+a_{n a} q^{-n a} \tag{3.13}\\
& B(q)=b_{1}+b_{2} q^{-1}+\ldots \ldots+b_{n b} q^{-n b+1} \tag{3.14}
\end{align*}
$$

Here, the numbers na and nb are the orders of the respective pol ynomials. The number nk is the number of delays from input to output. The model is usually written

$$
\begin{equation*}
A(q) y(t)=B(q) u(t-n k)+e(t) \tag{3.15}
\end{equation*}
$$

or explicitly

$$
\begin{align*}
& y(t)+a_{1} y(t-1)+\ldots \ldots+a_{n a} y(t-n a)= \tag{3.16}\\
& b_{1} u(t-n k)+b_{2} u(t-n k-1)+\ldots \ldots+b_{n b} u(t-n k-n b+1)+e(t)
\end{align*}
$$

Note that (3.15) -(3.16) apply also to the multivariable case, where $A(q)$ and the coefficients a_{i} become ny by ny matrices, $B(q)$ and the coefficients b_{i} become ny by nu matrices.

Another very common, and more general, model structure is the ARMAX structure

$$
\begin{equation*}
A(q) y(t)=B(q) u(t-n k)+C(q) e(t) \tag{3.17}
\end{equation*}
$$

Here, $A(q)$ and $B(q)$ are as in (3.13)-(3.14), while

$$
\begin{equation*}
C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c} \tag{3.18}
\end{equation*}
$$

An Output-Error (OE) structure is obtained as

$$
\begin{equation*}
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t) \tag{3.19}
\end{equation*}
$$

with

$$
\begin{equation*}
F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f} \tag{3.20}
\end{equation*}
$$

The so-called Box-J enkins (BJ) model structure is given by

$$
\begin{equation*}
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t) \tag{3.21}
\end{equation*}
$$

with

$$
\begin{equation*}
D(q)=1+d_{1} q^{-1}+\ldots+d_{n d} q^{-n d} \tag{3.22}
\end{equation*}
$$

All these models are special cases of the general parametric model structure:

$$
\begin{equation*}
A(q) y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t) \tag{3.23}
\end{equation*}
$$

The variance of the white noise $\{e(t)\}$ is assumed to be λ.
Within the structure of (3.23), virtually all of the usual linear black-box model structures are obtained as special cases. The ARX structure is obviously obtained for $n c=n d=n f=0$. The ARMAX structure corresponds to $n f=n d=0$. The ARARX structure (or the "generalized least-squares model") is obtained for $n c=n f=0$, while the ARARMAX structure (or "extended matrix model") corresponds to $n f=0$. The Output-Error model is obtained with $1 a=n c=n d=1$, while the Box-J enkins model corresponds to $n a=0$. (See Section 4.2 in Ljung (1987) for a detailed discussion.)

The same type of models can be defined for systems with an arbitrary number of inputs. They have the form

$$
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{\dot{B_{n u}}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
$$

State-Space Representation of Transfer Functions

A common way of describing linear systems is to use the statespace form:

$$
\begin{align*}
x(t+1) & =A x(t)+B u(t) \tag{3.24a}\\
y(t) & =C x(t)+D u(t)+v(t) \tag{3.24b}
\end{align*}
$$

Here the relationship between the input $u(t)$ and the output $y(t)$ is defined via the nx-dimensional state vector $x(t)$. In transfer function form (3.24) corresponds to (3.1) with

$$
\begin{equation*}
G(q)=C\left(q I_{n x}-A\right)^{-1} B+D \tag{3.25}
\end{equation*}
$$

Here $I_{n x}$ is the $n x$ by $n x$ identity matrix. Clearly (3.24) can be viewed as one way of parametrizing the transfer function: Via (3.25) $G(q)$ becomes a function of the elements of the matrices A, B, C, and D.

To further describe the character of the noise term $v(t)$ in (3.24) a more flexible innovations form of the state-space model can be used:

$$
\begin{gather*}
x(t+1)=A x(t)+B u(t)+K e(t) \tag{3.26a}\\
y(t)=C x(t)+D u(t)+e(t) \tag{3.26b}
\end{gather*}
$$

This is equivalent to (3.10) with $G(q)$ given by (3.25) and $H(q)$ by

$$
\begin{equation*}
H(q)=C\left(q I_{n x}-A\right)^{-1} K+I_{n y} \tag{3.27}
\end{equation*}
$$

Here ny is the dimension of $y(t)$ and $e(t)$.
It is often possible to set up a system description directly in the innovations form (3.26). In other cases, it might be preferable to describe first the nature of disturbances that act on the system. That leads to a stochastic state-space model:

$$
\begin{gather*}
x(t+1)=A x(t)+B u(t)+w(t) \tag{3.28a}\\
y(t)=C x(t)+D u(t)+e(t) \tag{3.28b}
\end{gather*}
$$

where $w(t)$ and $e(t)$ are stochastic processes with certain covariance properties. In stationarity and from an input-output view, (3.28) is equivalent to (3.26) if the matrix K is chosen as the steady-state Kalman gain. How to compute K from (3.28) is described in the Control System Toolbox.

Continuous-Time State-Space Models

It is often easier to describe a system from physical modeling in terms of a continuous-time model. The reason is that most physical laws are expressed in continuous time as differential equations. Therefore, physical modeling typically leads to state-space descriptions like

$$
\begin{align*}
& \dot{x}(t)=F x(t)+G u(t) \tag{3.29a}\\
& y(t)=H x(t)+D u(t)+v(t) \tag{3.29b}
\end{align*}
$$

Here, \dot{x} means the time derivative of x. If the input is piece-wise constant over time intervals $k T \leq t<(k+1) T$, then the relationship between $u[k]=u(k T)$ and $y[k]=y(k T)$ can be exactly expressed by (3.24) by taking

$$
\begin{equation*}
A=e^{F T} ; B=\int_{\tau=0}^{T} e^{F \tau} G d \tau ; C=H \tag{3.30}
\end{equation*}
$$

and associate $\mathrm{y}(\mathrm{t})$ with $\mathrm{y}[\mathrm{t}]$, etc.
If you start with a continuous-time innovations form

$$
\begin{align*}
& \dot{x}(t)=F x(t)+G u(t)+\tilde{K} e(t) \tag{3.31a}\\
& y(t)=H x(t)+D u(t)+e(t) \tag{3.31b}
\end{align*}
$$

the discrete-time counterpart is given by (3.26) where still the relationships (3.30) hold. The exact connection between \tilde{K} and K is somewhat more complicated, though. An ad hoc solution is to use

$$
\begin{equation*}
K=\int_{\tau=0}^{T} e^{F \tau} \tilde{K} d \tau ; \tag{3.32}
\end{equation*}
$$

in analogy with G and B. This is a good approximation for short sampling intervals T.

Estimating Impulse Responses

Consider the description (3.1). Suppose that the input $u(t)$ is white noise; i.e., its covariance function is

$$
R_{u}(\tau)=E u(t+\tau) u(t)=\left\{\begin{array}{l}
\lambda \text { if } \tau=0 \\
0 \text { else }
\end{array}\right.
$$

Then, the cross covariance function between the input and the output is

$$
R_{y u}(\tau)=E y(t+\tau) u(t)=\lambda g(\tau)
$$

where $\mathrm{g}(\tau)$ is the impulse response of the system. In this case, it can easily be estimated as

$$
\begin{equation*}
\hat{g}(\tau)=\frac{1}{\lambda N} \sum_{t=1}^{N} y(t+\tau) u(t) \tag{3.33}
\end{equation*}
$$

based on the observed input-output data.
If the input is not white, a whitening filter $L(q)$ can be determined for it, so that the filtered sequence

$$
\begin{equation*}
u_{F}(t)=L(q) u(t) \tag{3.34}
\end{equation*}
$$

is approximately white. By filtering the output sequence through the same filter and computing (3.33) based on the filtered data, a natural estimate of the impulse response coefficients $\mathrm{g}(\mathrm{k})$ is obtained. This procedure is known as correlation analysis.

Estimating Spectra and Frequency Functions

This section describes methods that estimate the frequency functions and spectra (3.11) directly. The cross-covariance function $R_{y u}(\tau)$ between $\mathrm{y}(\mathrm{t})$ and $\mathrm{u}(\mathrm{t})$ was defined above. Its F ourier transform, the cross spectrum, $\Phi_{y u}(\omega)$ is defined anal ogously to (3.6). Provided that the input $u(t)$ is independent of $v(t)$, the relationship (3.1) implies the following relationships between the spectra:

$$
\begin{aligned}
& \Phi_{y}(\omega)=\left|G\left(e^{i \omega}\right)\right|^{2} \Phi_{u}(\omega)+\Phi_{v}(\omega) \\
& \Phi_{y u}(\omega)=G\left(e^{i \omega}\right) \Phi_{u}(\omega)
\end{aligned}
$$

By estimating the various spectra invol ved, the frequency function and the disturbance spectrum can be estimated as follows:
F orm estimates of the covariance functions (as defined in (3.7)) $\hat{R}_{y}(\tau), \hat{R}_{y u}(\tau)$, and $\hat{R}_{u}(\tau)$, using

$$
\begin{equation*}
\hat{R}_{y u}(\tau)=\frac{1}{N} \sum_{t=1}^{N} y(t+\tau) u(t) \tag{3.35}
\end{equation*}
$$

and analog expressions for the others. Then, form estimates of the corresponding spectra

$$
\begin{equation*}
\hat{\Phi}_{y}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{y}(\tau) W_{M}(\tau) e^{-i \omega \tau} \tag{3.36}
\end{equation*}
$$

and analogously for Φ_{u} and $\Phi_{y u}$. Here $W_{M}(\tau)$ is the so-called lag window and M is the width of the lag window. The estimates are then formed as

$$
\begin{equation*}
\hat{G}_{N}\left(e^{i \omega}\right)=\frac{\hat{\Phi}_{y u}(\omega)}{\hat{\Phi}_{u}(\omega)} ; \quad \hat{\Phi}_{v}(\omega)=\hat{\Phi}_{y}(\omega)-\frac{\left|\hat{\Phi}_{y u}(\omega)\right|^{2}}{\hat{\Phi}_{u}(\omega)} \tag{3.37}
\end{equation*}
$$

This procedure is known as spectral analysis. (See Chapter 6 in Ljung (1987).)

Estimating Parametric Models

Given a description (3.10) and having observed the input-output data u, y, the (prediction) errors $e(t)$ in (3.10) can be computed as:

$$
\begin{equation*}
e(t)=H^{-1}(q)[y(t)-G(q) u(t)] \tag{3.38}
\end{equation*}
$$

These errors are, for given data y and u, functions of G and H. These in turn are parametrized by the polynomials in (3.15)-(3.23) or by entries in the statespace matrices defined in (3.29)-(3.32). The most common parametric identification method is to determine estimates of G and H by minimizing

$$
\begin{equation*}
V_{N}(G, H)=\sum_{t=1}^{N} e^{2}(t) \tag{3.39}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left[\hat{G}_{N}, \hat{H}_{N}\right]=\operatorname{argmin} \sum_{t=1}^{N} e^{2}(t) \tag{3.40}
\end{equation*}
$$

This is called a prediction error method. F or Gaussian disturbances it coincides with the maximum likelihood method. (See Chapter 7 in Ljung (1987).)

A somewhat different philosophy can be applied to the ARX model (3.15). By forming filtered versi ons of the input

$$
\begin{equation*}
N(q) s(t)=M(q) u(t) \tag{3.41}
\end{equation*}
$$

and by multiplying (3.15) with $s(t-k), k=1,2, \ldots$, na and $u(t-n k+1-k)$, $k=1,2, \ldots, \mathrm{nb}$ and summing over t , the noise in (3.15) can be correlated out and solved for the dynamics. This gives the instrumental variablemethod, and $s(t)$ are called the instruments. (See Section 7.6 in Ljung (1987).)

Subspace Methods for Estimating State-Space Models

The state-space matrices A, B, C, D, and K in (3.26) can be estimated directly, without first specifying any particular parametrization by efficient subspace methods. The idea behind this can be explained as follows: If the sequence of state vectors $x(t)$ were known, together with $y(t)$ and $u(t)$, eq (3.26b) would be a linear regression, and C and D could be estimated by the least squares method. Then e(t) could be determined, and treated as a known signal in (3.26a), which then would be another linear regression model for A, B and K. (One could also treat (3.24) as a linear regression for A, B, C, and D with $y(t)$ and $x(t+1)$ as si multaneous outputs, and find the joint process and measurement noises as the residuals from this regression. The K alman gain K could then be computed from the Riccati equation.) Thus, once the states are known, the estimation of the state-space matrices is easy.

How to find the states $x(t)$? Appendix 4.A of Ljung(1987) shows that all states in representations like (3.26) can be formed as linear combinations of the k -step ahead predicted outputs ($\mathrm{k}=1,2, \ldots, \mathrm{n}$). It is thus a matter of finding these predictors, and then selecting a basis among them. The subspace methods form an efficient and numerically reliable way of determining the predictors by projections directly on the observed data sequences. For more details, see the references under n4si d in Chapter 4, "Command Reference" .

4. Nonparametric Model Estimation

This and the following sections give an introduction to the basic functions in the System Identification Tool box. N ot all of the options available when using the functions are described here; see the Command Referencechapter and the online Help facility.

Data Representation

The observed output and input signals, $y(t)$ and $u(t)$, are represented in the System Identification Tool box as col umn vectors y and u. Row k corresponds to sample number k. F or multivariable systems, each input (output) component is represented as a column vector, so that u becomes an N by nu matrix ($\mathrm{N}=$ number of sampled observations, nu = number of input signals). The output-input data is collectively represented as a matrix whose first column(s) is the output and next column(s) is the input:

$$
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
$$

The data can be graphed by the command i dpl ot :
i dpl ot (z)
This gives plots of all combinations of inputs and outputs for visual inspection.
Some of the functions in the System I dentification Tool box apply only to single output data ($n y=1$) and some only to single-input-single-output data ($n y=1, n u=1$). Chapter 4, "Command Reference" gives details about this.

Correlation Analysis

The correlation analysis procedure described in "The System Identification Problem" in Chapter 3 is implemented in the function cra:

```
ir = cra(z)
```

This function returns the estimated impulse response in the vector ir. It also optionally plots the estimated covariance functions for y and u, so that the success of the whitening filter (3.34) can be checked. From the estimated impulse response it is easy to form the step response:

```
ir = cra(z)
sr = cunsum(ir)
pl ot(sr)
```


Spectral Analysis

The function spa performs spectral analysis according to the procedure in (3.35)-(3.37).

```
[ G , PH V] \(=\operatorname{spa}(z)\)
```

Here z contains the output-input data as above. G and PHIV are matrices that contain the estimated frequency function G_{N} and the estimated disturbance spectrum Φ_{v} in (3.37). They are coded into a special format, the freqfunc format, which allows you to plot them using the function bodepl ot or ff pl ot :

```
[ G , PH V] = spa(z)
bodepl ot (G)
bodepl ot (PH V)
```

bodepl ot gives logarithmic amplitude and frequency scales (in rad/sec) and linear phase scale, while $f \mathrm{f}$ pl ot gives linear frequency scales (in Hz). The details of the freqf unc format are given in Chapter 4, "Command Reference" and by typing hel p freqf unc. To obtain correct frequency scales you can operate with the command set t on G or give the sampling interval as an optional argument to spa.

By omitting the argument PHI V, only the transfer function estimate G is computed:

$$
\mathrm{G}=\mathrm{spa}(\mathrm{z})
$$

When PHIV is included, the estimated standard deviations of G and PHI V are also returned by spa and included in the freqfunc format.

If $z=y$ is a time series, spa returns an estimate of the spectrum of that signal:
PH $Y=s p a(y)$
ffpl ot (PH Y)
In the computations (3.35)-(3.37), spa uses a Hamming window for $W(\tau)$ with a default length M equal to the minimum of 30 and a tenth of the number of data points. This window size M can be changed to an arbitrary number by
$[\mathrm{G}, \mathrm{PH} \mathrm{V}]=\mathrm{spa}(\mathrm{z}, \mathrm{M})$
The rule is that as Mincreases, the estimated frequency functions show sharper details, but are also more affected by random disturbances. A typical sequence of commands that test different window sizes is

```
g10 = spa(z, 10)
g25 = spa(z, 25)
g50 = spa(z,50)
bodepl ot([g10 g25 g50])
```

An empirical transfer function estimate is obtained as the ratio of the output and input Fourier transforms with

$$
\mathrm{G}=\mathrm{etfe} \mathrm{e}(\mathrm{z})
$$

This can also be interpreted as the spectral analysis estimate for a window size that is equal to the data length. F or a single signal et f e gives the periodogram as a spectral estimate. The function also allows some smoothing of the crude estimate; it can be a good alternative for signals and systems with sharp resonances. See Chapter 4, "Command Reference" for more information.

5. Parametric Model Estimation

The System Identification Tool box contains several functions for parametric model estimation. They all share the same command structure

```
th = function([y u],ths)
```

Input variables y and u are column vectors that contain the output and input data sequences, while the matrix t hs specifies the particular structure of the model to be estimated. The resulting estimated model is contained in th . It is coded into the theta format. This is the basic format for representing model s in the System Identification Tool box. It collects information about the model structure and the orders, delays, parameters, and estimated covariances of estimated parameters into a matrix. The details of this representation are found in Chapter 4, "Command Reference" or by typing hel pt het a. Thet het a format can be translated to other useful model representations. Tojust display the model information, use the command pr esent:

```
th = function(z,ths)
present(th)
```

The following sections assume that you have formed an array z that consists of the output y and the input u :

$$
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
$$

ARX Models

To estimate the parameters a_{i} and b_{i} of the ARX model (3.15), use the function arx:

$$
\text { th }=\operatorname{ar} x(z,[n a n b n k])
$$

Here na, nb, and nk are the corresponding orders and delays in (3.16) that define the exact model structure. The function arx implements the least-squares estimation method, using the MATLAB "/ " operator for overdetermined linear equations.

An alternative is to use the Instrumental Variable (IV) method described in connection with (3.41). This is obtained with
th = iv4(z,[na nb nk])
which gives an automatic (and approximately optimal) choice of the filters N and M in (3.41). (See the procedure (15.21)-(15.26) in Ljung (1987).)

Both ar x and i v4 are applicable to arbitrary multivariable systems. If you have ny outputs and nu inputs, the orders are defined accordingly: na is an ny by ny matrix whose i -j entry gives the order of the polynomial that relates past values of y_{j} to the current value of y_{i} (i.e., past values of y_{j} up to $y_{j}(t-n a(i, j))$ are used when predicting $\left.y_{i}(t)\right)$. Similarly the $i-j$ entries of the ny by nu matrices nu and nk, respectively, give the order and delay from input number j when predicting output number i. (See "Defining M odel Structures" on page 3-29 and Chapter 4, "Command Reference" for exact details.)

AR Models

For a single signal $y(t)$ the counterpart of the ARX model is the AR model:

$$
\begin{equation*}
A(q) y(t)=e(t) \tag{5.1}
\end{equation*}
$$

The ar x command also covers this special case
th $=a r x(y, n a)$
but for scalar signals more options are offered by the command
th $=\operatorname{ar}(\mathrm{y}, \mathrm{na})$
which has an option that allows you to choose the algorithm from a group of several popular techniques for computing the least-squares AR model. Among these are Burg's method, a geometric lattice method, the Yule-Walker approach, and a modified covariance method. (See Chapter 4, "Command Reference" for details.) The counterpart of the i v4 command is
th = ivar(y, na)
which uses an instrumental variable technique to compute the AR part of a time series.

General Polynomial Black-Box Models

Based on the prediction error method (3.40), you can construct models of basically any structure. For the general model (3.23), there is the function
th $=$ pem $z, n n$)
where nn gives all the orders and delays

```
nn = [ na nb nc nd nf nk]
```

The pemcommand covers all cases of black-box linear system models. M ore efficient routines are available, however, for the common special cases

```
th = armax(z,[na nb nc nk])
th = oe(z,[nb nf nk])
th = bj(z,[nb nc nd nf nk])
```

These handle the model structures (3.17), (3.19) and (3.21), respectively.
All the routines also cover single-output, multi-input systems of the type

$$
\begin{equation*}
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t) \tag{5.2}
\end{equation*}
$$

wherenb, nf , and nk arerow vectors of the same lengths as the number of input channels containing each of the orders and delays

```
nb = [ nb1 ... nbnu];
nf =[nf1 ... nf nu];
nk = [nkl ... nknu];
```

These parameter estimation routines require an iterative search for the minimum of the function (3.39). This search uses a special start-up procedure based on least squares and instrumental variables (the details are given as equation (10.75) in Ljung (1987)). From the initial estimate, a Gauss-Newton minimization procedure is carried out until the norm of the Gauss-Newton direction is less than a certain tolerance. See Ljung (1987), Section 11.2 or Dennis and Schnabel (1983) for details. See al so the entry on optional variables associated with the search at the end of this section.

The routines pem ar max, oe, and bj can also be started at any initial valuet hi specified in the theta format by replacing nn by t hi. For example

$$
\mathrm{th}=\operatorname{pem}(z, \mathrm{thi})
$$

While the search is typically initialized using the built-in start-up procedure gi ving just orders and delays (as described above), the ability to force a specific initial condition is useful in several contexts. Some examples are mentioned in "Some Special Topics" on page 3-68.

If a last argument ' tr ace' is added, as in

```
th = armmx(z, nn,'trace' )
```

these routines give status reports to the screen during the minimization, containing current and previous estimates, the associated loss functions, and the Gauss-N ewton update vector and its norm. The estimates are then represented by a column vector, listing the parameters in alphabetical order.

The number then flickering in the upper left corner shows how many times the suggested update direction has been bisected during the search. It is a healthy sign if this number is small.

These routines return the estimated covariance matrix of the estimated parameter vector as part of $t h$. This reflects thereliability of the estimates. The covariance matrix estimate is computed under the assumption that it is possible to obtain a "true" description in the given structure.

State-Space Models

Black-box, discrete-time, parametrizations. Suppose first that there is no particular knowledge about the internal structure of the discrete-time state-space model (3.16). Any linear model of a given order is sought. Then there are essentially two different ways to estimate state-space models, like (3.26). The simplest one is to use $n 4$ si d:

```
th = n4sid(z,order);
```

which creates a model in state-space form (coded as usual in the theta format) in a realization that is automatically chosen to be reasonably well conditioned. The basic idea behind this subspace al gorithm was described in "The System Identification Problem" on page 3-8.

The other alternative is to use a prediction error method, minimizing the criterion (5.3) below. Initializing the search at the n4si d model is then a good idea. This is obtained by

```
thi = canstart(z,order,nu)
th = pem(z,thi )
```

Arbitrarily parameterized models in discrete and continuous time. F or state-space models of given structure, most of the effort involved relates to defining and manipulating the structure. This is discussed in "Defining Model Structures" on page 3-29. Once the structure is defined in the theta format as ths, you can estimate its parameters with

$$
\text { th }=\operatorname{pem}(z, t h s)
$$

When the systems are multi-output, the following criterion is used for the minimization:

$$
\begin{equation*}
\min \quad \operatorname{det} \sum_{t=1}^{N} e(t) e^{T}(t) \tag{5.3}
\end{equation*}
$$

which is the maximum likelihood criterion for Gaussian noise with unknown covariance matrix.

The numerical minimization of the prediction error criterion (3.39) or (5.3) can be a difficult problem for general model parametrizations. The criterion, as a function of the free parameters, can define a complicated surface with many local minima, narrow valleys and so on. This may require substantial interaction from the user, in providing reasonable initial parameter values, and also by freezing certain parameter values while allowing others to be free. Note that pemeasily allows the freezing of any parameters to their nominal
 often used for state-space models is to allow the noise parameter in the K matrix free, only when a reasonable model of the dynamic part has been obtained. See also "Some Special Topics" on page 3-68.

Optional Variables

The functions pem ar max, oe, and bj can accept three additional input options that affect the minimization, as well as one extra output argument. For example,

```
[th, iter_info] = bj (z, nn, maxiter,tol, lim)
```

The format is the same for the other functions. If these variables are not given, default values are assigned to them.
maxiter: This variable determines the maximum number of iterations performed in the search for the minimum. The default value is 10 . Setting the value of maxiter to zero results in the return of the estimate from the start-up procedure.
tol : The iterations are continued until the norm of the Gauss-N ewton update vector is less than t ol . The default value is 0.01 . The iterations also terminate when maxiter is reached or when no decrease in the criterion can befound along the search direction after it has been bisected 10 times. (After the 10 first bisections, the search direction is changed to the gradient one, and 10 new bisections are tried.)

The parameters associated with the noise dynamics, (C and D), are often more difficult to estimate than the dynamics parameters, A, B, and F. Major contributions to the norm of the update direction then come from the entries corresponding to the noise parameters. The Gauss-N ewton vector can be monitored to see if it is reasonable to increase tol on this ground.

I i m Thequadratic criterion (3.39) gives a considerable relative weight tolarge prediction errors. Y ou may want to limit their influence, using robust estimation techniques. In the estimation functions ar, bj, max, oe, and pem a prediction error that is larger than I i m* (estimated standard deviation of e) carries a linear, rather than a quadratic, weight.

The default value of 1 i mis 1 . 6 . I i m=0 disables the robust estimation and applies a purely quadratic criterion. The standard deviation is estimated robustly as the median of the absolute deviations from the median, divided by 0.7. (See eq (15.9)-(15.10) in Ljung (1987).)

Note that the loss function displayed by pr esent (th) is quadratic and that the data-dependent delimiter is computed only once, before the minimization starts.
iter_i nfo: This a a row vector with three entries that give information about the iteration process. The first entry is the number of used iterations. The second one is the improvement of the fit over the last iteration, and the third variable is the norm of the Gauss-N ewton search vector. If the number of used iterations is less than maxi ter, at the same time as this norm is larger then t ol , it means that the iterations have been aborted because no better fit could be obtained along the indicated search direction.

F or the spectral analysis estimate, you can compute the frequency functions at arbitrary frequencies. If the frequencies are specified in a row vector w, then
[G, PHI V] = spa(z, M w)
results in Gand PHI V being computed at these frequencies. This computation is somewhat slower, however, than using the default frequencies.

You can generate logarithmi cally spaced frequencies using the MATLAB l ogspace function. F or example
$\mathrm{w}=$ I ogspace $(-3, \mathrm{pi}, 128)$
The optional trailing arguments can be omitted, in which case default values are used. Entering them as empty matrices, [], also causes functions to rely upon defaults.

6. Defining Model Structures

Since the System Identification Toolbox handles a wide variety of different model structures, it is important that these can be defined in a flexible way. In the previous section you saw how model structures that are special cases of the general model (3.23) can be defined by specifying the orders and delays in the various estimation routines arx, i v4, oe, bj, ar max, and pem This section describes how model structures and models can be directly defined. For black-box models (3.23) this may be required, for example, when creating a model for simulation. Commands for creating state-space model structures are discussed in this section.

The general way of representing models and model structures in the System Identification Tool box is the theta format. This section introduces the commands (apart from the parametric estimation functions themselves) that create models in the theta format.

Polynomial Black-Box Models

The general input-output form (3.23):

$$
\begin{equation*}
A(q) y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t) \tag{6.1}
\end{equation*}
$$

is defined by the five polynomials $A(q), B(q), C(q), D(q)$, and $F(q)$. These are represented in the standard MATLAB format for polynomials. Polynomial coefficients are stored as row vectors ordered by descending powers. For example, the polynomial

$$
A(q)=1+a 1 q^{-1}+a 2 q^{-2}+\ldots+a n q^{-n}
$$

is represented as

$$
A=\left[\begin{array}{llll}
1 & \text { a1 } & \text { a2 } & \ldots
\end{array}\right]
$$

Delays in the system are indicated by leading zeros in the $B(q)$ polynomial. For example, the ARX model

$$
\begin{equation*}
y(t)-1.5 y(t-1)+0.7 y(t-2)=2.5 u(t-2)+0.9 u(t-3) \tag{6.2}
\end{equation*}
$$

is represented by the polynomials

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & -1.5 & 0.7
\end{array}\right] \\
& B=\left[\begin{array}{llll}
0 & 0 & 2.5 & 0.9
\end{array}\right]
\end{aligned}
$$

The theta format representation of (6.1) is now created by the command

$$
\mathrm{th}=\mathrm{pol} y 2 \mathrm{th}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{~F}, \mathrm{I} \text { am } \mathrm{T})
$$

I amis here the variance of the white noise source $e(t)$ and T is the sampling interval. Trailing arguments can be omitted for default values. The system (6.2) can for example be represented by

```
th = pol y2th([1 -1.5 0. 7],[0 0 0.5 0.7])
```

In the multi-input case (5.2) B and F are matrices, whose row number k corresponds to the k - th input. The command pol y 2 th can also be used to define time-continuous systems. See the Command Reference chapter for details.

Multivariable ARX Models

A multivariable ARX model is given by

$$
\begin{equation*}
A(q) y(t)=B(q) u(t)+e(t) \tag{6.3}
\end{equation*}
$$

Here $A(q)$ is an ny by ny matrix whose entries are polynomials in the delay operator q^{-1}. Y ou can represent it as

$$
\begin{equation*}
A(q)=I_{n y}+A_{1} q^{-1}+\ldots+A_{n a} q^{-n a} \tag{6.4}
\end{equation*}
$$

as well as the matrix

$$
A(q)=\left[\begin{array}{cccc}
a_{11}(q) & a_{12}(q) & \ldots & a_{1 n y}(q) \\
a_{21}(q) & a_{22}(q) & \ldots & a_{2 n y}(q) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n y 1}(q) & a_{n y 2}(q) & \vdots & a_{n y n y}(q)
\end{array}\right]
$$

where the entries $a_{k j}$ are polynomials in the delay operator q^{-1} :

$$
\begin{equation*}
a_{k j}(q)=\delta_{k j}+a_{k j}^{1} q^{-1}+\ldots+a_{k j}^{n a_{k j}} q^{-n a_{k j}} \tag{6.6}
\end{equation*}
$$

This polynomial describes how old values of output number j affect output number k. Here $\delta_{k j}$ is the Kronecker-delta; it equals 1 when $k=j$, otherwise, it is 0 . Similarly $B(q)$ is an ny by nu matrix

$$
\begin{equation*}
B(q)=B_{0}+B_{1} q^{-1}+\ldots B_{n b} q^{-n b} \tag{6.7}
\end{equation*}
$$

or

$$
B(q)=\left[\begin{array}{cccc}
b_{11}(q) & b_{12}(q) & \cdots & b_{1 n u}(q) \\
b_{21}(q) & b_{22}(q) & \ldots & b_{2 n u}(q) \\
\vdots & \vdots & \ddots & \vdots \\
b_{n y 1}(q) & b_{n y 2}(q) & \vdots & b_{n y n u}(q)
\end{array}\right]
$$

with

$$
b_{k j} q=b_{k j} q^{-n k_{k j}+b_{k j}}{ }^{-n b} q^{-n k_{i j}-n b_{i j}+1}
$$

The delay from input number j to output number k is $n k_{k j}$. To link with the structure definition in terms of [na nb nk] in the ar x and i v4 commands, note that na is a matrix whose kj-element is $n a_{k j}$, while the $k j$-elements of nb and nk are $n b_{k j}$ and $n k_{k j}$ respectively.
The theta format representation of the model (6.3) can be created by

$$
\mathrm{th}=\operatorname{ar} \times 2 \mathrm{th}(\mathrm{~A}, \mathrm{~B}, \mathrm{ny}, \mathrm{nu})
$$

where ny and nu are the number of outputs and inputs, respectively, and A and B are matrices that define the matrix polynomials (6.4) and (6.7):

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
\text { eye(ny) } & A 1 & A 2 \ldots & A n a
\end{array}\right] \\
& B=\left[\begin{array}{llll}
B 0 & B 1 & . & B n b
\end{array}\right]
\end{aligned}
$$

Consider the fol lowing system with two outputs and three inputs:

$$
\begin{gathered}
y_{1}(t)-1.5 y_{1}(t-1)+0.4 y_{2}(t-1)+0.7 y_{1}(t-2)=0.2 u_{1}(t-4)+ \\
0.3 u_{1}(t-5)+0.4 u_{2}(t)-0.1 u_{2}(t-1)+0.15 u_{2}(t-2)+e_{1}(t) \\
y_{2}(t)-(0.2) y_{1}(t-1)-0.7_{y 2}(t-2)+0.01_{y 1}(t-2)=u_{1}(t)+ \\
2 u_{2}(t-4)+3 u_{3}(t-1)+4 u_{3}(t-2)+e_{2}(t)
\end{gathered}
$$

This system is defined and simulated for a certain input u, and then estimated in the correct ARX structure by the following string of commands:

```
AO = eye(2);
A1 = [-1.5 0.4; -0.2 0];
A2 =[0.7 0; 0.01 -0.7];
BO =[0 0.4 0;1 0 0];
B1 =[[0 -0.1 0;0 0 3];
B2 = [0 0.15 0;0 0 4];
B3 = [0 0 0;0 0 0];
B4 =[0.2 0 0;0 2 0];
B5 = [0.3 0 0;0 0 0];
A = [A0 A1 A2];
B = [B0 B1 B2 B3 B4 B5];
th0 = arx2th(A,B,2,3);
e = randn(200, 2);
u = [i di nput(200), i di nput(200), i di nput(200) ];
y = idsi m[u e],th0);
na =[ 2 1; 2 1];
nb = [2 3 0; 1 1 2];
nk =[4 0 0;0 4 1];
the = arx([y u],[na nb nk]);
[Ae, Be] = th2arx(the);
```

You can use the two commands fi xpar and unfi xpar to manipulate ARX structures, so that certain parameters in the structure are fixed to certain known values and not estimated. See Chapter 4, "Command Reference"for more information.

State-Space Models with Free Parameters

The basic state-space models are the following ones: (See also "The System I dentification Problem" on page 3-8.)

Discrete-Time Innovations Form

$$
\begin{gather*}
x(k T+T)=A x(k T)+B u(k T)+K e(k T) \tag{6.8a}\\
y(k T)=C x(k T)+D u(k T)+e(k T) \tag{6.8b}\\
x(0)=x 0 \tag{6.8c}
\end{gather*}
$$

HereT is the sampling interval, $u(k T)$ is theinput at timeinstant $k T$ and $y(k T)$ is the output at time $k T$. (See Ljung (1987) page 87.)

System Dynamics Expressed in Continuous Time

$$
\begin{align*}
\dot{x}(t) & =F x(t)+G u(t)+\tilde{K} w(t) \tag{6.9a}\\
y(t)= & H x(t)+D u(t)+w(t) \tag{6.9b}\\
& x(0)=x 0 \tag{6.9c}
\end{align*}
$$

(See Ljung (1987) page 82.) It is often easier to define a parametrized state-space model in continuous time because physical laws are most often described in terms of differential equations. The matrices F, G, H, and D contain elements with physical significance (for example, material constants). The numerical values of these may or may not be known. To estimate unknown parameters based on sampled data (assuming T is the sampling interval) first transform (6.9) to (6.8) using the formulas (3.30). The value of the Kalman-gain matrix K in (6.8) or \widetilde{K} in (6.9) depends on the assumed character of theadditive noises $w(t)$ and $e(t)$ in (3.28), and its continuous-time counterpart. Disregard that link and view K in (6.8) (or \widetilde{K} in (6.9)) as the basic tool to model the noise properties. This gives the directly parametrized innovations form. (See Ljung (1987) page 88.) If the internal noise structure is important, you could use user-defined structures as in Example 6.4.
The System I dentification Tool box allows you to define arbitrary parameterizations of the matrices in (6.8) or (6.9). When defining the structure, the known elements in the matrices are entered with their numerical values,
while the unknown elements are entered as NaN. Use the commands modst r uc and n 2 th .

The Black-Box, Discrete-Time Case

F or a discrete-time model, like (6.8) without any particular internal structure, it is easier and more natural to use canst ar t or n4si d to estimate the model, without any prior specification of the parametrization.

Example 6.1: A Discrete-Time Structure. Consider the discrete-time model

$$
\begin{gathered}
x(t+1)=\left[\begin{array}{ll}
1 & \theta_{1} \\
0 & 1
\end{array}\right] x(t)+\left[\begin{array}{l}
\theta_{2} \\
\theta_{3}
\end{array}\right] u(t)+\left[\begin{array}{l}
\theta_{4} \\
\theta_{5}
\end{array}\right] e(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)+e(t) \\
x(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

with five unknown parameters $\theta_{i}, \mathrm{i}=1, \ldots, 3$. This structure is defined in the theta format by

```
A = [1 NaN; O 1];
B = [ NaN; NaN];
C = [1 0];
D = 0;
K = [ NaN; NaN];
x0 = [0; 0];
ns1 = modstruc(A, B, C, D, K, x0);
th1 = nฐ2th(ns1,'d' )
```

The definition thus follows in two steps. First the actual structure (known and unknown parameter values) is coded in the matrix ns 1 and then a theta format matrix is created by $m s 2 t h$. The argument ' d ' denotes that the structure is a discrete-time structure. Other optional arguments allow definition of guessed values of the unknown parameters, as well as specification of the covariance matrix of $e(t)$ and of the sampling interval T. You can also specify unknown elements in the initial value vector $x(0)$.

For models that are parametrized as canonical forms, use canf or minstead of modst ruc to define the model structure.

Example 6.2: A Continuous-Time Model Structure. Consider the following model structure

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ll}
0 & 1 \\
0 & \theta_{1}
\end{array}\right] x(t)+\left[\begin{array}{c}
0 \\
\theta_{2}
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] x(t)+e(t) \\
& x(0)=\left[\begin{array}{l}
\theta_{3} \\
0
\end{array}\right]
\end{aligned}
$$

This corresponds to an electrical motor, where $y_{1}(t)=x_{1}(t)$ is the angular position of the motor shaft and $y_{2}(t)=x_{2}(t)$ is the angular velocity. The parameter $-\theta_{1}$ is the inverse time constant of the motor and $-\theta_{2} / \theta_{1}$ is the static gain from the input to the angular vel ocity. (See page 84 in Ljung (1987).) The motor is at rest at time 0 but at an unknown angular position. Suppose that θ_{1} is around -1 and θ_{2} is around 0.25 . If you al so know that the variance of the errors in the position measurement is 0.01 and in the angular velocity measurements is 0.1 , you can then define a theta structure using

```
F = [0 1; O NaN]
G = [0;NaN]
H = eye(2)
D = zeros(2,1)
K = zeros(2, 2)
x0 = [ NaN; 0]
ns2 = modstruc(F,G, H, D, K, x0) ;
thguess=[-1, 0. 25, 0]
noi sevar = [0.01 0; 0 0.1]
th2 = nฐ2th(nฐ2,'c',thguess, noi sevar)
```

The structureth2 can now be used to estimate the unknown parameters θ_{i} from observed data $z=[y 1$ y2 u] by

```
model = pem(z,th2)
```

The iterative search for minimum is then initialized at thguess. The structure can al so be used to simulate the system above with sampling interval $\mathrm{T}=0.1$ for input u and noise realization e:

```
e=r andn(300, 2)
u= di nput(300);
th2 = sett(th2, 0.1) % setting the sampl ing interval
y = idsim([u e],th2)
```

The nominal parameter values t hguess are then used, and the noise sequence is scaled according to the matrix noi sevar.

When estimating models, you can try a number of "neighboring" structures, like "what happens if I fix this parameter to a certain value" or "what happens if I let loose these parameters." Rather than going through the whole procedure in redefining the structure, you can use the commands $f i$ xpar and unf i xpar. For example, to free the parameter $x_{2}(0)$ (perhaps the motor wasn't at rest after all) you can use

$$
\text { th }=\text { unfixpar(th2, 'x0', }[2,1])
$$

To manipulate initial conditions, the function t hi nit is also useful.

State-Space Models with Coupled Parameters

In some situations you may want the unknown parameters in the matrices in (6.8) or (6.9) to be linked to each other. Then the NaN feature is not sufficient to describe these links. Instead you need to write an M-file that describes the structure. The format is
[$A, B, C, D, K, x 0]=$ mynfile(par, T, aux $)$;
where nymfile is the user-defined name for the M-file, par contains the parameters, T is the sampling interval, and aux contains auxiliary variables. The latter variables are used to house options, so that some different cases can be tried out without having to edit the M-file. The matrices A, B, C, D, K, and x0 refer to the discrete-time description (6.8). If the underlying parameterization is in continuous time, as in (6.9), it is desirable to write the M-file so that a negative value of T inhibits the sampling. This means that A, B, C and D should bereturned as the matrices in (6.9) when mymile is called with a negativeT. To obtain the same structure as in the Example 6.2 , you can do the following:

```
f uncti on [A, B, C, D, K, x0] = mymfile(par, T, aux)
F = [0 1; 0 par(1)];
G = [ 0; par(2)];
C = eye(2);
D = zeros(2, 2);
K = zeros(2, 1);
x0 =[ par(3);0];
if T>0, [A,B] = c2d(F,G,T); el se A=F; B=G; end
```

Herec2d is the sampling function from the Control System Tool box, which consequently is required to run this example.
Once the M-file has been written, the corresponding theta structure is defined by the command mf 2 th (M -file to theta):
th $=$ mf 2th(' mymfile', 'c', par, aux);
where par contains the nominal (initial) values of the corresponding entries in the structure. ' c ' signals that the underlying parametrization is continuous time, and that the M -file is equipped with sampling inhibition (for $T<0$). aux contains the values of the auxiliary parameters.

From here on, estimate models and evaluate results as for any other model structure. Note, though that the features fi xpar and unf i xpar are not available for these general structures. Some further examples of user-defined model structures are given below.

State-Space Structures: Initial Values and Numerical Derivatives

It is sometimes difficult to find good initial parameter values at which to start the numerical search for a minimum of (3.38). It is always best to use physical insight, whenever possible, to suggest such values with thguess. For random initialization, the command t hi ni t is a useful alternative and complement to t hguess. Since there is always a risk that the numerical minimization may get stuck in a local minimum, it is advisable to try several different initialization values for θ.

In the search for the minimum, the gradient of the prediction errors $e(t)$ is computed by numerical differentiation. The step-size is determined by the M -file nuderst. In its default version the step-size is simply 10^{-4} times the absolute value of the parameter in question (or the number 10^{-7} if this is
larger). When the model structure contains parameters with different orders of magnitude, try to scale the variables so that the parameters are all roughly the same magnitude. In any case, you may need to edit the M-file nuder st to address the problem of suitable step sizes for numerical differentiation.

Some Examples of User-Defined Model Structures

With user-defined structures, you have complete freedom in the choice of models of linear systems. This section gives two examples of such structures.

Example 6.3: Heat Diffusion. Consider a system driven by the heat-diffusion equation (see also Example 4.3 in Ljung (1987)).

This is a metal rod with heat-diffusion coefficient κ which is insulated at the near end and heated by the power $u(W)$ at the far end. The output of the system is thetemperature at the near end. This system is described by a partial differential equation in time and space. Replacing the space-second derivative by a corresponding difference approximation gives a time-continuous state-space model (6.9), where the dimension of x depends on the step-size in space used in the approximation. This is described by the following M-file:

```
function [ \(A, B, C, D, K, x 0\) ] = heat \(d(\) pars, \(T\), aux \()\)
\(\mathrm{N}=\operatorname{aux}(1)\); \% Number of poi nts in the
    \% space-di scretization
L = aux(2); \% Length of the rod
temp \(=\) aux(3); \% Assuming uni forminitial
    \%temperature of the rod
del taL \(=\mathrm{L} / \mathrm{N}\); \% Space interval
kappa \(=\) pars(1); \% The heat-diffusion coefficient
K = pars(2); \% Heat transfer coefficient at
    \% far end of rod
\(\mathrm{F}=\mathrm{zeros}(\mathrm{N}, \mathrm{N})\);
for \(k k=2\) : \(\mathrm{N}-1\)
F(kk, kk-1) \(=1\);
\(\mathrm{F}(\mathrm{kk}, \mathrm{kk})=-2\);
\(F(k k, k k+1)=1\);
end
F(1, 1) \(=1 ; \quad\) ( 1,2 ) \(=1 ;\) Near end of rod
                                    \% insul at ed
\(\mathrm{F}(\mathrm{N}, \mathrm{N}-1)=1 ; \quad \mathrm{F}(\mathrm{N}, \mathrm{N})=-1\);
\(\mathrm{F}=\mathrm{F}\) *kappa/ del \(\mathrm{taL} /\) del taL ;
```

```
G=zeros(N,1);
G(N,1) =K/ del taL;
C=zer os(1,N);
C(1, 1) =1;
D=0;
K=zeros(N, 1);
x0=t emp*ones(N, 1);
if T>0 [A,B]=c2d(F,G,T); el se A=F; B=G; end
```

You can then get started with the theta format with

```
th = mf 2t h(' heat d',' c',[0. 27 1],[ 10, 1, 22],[], 10)
```

for a 10th order approximation of a heat rod onemeter in length, with an initial temperature of 22 degrees and a sampling interval of 10 seconds. The initial estimate of the heat conductivity is 0.27 , and of the heat transfer coefficient is 1. The covariance matrix of the prediction errors is given a default value.

Example 6.4: Parametrized Noise Models. Consider a discrete-time model

$$
\begin{gathered}
\mathrm{x}(\mathrm{t}+1)=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu} \mathrm{u}(\mathrm{t})+\mathrm{w}(\mathrm{t}) \\
\mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{e}(\mathrm{t})
\end{gathered}
$$

where w and eare independent white noises with covariance matrices R1 and R2, respectively. Suppose that you know the variance of the measurement noise R2, and that only the first component of $w(t)$ is nonzero. This can be handled by the following M-file:

```
functi on [A, B, C, D, K, x0] = mynoi se(par,T, aux)
R2 = aux(1); % The assumed known measurement
    % noi se variance
A = [par(1) par(2);1 0];
B = [1; 0];
C=[par(3) par(4)];
D=0;
R1=[par(5) 0;0 0];
K = A*dl qe(A, eye(2), C, R1, R2); % from the
    % Control System Tool box
x0=[ 0; 0] ;
```


7. Examining Models

Once you have estimated a model, you need to investigate its properties. You have to simulate it, test its predictions, and compute its poles and zeros and so on. You thus have to transform the model from the theta format to other ways of representing and presenting it.

Theta Format: th

The basic format for representing models in the System I dentification Tool box is called the theta format. It stores all relevant information about the model structure used, including the values of the estimated parameters, the estimated covariances of the parameters, and the estimated innovations variance and so on. It also contains some information about how and when the model was created. The details of the representation can be found in the Chapter 4, "Command Reference" or by typing hel pt het a (for state-space based structures type hel pthss). The representation should, however, be thought of as an internal one; unless you are an advanced user, you do not need to worry about the details. "Defining M odel Structures" on page 3-29 describes how to create models in the theta format using several different commands.
The information in the theta format is displayed by the present command:

```
present(th)
```

This spells out the information in $t h$. Depending on the character of the underlying model structure, the information is given in terms of the polynomials in (6.1), in terms of the matrices in (6.8) or (6.9), or in terms of the ARX polynomials in (6.3). Estimated standard deviations for the parameters are always supplied. For multivariable ARX models and for state-space matrices, the standard deviations are given as imaginary numbers added to the parameters. For the polynomials they are given as a second row. For example, the following printout from pr es ent

The pol ynomial coefficients and their standard deviations are
B =
0. 0000 0. 0000 1. 7345
0. 00000.00000 .0563

A =

1. $0000-1.53120 .6983$
2. 00000.02140 .0022
is interpreted as $A(q)=1-1.5312 q^{-1}+0.6983 q^{-2}$ and the standard deviation of " 1 " is zero (naturally enough, since it is not estimated). The standard deviation of a_{1} is 0.0214 . Note that leading zeros in the B polynomial indicate the delay, as defined in "Defining M odel Structures" on page 3-29.

The actual parameters can be extracted from the theta format by

```
[par,P] = th2par(th)
```

Here par is a row vector containing the parameters, and P is the estimated covariance matrix of the parameters. The parameters are listed in "alphabetical order." See "Some Special Topics" on page 3-68. F or the polynomial model (6.1) the coefficients of the A, B, C, D, and F polynomials are given in the order of increasing powers of q^{-1}. (See for example (6.2).) N ote that leading 0 's of B and the leading 1 in the other polynomials are omitted since they do not correspond to estimated parameters. F or the state-space model (6.8) the parameters are given in the order obtained as the matrix A is first searched for estimated parameters row by row, then B and then C, etc. The same is true for the continuous model (6.9). F or user-defined structures, the ordering in par is the same as defined in the corresponding M -file. For multivariable ARX models, the ordering of parameters is somewhat tricky and it is safer use th2arx. (See "The ARX Format: arx" on page 3-45.)

The sampling interval can be extracted from the theta format by

$$
\mathrm{T}=\operatorname{get} \mathrm{t}(\mathrm{th})
$$

A negative T means that $t h$ represents a time-continuous system. Then system abs (T) indicates the sampling interval for the data for which the model was estimated. It is also the sampling interval that applies when th is used for simulation or prediction.

Frequency Function Format: ff

Thefrequency function and the disturbance spectrum corresponding to a model th in the theta format is computed by

$$
[\mathrm{G}, \mathrm{PH} \mathrm{~V}]=\mathrm{th} 2 \mathrm{ff}(\mathrm{th})
$$

This gives G and Φ_{v} in (3.11) along with their estimated standard deviations, which are translated from the covariance matrix of the estimated parameters. If t h corresponds to a time-continuous model, the frequency functions are computed accordingly.

The resulting matri ces Gand PHI V aregiven in the freqfunc format. This format stores the frequency functions and spectra (3.11) and their standard deviations as column vectors. The first row is reserved for administrative information, giving details about input and output numbers. The frequency values can be chosen arbitrarily, but default to 128 values equally spaced between 0 (excluded) and the Nyquist frequency. F or time-continuous models, the default frequency range extends to a decade over the Nyquist frequency for the sampled data upon which the model is based. Typing hel p freqf unc describes the details of the format, which, however, is not important for basic use of the toolbox.

The function th 2 f f has options that allow the sel ection of specific input-output pairs, and the computation of frequency functions and spectra at arbitrary frequencies.

If th corresponds to a model of a time series, its spectrum is obtained as

$$
\text { PHI Y }=t h 2 f f(t h)
$$

Models in the freqfunc format are also obtained by the nonparametric estimation routines spa and et $f e$ e, as described in "Nonparametric M odel Estimation" on page 3-19.

Three functions offer graphic display of the frequency functions and spectra: bodepl ot, ffpl ot, and nyqpl ot.
bodepl ot (G)
plots the B ode diagram of G (logarithmic scales and frequencies in rad/sec). If G is a spectrum, only an amplitude plot is given. Several curves in the same diagram are obtained with
bodepl ot ([G1 G2 ... Gn])
If information about standard deviations is included in G, confidence intervals corresponding to sd standard deviations are graphed with
bodepl ot (G, sd)
The command ff fl ot has the same syntax as bodepl ot but works with linear frequency scales and Hertz as the unit. The command nyqpl ot also has the same syntax, but produces N yquist plots; i.e., graphs of the frequency function in the complex plane.

For the creation of own frequency plots, the command get $f f$ extracts the rel evant portions of the freqfunc format. (See Chapter 4, "Command Reference"for more information.)

Zero-Pole Format: zp

The command th2zp computes the zeros, poles, and static gains of the system associated with th :

```
[zepo,K] = th2zp(th)
```

The matrix zepo now contains information about the zeros and the poles of the model, al ong with their estimated standard deviations. It also contains (in the first row) administrative information about input and output numbers, which is used for plotting. Similarly, K contains the static gains and their standard deviations. The best way of using the information in zepo is to graph the zeros and poles by

```
zppl ot(zepo)
```

Confidence regions (lines and ellipsoids) corresponding to sd standard deviations are illustrated by
zppl ot (zepo, sd)
Comparisons between several models are obtained by

```
zp1 = th2zp(th1)
zp2 = th2zp(th2)
zppl ot(zpf or m(zp1, zp2))
```

zppl ot has several options that determine how information about different models and different input-output pairs is depicted. It also keeps track of whether the underlying model is in discrete or continuous time and draws the complex plane accordingly. The command th 2 zp also allows the selection of specific input-output subsystems in the case of multivariable models.

The function get zp allows you to extract the zeros and the poles explicitly from the zero-pole format.

State-Space Format: ss

The command

$$
[A, B, C, D, K, X 0]=t h 2 s s(t h)
$$

computes the matrices of a state-space representation of $t h$. The representation is in discrete time as (6.8) or in continuous time as (6.9) depending on the status of $t \mathrm{~h}$. If the underlying model structure is a
state-space one, the matrices A, B, etc. are given in the same basis as originally defined. If the underlying model is defined in terms of input-output polynomials, the state-space representation is in observer canonical form. The state-space matrices can be used for further analysis and design in the Control System Tool box and the Signal Processing Toolbox.

The command th 2 ss can also compute the standard deviations of the elements in state-space matrices.

Transfer Function Format: tf

The transfer functions associated with the model th are computed by

```
[ NUM DEN] = th2tf(th)
```

NUMand DEN are given in the same format that is used in the Control System Tool box and the System Processing Toolbox. The common denominator DEN as a row matrix and the k-th row of NUM gives the numerator polynomial associated with output number k . If the model t h has several inputs, specify the input number as an argument. The polynomials are represented as row vectors in descending powers of s (in continuous time) or z or q (in discrete time). It thus differs from the pol ynomial format. (See below.) F or example, the continuous-time system

$$
\frac{1}{s(s+2)}
$$

is represented as

$$
\begin{aligned}
& \text { NUM } \left.=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \text { (or just } 1\right) \\
& \text { DEN }=\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]
\end{aligned}
$$

while the discrete-time system

$$
\begin{equation*}
\frac{q^{-3}}{1-1.5 q^{-1}+0.7 q^{-2}}=\frac{1}{q^{3}-1.5 q^{2}+0.7 q} \tag{7.1}
\end{equation*}
$$

is represented as

```
NUM = 1
DEN =[ 1 -1.5 0.7 0]
```


Polynomial Format: poly

In the polynomial format, the polynomials A, B, C, D, and F in (3.23) are given as follows: Polynomial coefficients are stored in row vectors, ordered by ascending powers in the delay operator $q^{-k}, k=0,1, \ldots$, al ways starting with $k=0$. This means that (7.1) is represented by
$B=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$
$A=\left[\begin{array}{lll}1 & -1.5 & 0.7\end{array}\right]$
Delays are thus denoted by leading zeros in B. Note the difference with the transfer function representation, in that leading zeros must be explicitly given. Only when the lengths of A and B are the same do the formats coincide. See also Section 6. The polynomials corresponding to $t h$ are extracted by
$[A, B, C, D, F]=t h 2 p o l y(t h)$
This is consequently the "inverse" of pol y2t h described in "Defining Model Structures" on page 3-29.

Continuous-time systems can also be represented in the polynomial format. Then the polynomials are given as row vectors in descending powers of the Laplace variable s just as in the transfer function case.

The ARX Format: arx

To obtain an ARX description from a model $t h$ that corresponds to such a description (i.e., it has originally been generated by arx, iv4, or ar x2t h), use
[A, B] = th2arx(th)
The matrices A and B then contain the ARX polynomials as described in Section 6. t h2ar x is thus an inverse of arx2th.

Transformations Betw een Discrete and Continuous Models

Continuous-Time Models

A model in the theta format can be internally represented as a continuous-time model. This occurs if the structure was originally defined as a state-space structure with ms 2 th or nff 2 th using the argument ' c ' . (See "Defining M odel Structures" on page 3-29 and the Chapter 4, "Command Reference".) Themodel then remains a continuous-time one during the estimation phases with pem even though the estimation is performed using sampled data. A continuous-time model of the type (6.1) in polynomial form also results when pol $y 2 t h$ is used with a negative value of the sampling interval. This structure cannot, however, be used for further estimation. Finally, continuous-time models are obtained by the command t hd2t hc. (See below.)

Continuous-time models are indicated by a negative sampling interval. A quick check can thus be given by

```
gett(th)<0
```

All the model transformations th2ff,th2zp, th2ss, th2t f, and th2pol y result in the corresponding characteristics in continuous time for models $t h$ that are indicated as continuous. F or simulation and prediction, however, the model is first transformed to discrete time.

The absolute value of the sampling interval of a continuous-time model is the sampling interval of the data for which the model was estimated. It is also used to select suitable default frequency intervals in th2ff (the default being from zero up to $10 * \pi /|\mathrm{T}| \mathrm{rad} / \mathrm{sec})$. The absolute value of T also applies when the model is used for simulation and prediction.

Discrete-Time Models

These models are obtained from the estimation functions ar , armax, arx, bj , i var, i v4, n4si d, and oe. They arealso obtained from pemwhen applied to (6.1) and to state-space structures generated by ms 2 th and nf 2 th with the argument ' d ' . Discrete-time models also result from pol y2t h with positive or default values of the sampling interval. Finally discrete-time models are obtained with the command t hc2t hd. (See below.)

The sampling interval T is obtained by $\mathrm{T}=\mathrm{get} \mathrm{t}(\mathrm{th})$. It indicates the sampling interval of the model as well as of the data to which the model was adjusted. It is also used for appropriate frequency scales in the freqfunc format.

Transformations

Transformations between continuous-time and discrete-time model representations are achieved by thc 2 t hd and t hd 2 t hc . The corresponding uncertainty measure (the estimated covariance matrix of the internal parameters) is also transformed in most cases. The syntax is

```
thc = thd2thc(thd)
thd = thc2thd(thc,T)
```

If the discrete-time model has some pure time delays ($n k>1$) the default command removes them before forming the continuous-time model. They should then be appended as an extra dead time. This is done automatically by th2ff.thd2t hc offers as an option to approximate the dead time by a finite dimensional system. N ote that the noise properties are translated by the somewhat questionable formula (3.32). The covariance matrix is translated by Gauss' approximation formula using numerical derivatives. The M-file nuder st is then invoked. You may want to edit it for applications where the parameters have very different orders of magnitude. See the comments in "Defining M odel Structures" on page 3-29.

Here is an example which compares the Bode plots of an estimated model and its continuous-time counterpart:

```
th = armmx(z,[2 3 1 2]);
gd = th2ff(th);
thc = thd2thc(th);
gc = th2ff(thc);
bodepl ot([gd gc])
```


Simulation and Prediction

Any model, when given in the theta format, can be simulated with

```
y = idsim([u e],th)
```

where u and e are column vectors (or matrices) containing the input and noise sequences. The output is returned in a column vector y of the same length. Notice that t h contains information about the noise variance so e should be a
zero-mean, unit-variance sequence. If e is omitted, a noise-free simulation is obtained. Here is a typical string of commands:

```
A = [1 -1.5 0. 7];
B = [lllll}010.5]
th0 = pol y2th(A, B, [\begin{array}{lll}{1}&{-1}&{0.2]);}\end{array}],\mp@code{l}
u = i di nput(400,'rbs',[ [ 0. 3]);
e = randn(400, 1);
y = idsi m([u e],th0);
pl ot (y)
```

The "inverse model" (3.38), which computes the prediction errors from given input-output data, is simulated with

$$
e=p e\left(\left[\begin{array}{ll}
y & u
\end{array}\right], t h\right)
$$

To compute the k-step ahead prediction of the output signal based on a model th , the procedure is as follows:

```
yhat = predi ct([y u],th, k)
```

The predicted value $\hat{y}(t \mid t-k)$ is computed using the information in $u(s)$ up to time $s=t$ and information in $y(s)$ up to time $s=t-k$. The actual way that the information in past outputs is used depends on the noise model in t h. For example, an output error model $A=C=D=1$ maintains that there is no information in past outputs, therefore, predictions and simulations coincide.
predi ct can evaluate how well a time series model is capable of predicting future values of the data. Here is an example, where y is the original series of, say, monthly sales figures. A model is estimated based on the first half, and then its ability to predict half a year ahead is checked out on the second half of the observations:

```
i dpl ot (y)
y1 = y(1:48), y2 = y(49:96)
th = ar(y1,4)
yhat = predict(y2, th4, 6)
pl ot([y2 yhat])
```

The command compare is useful for any comparisons involving i dsi mand predict.

8. Model Structure Selection and Validation

After you have been analyzing data for some time, you typically end up with a large collection of models with different orders and structures. Y ou need to decide which one is best, and if the best description is an adequate model for your purposes. These are the problems of model validation.

M odel validation is the heart of the identification problem, but there is no absolute procedure for approaching it. It is wise to be equipped with a variety of different tools with which to evaluate model qualities. This section describes the techniques you can use to evaluate model qualities using the System Identification Tool box.

Comparing Different Structures

It is natural to compare the results obtained from model structures with different orders. F or state-space model s this is easily obtained by using a vector argument for the order in n4si d:
th $=n 4$ si $d(z, 1: 10)$
This invokes a plot from which a "best" order is chosen.
For models of ARX type, various orders and delay can be efficiently studied with the command ar xst ruc. Collect in a matrix NN all of the ARX structures you want to investigate, so that each row of NN is of the type
[na nb nk]
With

> V = arxstruc(ze, zv, NN)
an ARX model is fitted to the data set ze for each of the structures in NN. Next, for each of these models, the sum of squared prediction errors is computed, as they are applied to the data set zv . The resulting loss functions are stored in V together with the corresponding structures.
To select the structure that has the smallest loss function for the validation set zv, use

```
nn = sel struc( V, O)
```

Such a procedure is known as cross validation and is a good way to approach the model selection problem.

It is usually a good idea to visually inspect how thefit changes with the number of estimated parameters. A graph of the fit versus the number of parameters is obtained with

$$
\mathrm{nn}=\text { sel struc(V) }
$$

This routine prompts you to choose the number of parameters to estimate, based upon visual inspection of the graph, and then it selects the structure with the best fit for that number of parameters.

The command str uc helps generate typical structure matrices NN for single-input systems. A typical sequence of commands is

```
V = arxstruc(ze, zv, struc( 2, 2, 1: 10) );
nn = sel struc(V,0);
nk = nn(3);
V = arxstruc(ze, zv, struc(1: 5, 1: 5, nk-1: nk+1));
nn = sel struc(V)
```

where you first establish a suitable value of the delay nk by testing second order models with delays between one and ten. The best fit selects the delay, and then all combinations of ARX models with up to five a and b parameters are tested with delays around the chosen value (a total of 75 models).

If the model is validated on the same data set from which it was estimated; i.e., if $z e=z v$, the fit always improves as the model structure increases. You need to compensate for this automatic decrease of the loss functions. There are several approaches for this. Probably the best known technique is Akaike's Final Prediction Error (FPE) criterion and his closely related Information Theoretic Criterion (AIC). Both simulate the cross validation situation, where the model is tested on another data set.

The FPE is formed as

$$
F P E=\frac{1+n / N}{1-n / N} * V
$$

where n is the total number of estimated parameters and N is the length of the data record. V is the loss function (quadratic fit) for the structure in question. The AIC is formed as

$$
A I C \approx \log [(1+2 n / N) * V]
$$

(See Section 16.4 in Ljung (1987).)
According to Akaike's theory, in a collection of different models, choose the one with the smallest FPE (or AIC). The FPE values are displayed by the pr esent command and are al so given as the entry $(2,1)$ of the $t h$ matrix. The structure that minimizes the AIC is obtained with

```
nn = sel struc(V,'Al C')
```

where V was generated by ar xstruc.
A related criterion is Rissanen's minimum description length (MDL) approach, which selects the structure that allows the shortest over-all description of the observed data. This is obtained with

$$
\mathrm{nn}=\text { sel struc(} \mathrm{V}, \text { ' MDL' })
$$

If substantial noise is present, the ARX models may need to be of high order to describe simultaneously the noise characteristics and the system dynamics. (F or ARX models the noise model $1 / \mathrm{A}(\mathrm{q})$ is directly coupled to the dynamics model $B(q) / A(q)$.) An alternative is to compute the dynamics model only, using an IV technique, and to compute the fit between the model's simulated output and the output in the validation data set $z v$. This is accomplished with

$$
\mathrm{V}=\mathrm{i} \text { vstruc(ze, zv, NN) }
$$

The information in V can then be handled as described above. In this case, V also contains the condition number of the matrix from which the IV estimates are sol ved. Poor conditioning of this matrix indicates unnecessarily high model orders. (See page 415 in Ljung, 1987).

Checking Pole-Zero Cancellations

A near pole-zero cancellation in the dynamics model is an indication that the model order may be too high. To judge if a "near" cancellation is a real cancellation, take the uncertainties in the pole- and zero-locations into
consideration. The function t h2zp computes confidence regions for the poles and zeros, which are graphed by

```
zppl ot(th2zp(th), 1)
```

where the 1 indicates how many standard-deviations wide the confidence interval is. If the confidence regions overlap, try lower model orders.

This check is especially useful when the models have been generated by ar x. As mentioned under "Comparing Different Structures," the orders can be pushed up due to the requirement that 1/A(q) describe the noise characteristics. Checking cancellations in $B(q) / A(q)$ then gives a good indication of which orders to chose from model structures like ar max, oe, and bj .

Residual Analysis

The residuals associated with the data and a given model, as in (3.38), are ideally white and independent of the input for the model to correctly describe the system. The function

```
e = resid(z,th)
```

computes the residuals e and performs whiteness and independence analyses. The auto correlation function of e and the cross correlation function between e and u are computed and displayed for up to lag 25 . Also displayed are 99% confidence intervals for these variables, assuming that e is indeed white and independent of u.

The rule is that if the correlation functions go significantly outside these confidence intervals, do not accept the corresponding model as a good description of the system. Some qualifications of this statement are necessary:

- Model structures like the OE structure (3.19) and methods like the IV method (3.41) focus on the dynamics G and less about the noise properties H . If you are interested primarily in G, focus on the independence of e and u rather than the whiteness of e.
- Correlation between e and u for negative lags, or current $e(t)$ affecting future $u(t)$, is an indication of output feedback. This is not a reason to reject the model. Correlation at negative lags is of interest, since certain methods do not work well when feedback is present in the input-output data, (see
"Dealing with Data" on page 3-58), but concentrate on the positivelags in the cross-correlation plot for model validation purposes.
- When using the ARX model (3.15), the least-squares procedure automatically makes the correlation between $e(t)$ and $u(t-k)$ zero for $k=n k, n k+1, \ldots n k+n b-$, for the data used for the estimation.

As part of the validation process, you can graph the residuals using pl ot (e)
for a simple visual inspection of irregularities and outliers. (See also "Dealing with Data" on page 3-58.)

Noise-Free Simulations

To check whether a model is capable of reproducing the observed output when driven by the actual input, you can run a simulation:

```
yh = idsim(u,th)
pl ot([y yh])
```

The same result is obtained by

```
compare([y,u],th)
```

It is a much tougher and revealing test to perform this simulation, as well as the residual tests, on a fresh data set $[y \mathrm{u}]$ that was not used for the estimation of the model t h. This is called cross validation. (N ote that i vst ruc forms the squared difference of y and y h for IV-computed models $t h$.)

Assessing the Model Uncertainty

The estimated model is always uncertain, due to disturbances in the observed data, and due to the lack of an absolutely correct model structure. The variability of the model that is due to the random disturbances in the output is estimated by most of the estimation procedures, and it can be displayed and illuminated in a number of ways. This variability answers the question of how different can the model be if I repeat the identification procedure, using the same model structure, but with a different data set that uses the same input sequence. It does not account for systematic errors due to an inadequate choice of model structure. There is no guarantee that the "true system" lies in the confidence interval.

The uncertainty in the frequency response is calculated with
[g , phi v] = th2ff(th)
and can subsequently be graphed with bodepl ot. The uncertainty in the time response is displayed by
i dsimsd(u,th)
Ten possible models are drawn from the asymptotic distribution of the model t h. The response of each of them to the input u is graphed on the same diagram.

The uncertainty of these responses concerns the external, input-output properties of the model. It reflects the effects of inadequate excitation and the presence of disturbances.

You can also directly get the standard deviation of the simulated result by
[ysimysimsd] =idsim(u,th)
The uncertainty in internal representations is manifested in the covariance matrix of the estimated parameters,
present (th)
and in the standard deviations of the pole- and zero-locations, which are computed with

```
zepo = th2zp(th)
```

and displayed using zppl ot . Large uncertainties in these representations are caused by excessively high model orders, inadequate excitation, or bad signal-to-noise ratios.

Comparing Different Models

It is a good idea to display the model properties in terms of quantities that have more physical meaning than the parameters themselves. Bode plots, zero-pole plots, and model simulations all give a sense of the properties of the system that have been picked up by the model.

If several models of different characters give very similar Bode plots in the frequency range of interest, you can be fairly confident that these must reflect features of the true, unknown system. Y ou can then choose the simplest model among these.

A typical identification session includes estimation in several different structures, and comparisons of the model properties. Here is an example:

```
a1 = arx(z,[ l 1]);
[gs,nss] = spa(z);
[ga1,nsal] = th2ff(a1);
bodepl ot([gs gal])
bodepl ot([nss nsal])
zpa1 = th2zp(a1);
am2 = armax(z,[2 2 2 1]);
[gam2,nsam2] = th2ff(am2);
bodepl ot([gs gam2])
zpam2 = th2zp(am2);
zppl ot ( zpf or m(zpa1, z pam2))
```


Conditioning of the Prediction Error Gradient

When the model orders in (3.23) are overestimated, so that a pole-zero cancellation can take place in the model, the prediction error gradient theoretically becomes rank deficient. The matrix that is inverted when estimating the covariance matrix becomes singular, and the Gauss-N ewton search direction becomes ambiguous.

Due to the high numeric precision in MATLAB, you are unlikely to encounter messages about singular and rank deficient matrices. Instead, overestimated model orders usually show up as large estimated parameter variances and large norms of the Gauss-N ewton vector (although only minor decreases in the criterion value result). Consequently, these are good indicators that you have gone too far in increasing the model orders. See also "Some Special Topics" on page 3-68.

Selecting Model Structures for Multivariable Systems

Multivariable systems are often more difficult to model. Some basic aspects and advice were given in "The Basic Steps of System Identification" on page 1-10. The graphical user interface (GUI) offers particularly useful support for the multivariable case. In this section we give some more technical comments about the identification of multivariable systems.

The basic comments given so far in this section also apply to such systems. There are, however, a large number of possible structures for systems with several outputs, and systematic tests of the many possibilities are impractical. This problem is a difficult one, and for a more comprehensive treatment, refer to Appendix 4.A of Ljung (1987).

First of all, physical insight is more important than anything else. Whenever there is prior knowledge sufficient toform physically parametrized state-space models, you should test that. Even lacking more precise knowledge, some physical insight might help you to come up with first suggestions of orders and delays.

For multi-output black-box models, it is easiest to first try state-space models using n 4 si d for the model estimation.

Multivariable ARX models are also easy to deal with. When building such models, a simple start-up procedure is to try arx with a structure that is filled with parameters. Then consider those estimates that are of the same magnitude as their standard deviations, and try orders and delays that automatically set them to zero. N ote that for ar x each row is estimated independently of the others. Changing orders and delays associated with output number i (i.e. the i-th row of na, nb, and nk) does not change the parameter estimates associated with the other rows. When a reasonable structure has been found, try i v4 with it and evaluate the models in the usual ways.

If the signal to noise level is not good, and it is important to have models that describe the noise characteristics, try state-space models. (These are equivalent to multivariable ARMAX models.) Again, it is easier to estimate state-space models directly without specifying the particular structure. This is done using n4sid.

An alternative is to apply the prediction error method using canonical state-space forms. These are obtained by the command canst art. This defines a canonical form structurefrom the pseudo-observability indices. These indices form a vector with the same number of entries as the number of outputs. Loosely speaking, index number k describes how many delayed values of y_{k} affect the current value of y_{k}. The sum of the indices is equal to the order of the
system. The number of possible pseudo-observability indices for a system of order n with p outputs is

$$
\binom{n}{p}
$$

It is, however, reassuring to know that almost every system of order n can be described in a structure corresponding to any set of pseudo-observability indices whose sum is n . Y ou can estimate the order of the system (or, rather, try several different orders) and pick any set of pseudo-observability indices corresponding to that order. A default choice of indices can be made by canst ar t if only the order is specified. Only if the minimization in pemshows signs of poor conditioning of the involved matrices do you need to try other indices.

Note that the canonical form parametrizations cannot handle input del ays. To deal with specific delays from the input(s), shift the input sequences accordingly.

Also note that with fixpar any canonical form parameterization can be transformed to a corresponding output-error structure, by fixing the matrix K to zero.

9. Dealing with Data

Extracting information from data is not an entirely straightforward task. In addition to the decisions required for model structure selection and validation, the data may need to be handled carefully. This section gives some advice on handling several common situations.

Offset Levels

When the data have been collected from a physical plant, they are typically measured in physical units. Thelevels in theseraw inputs and outputs may not match in any consistent way. This will force the models to waste some parameters correcting the levels.

Offsets are easily dealt with; always subtract the mean levels from the input and output sequences before the estimation. It is best if the mean levels correspond to a physical equilibrium, but if such values are not known, use the sample means:

```
z = dtrend(z);
```

Section 14.6 in Ljung (1987) discusses this in more detail. With the dt rend command, you can also remove piece-wise linear trends.

Outliers

Real data are also subject to possible bad disturbances; an unusually large disturbance, a temporary sensor or transmitter failure, etc. It is important that such outliers are not allowed to affect the models too strongly.

The robustification of the error criterion (described under I i min "Optional Variables" on page 3-26) helps here, but it is always good practice to examine the residuals for unusually large values, and to go back and critically evaluate the original data responsible for the large values. If the raw data are obviously in error, they can be smoothed, and the estimation procedure repeated.

Filtering Data

Depending upon the application, interest in the model can be focused on specific frequency bands. Filtering the data before the estimation, through filters that enhance these bands, improves the fit in the interesting regions. This is used in the System Identification Toolbox function idf ilt. For
example, to enhance the data in the frequency band between $0.02 * \pi$ and $0.1 * \pi$, execute

$$
\mathrm{zf}=\mathrm{idfilt}(\mathrm{z}, 5,[0.020 .1]) ;
$$

This computes and uses a fifth order Butterworth bandpass filter with passband between the indicated frequencies. Chapter 13 in Ljung (1987) discusses the role of filtering in more detail.

The SITB contains other useful commands for related problems. F or example, if you want to lower the sampling rate by a factor of 5 , use
z5 $=i \operatorname{dr} \operatorname{esamp}(z, 5) ;$

Feedback in Data

If the system was operating in closed loop (feedback from the past outputs to the current input) when the data were collected, some care has to be exercised.

Basically, all the prediction error methods work equally well for closed-loop data. Note, however, that the Output-Error model (3.19) and the Box-J enkins model (3.21) are normally capable of giving a correct description of the dynamics G, even if H (which equals 1 for the output error model) does not allow a correct description of the noise properties. This is no longer true for closed-loop data. You then need to model the noise properties carefully.

The spectral analysis method and the instrumental variable techniques (with default instruments) give unreliable results when applied to closed-loop data. These techniques should be avoided when feedback is present.

To detect if feedback is present, use the basic method of applying cra to estimate the impulse response. Significant values of the impulse response at negative lags is a clear indication of feedback. When a parametric model has been estimated and the resid command is applied, a graph of the correlation between residuals and inputs is given. Significant correlation at negative lags again indicates output feedback in the generation of the input. Testing for feedback is, therefore, a natural part of model validation.

Delays

The selection of the delay nk in the model structure is a very important step in obtaining good identification results. You can get an idea about the delays in the system by the impulse response estimate from cra.

Incorrect delays are also visible in parametric models. Underestimated delays (nk too small) show up as small values of leading b_{k} estimates, compared to their standard deviations. Overestimated delays (nk too large) are usually visible as a significant correlation between the residuals and the input at the lags corresponding to the missing b_{k} terms.

A good procedure is to start by using ar xst r uc to test all feasible delays together with a second-order model. Use the delay that gives the best fit for further modeling. When you have found an otherwise satisfactory structure, vary nk around the nominal value within the structure, and evaluate the results.

10. Recursive Parameter Estimation

In many cases it may be necessary to estimate a model on line at the same time as the input-output data is received. Y ou may need the model to make some decision on line, as in adaptive control, adaptive filtering, or adaptive prediction. It may be necessary to investigate possible time variation in the system's (or signal's) properties during the collection of data. Terms like recursive identification, adaptive parameter estimation, sequential estimation, and onlineal gorithms areused for such algorithms. Chapter 11 in Ljung (1987) deals with such algorithms in some detail.

The Basic Algorithm

A typical recursive identification algorithm is

$$
\begin{equation*}
\hat{\theta}(t)=\hat{\theta}(t-1)+K(t)(y(t)-\hat{y}(t)) \tag{10.1}
\end{equation*}
$$

Here $\theta(t)$ is the parameter estimate at timet, and $y(t)$ is the observed output at timet. M oreover, $\hat{y}(t)$ is a prediction of the value $y(t)$ based on observations up to time $t-1$ and also based on the current model (and possibly also earlier ones) at time $t-1$. The gain $K(t)$ determines in what way the current prediction error $y(t)-\hat{y}(t)$ affects the update of the parameter estimate. It is typically chosen as

$$
\begin{equation*}
K(t)=Q(t) \psi(t) \tag{10.2}
\end{equation*}
$$

where $\psi(t)$ is (an approximation of) the gradient with respect to θ of $\hat{y}(t \mid \theta)$. The latter symbol is the prediction of $y(t)$ according the model described by θ. Note that model structures like AR and ARX that correspond to linear regressions can be written as

$$
\begin{equation*}
y(t)=\psi^{T}(t) \theta_{0}(t)+e(t) \tag{10.3}
\end{equation*}
$$

where the regression vector $\psi(t)$ contains old values of observed inputs and outputs, and $\theta_{0}(t)$ represents the true description of the system. M oreover, $e(t)$ is the noi se source (the innovations). Compare with (3.15). The natural prediction is $\hat{y}(t)=\psi^{I}(t) \theta(t-1)$ and its gradient with respect to θ becomes exactly $\psi(t)$.

F or models that cannot be written as linear regressions, you cannot recursively compute the exact prediction and its gradient for the current estimate $\theta(t-1)$. Then approximations $\hat{y}(t)$ and $\psi(t)$ must be used instead. Section 11.4 in Ljung (1987) describes suitable ways of computing such approximations for general model structures.

The matrix $Q(t)$ that affects both the adaptation gain and the direction in which the updates are made, can be chosen in several different ways. This is discussed in the following section.

Choosing an Adaptation Mechanism and Gain

The most logical approach to the adaptation problem is to assume a certain model for how the "true" parameters θ_{0} change. A typical choice is to describe these parameters as a random walk:

$$
\begin{equation*}
\theta_{0}(t)=\theta_{0}(t-1)+w(t) \tag{10.4}
\end{equation*}
$$

Here $w(t)$ is assumed to be white Gaussian noise with covariance matrix

$$
\begin{equation*}
E w(t) w^{T}(t)=R_{1} \tag{10.5}
\end{equation*}
$$

Suppose that the underlying description of the observations is a linear regression (10.3). An optimal choice of $Q(t)$ in (10.1)-(10.2) can then be computed from the Kalman filter, and the complete algorithm becomes

$$
\begin{align*}
\hat{\theta}(t) & =\hat{\theta}(t-1)+K(t)(y(t)-\hat{y}(t)) \tag{10.6a}\\
\hat{y}(t) & =\psi^{T}(t) \hat{\theta}(t-1) \tag{10.6b}\\
K(t) & =Q(t) \psi(t) \tag{10.6c}\\
Q(t) & =\frac{P(t-1)}{R_{2}+\psi(t)^{T} P(t-1) \psi(t)} \tag{10.6d}\\
P(t) & =P(t-1)+R_{1}-\frac{P(t-1) \psi(t) \psi(t)^{T} P(t-1)}{R_{2}+\psi(t)^{T} P(t-1) \psi(t)} \tag{10.6e}
\end{align*}
$$

Here R_{2} is the variance of the innovations $e(t)$ in (10.3): $R_{2}=E e^{2}(t$ (a scalar). The algorithm (10.6) will be called the K alman Filter (KF) Approach to adaptation, with drift matrix R_{1}. See eq (11.66)-(11.67) in Ljung (1987). The algorithm is entirely specified by $R_{1}, R_{2}, P(0), \theta(0)$, and the sequence of data $y(t), \psi(t), t=1,2, \ldots$. E ven though the algorithm was motivated for a linear regression model structure, it can also be applied in the general case where $\hat{y}(t)$ is computed in a different way from (10.6b).

Another approach is to discount old measurements exponentially, so that an observation that is τ samples old carries a weight that is λ^{τ} of the weight of the most recent observation. This means that the following function is minimized rather than (3.39):

$$
\sum_{k=1}^{t} \lambda^{t-k} e^{2}(k)
$$

at time t. Here λ is clearly is a positive number ≤ 1. The measurements that are older than $\tau=1 /(1-\lambda)$ carry a weight in (10.7) that is less than about 0.3. Think of $\tau=1 /(1-\lambda)$ as the memory horizon of the approach. Typical values of λ are in the range 0.97- 0.995 .

The criterion (10.7) can be minimized exactly in the linear regression case giving the algorithm (10.6abc) with the following choice of $Q(t)$:

$$
\begin{gather*}
Q(t)=P(t)=\frac{P(t-1)}{\lambda+\psi(t)^{T} P(t-1) \psi(t)} \tag{10.8a}\\
P(t)=\left(P(t-1)-\frac{P(t-1) \psi(t) \psi(t)^{T} P(t-1)}{\lambda+\psi(t)^{T} P(t-1) \psi(t)}\right) / \lambda \tag{10.8b}
\end{gather*}
$$

This algorithm will be called the Forgetting F actor (FF) Approach to adaptation, with the forgetting factor λ. See eq (11.63) in Ljung (1987). The algorithm is also known as RLS, recursiveleast squares in the linear regression case. Note that $\lambda=1$ in this approach gives the same algorithm as $R_{1}=0, R_{2}=1$ in the Kalman filter approach.

A third approach is to allow the matrix $Q(t)$ to be a multiple of the identity matrix:

$$
\begin{equation*}
Q(t)=\Upsilon I \tag{10.9}
\end{equation*}
$$

It can also be normalized with respect to the size of ψ :

$$
\begin{equation*}
Q(t)=\frac{\Upsilon}{|\psi(t)|^{2}} I \tag{10.10}
\end{equation*}
$$

See eqs (11.45) and (11.46), respectively in Ljung (1987). These choi ces of $Q(t)$ move the updates of $\hat{\theta}$ in (10.1) in the negative gradient direction (with respect to θ) of the criterion (3.39). Therefore, (10.9) will be called the Unnormalized Gradient (UG) Approach and (10.10) the Normalized Gradient (NG) Approach to adaptation, with gain Υ. Thegradient methods arealso known as LMS, least mean squares in the linear regression case.

Available Algorithms

The System Identification Tool box provides the following functions that implement all common recursiveidentification al gorithms for model structures in the family (6.1): rarmax, rarx, rbj, rpem rpl r, and roe. They all share the following basic syntax:

$$
\text { [thm yh] =rfcn(z, nn, adm adg })
$$

Herez contains the output-input data as usual. nn specifies the model structure, exactly as for the corresponding offline algorithm. The arguments admand adg sel ect the adaptation mechanism and adaptation gain listed above.

$$
a d m=' f f^{\prime} ; \quad a d g=1 a m
$$

gives the forgetting factor al gorithm (10.8), with forgetting factor I am
adm = 'ug' ; adg = gam
gives the unnormalized gradient approach (10.9) with gain gam Similarly,

```
adm = 'ng'; adg = gam
```

gives the normalized gain approach (10.10). To obtain the K alman filter approach (10.6) with drift matrix R1 enter
adm = ' kf' ; adg = R1

The value of R_{2} is always 1 . Note that the estimates $\hat{\theta}$ in (10.6) are not affected if all the matrices R_{1}, R_{2} and $P(0)$ are scaled by the same number. Y ou can therefore al ways scale the original problem so that R_{2} becomes 1 .

The output argument t hmis a matrix that contains the current models at the different samples. Row k of t hmcontains the model parameters, in al phabetical order at sample time k, corresponding to row k in the data matrix z. The ordering of the parameters is the same as th2par would give when applied to the theta format of a corresponding offline model.

The output argument yh is a column vector that contains, in row k, the predicted value of $y(k)$, based on past observations and current model. The vector yh thus contains the adaptive predictions of the outputs, and is useful also for noise cancelling and other adaptive filtering applications.

The functions also have optional input arguments that allow the specification of $\theta(0), P(0)$, and $\psi(0)$. Optional output arguments include the last value of the matrix P and of the vector ψ.

Now, rarx is a recursive variant of ar x; similarly r armax is the recursive counterpart of ar max and so on. Note, though that rarx does not handle multi-output systems, and r pemdoes not handle state-space structures.

The function r pl r is a variant of r pem and uses a different approximation of the gradient ψ. It is known as the recursivepseudo-linear regression approach, and contains some well known special cases. See equation (11.57) in Ljung (1987). When applied to the output error model (nn=[0 nb 00 nf nk$]$) it results in methods known as HARF ('ff'-case) and SHARF ('ng'-case). The common extended least squares (ELS) method is an rplr algorithm for the ARMAX model (nn=\{ na nb nc O Onk]).

The following example shows a second order output error model, which is built recursively and its time varying parameter estimates plotted as functions of time:

```
thm = roe(z,[ 2 2 1],'ff',0.98);
pl ot (thm)
```

A second order ARM AX model is recursively estimated by the ELS method, using K alman filter adaptation. The resulting static gains of the estimated models are then plotted as a function of time:

```
[ N, dum] =si ze(z);
thm=rplr(z,[2 2 2 0 0 1],'kf',0.01*eye(6));
nums = sum(thm(:, 3:4)')';
dens = ones( N, 1) +sum(thm(:, 1: 2)' )';
stg = nums./ dens;
pl ot (stg)
```

So far, the examples of applications where a batch of data is examined cover studies of the variability of the system. The algorithms are, however, also prepared for true online applications, where the computed model is used for some online decision. This is accomplished by storing the update information in $\theta(t-1), P(t-1$ and information about past data in $\phi(t-1)$ (and $\psi(t-1)$) and using that information as initial data for the next time step. The following example shows the recursive least-squares al gorithm being used on line (just to plot one current parameter estimate):

```
% nitialization, first i/o pair y,u(scal ars)
[th,yh,P,phi ] = rarx([y u],[2 2 1],'ff',0.98);
axis([1 50 -2 2])
pl ot ( 1, th(1),' *' ), hol d
```

```
%The onl i ne loop:
for k = 2:50
% At time k recei ve y,u
[th, yh, P, phi ] = ...
rarx([y u],[2 2 1],'ff',0.98,th',P, phi );
pl ot (k, th(1) ,'*')
end
```

Executing i ddeno 6 illustrates the recursive algorithms.

Segmentation of Data

Sometimes the system or signal exhibits abrupt changes during the time when the data is collected. It may be important in certain applications to find the time instants when the changes occur and to develop models for the different segments during which the system does not change. This is the segmentation problem. Fault detection in systems and detection of trend breaks in time series can serve as two examples of typical problems.

The System Identification Tool box offers the function segment to deal with the segmentation problem. The basic syntax is

```
thm = segment ( z, nn)
```

with a format like rarx or rar max. The matrix thmcontains the piecewise constant models in the same format as for the algorithms described earlier in this section.

The algorithm that is implemented in segment is based on a model description like (10.4), where the change term $w(t)$ is zero most of the time, but now and then it abruptly changes the system parameters $\theta_{0}(t)$. Several K alman filters that estimate these parameters are run in parallel, each of them corresponding to a particular assumption about when the system actually changed. The relativereliability of these assumed system behaviors is constantly judged, and unlikely hypotheses are replaced by new ones. Optional arguments allow the specification of the measurement noise variance R_{2} in (10.3), of the probability of a jump, of the number of parallel models in use, and also of the guaranteed lifespan of each hypothesis. See i ddeñ 7 in Chapter 4, "Command Reference" also.

11. Some Special Topics

This section describes a number of miscellaneous topics. Most of the information here is also covered in other parts of the manual, but since manuals seldom are read from the beginning, you can also check if a particular topic is brought up here.

Time Series Modeling

When there is no input present, the general model (6.1) reduces to the ARMA model structure:

$$
\begin{equation*}
A(q) y(t)=C(q) e(t) \tag{11.1}
\end{equation*}
$$

With $C(q)=1$ you have an AR model structure.
Basically all commands still apply tothesetimeseries models, but with natural modifications. They are listed as follows:

```
th = pol y2th(A,[],C, 1, [],I am)
y = idsim(e,th)
```

Spectral analysis (et fe and spa) and the th2ff function now return the spectral estimate of y as their first output arguments:

```
PH| Y = th2ff(th)
PH| Y = spa(y)
PERIOD = etfe(y)
```

Note that et f e gives the periodogram estimate of the spectrum.
ar max and ar x work the same way, but need no specification of nb and nk:

```
th = arx(y,na)
th = armmx(y,[na nc])
```

Note that arx also handles multivariate signals. State-space models of time series can be built simply by specifying B = [] , D = [] in modst ruc, nf 2t h, and ms 2 t h. resi d works the same way for time series models, but does not provide any input-residual correlation plots:

$$
e=r e s i d(y, t h)
$$

In addition there are two commands that are specifically constructed for building scalar AR models of time series. One is

$$
\mathrm{th}=\operatorname{ar}(\mathrm{y}, \mathrm{na})
$$

which has an option that allows you to choose the algorithm from a group of several popular techniques for computing the least-squares AR model. Among these are Burg's method, a geometric lattice method, the Yule-Walker approach, and a modified covariance method. See Chapter 4, "Command Reference" for details. The other command is

$$
\mathrm{th}=\mathrm{i} \operatorname{var}(\mathrm{y}, \mathrm{na})
$$

which uses an instrumental variables technique to compute the AR part of a time series.

Finally, when no input is present, the functions bj , i v, i v4, and oe are not defined.

Here is an example where you can simulate a time series, compare spectral estimates and covariance function estimates, and al so the predictions of the model.

```
ts0 = pol y2th([1 -1.5 0. 7],[]);
    % The true spectrum
speO = th2ff(ts0);
ir = idsim([ 1; zeros(24,1)],ts0);
    % The true covariance function:
Ry0 = conv(ir,ir(25:-1: 1));
e = randn( 200, 1);
y = idsim(e,ts0);
pl ot (y)
per = etfe(y);
speh = spa(y);
ffpl ot([per,speh, spe0])
    % A second order AR model:
ts2 = ar(y, 2);
sp2 = th2ff(ts2);
ffpl ot([speh, sp2, spe0, 3])
    % The covariance function esti mates:
Ryh = covf(y, 24);
ir2 = i dsim[1; zeros(24,1)],ts2);
Ry2 = conv(ir2,ir2(25:-1:1));
```

```
pl ot ([ -24: 24] *ones( 1, 3) , [ Ryh, Ry2, Ry0] )
    % The prediction ability of the model:
compare(y, th2, 5)
```


The Sampling Interval

The System I dentification Tool box assumes a normalized sampling interval of $T=1$, unless you specify otherwise. This means that the frequency unit becomes "radians per sampling interval," and that all the transformations between continuous- and discrete-time models give numerical parameter values corresponding to the unit "... per sampling interval" rather than "... per second." To obtain correct physical units in these cases, the sampling interval must be specified accordingly.

All models in the theta format contain the sampling interval T as the (1, 2) element. It can be read by

$$
\mathrm{T}=\operatorname{get} \mathrm{t}(\mathrm{th})
$$

and it is changed by

```
thnew = sett(thol d, T)
```

Note that the value of T is just changed; no transformation of parameters is carried out by set t.

A negative value of T indicates that the corresponding model is given in continuous time. The absolute value of T denotes, in that case, the sampling interval of the data, for which this model was estimated. This is also the sampling interval used when the model is used for simulation or prediction. All other transformations (to the frequency function, to poles and zeros, to transfer functions and to state-space matrices) will be in terms of the continuous-time model. In the case of $\mathrm{th} 2 \mathrm{f} f, \operatorname{abs}(\mathrm{~T})$ is used for the default choice of frequency range.

You can specify the sampling interval as an optional argument in all the functions that create theta structures. It is generally the last argument. Note that in ms 2 th and mf 2 th , it is the sampling interval of the data that you need to specify, even if the model itself in parametrized in continuous time. If the initial structure in pem ar max, bj, and oe is given by a matrix $t h$ in the theta format, the default value of T is the one given by $t h$. An explicitly given sampling interval (as an argument to pem for example) overrides the default value in $t h$.

The sampling interval T is also used by et $f e, s p a$, and $t h 2 f f$ to determine default frequency ranges. F or discrete-time systems, this default is [1: 128]/ $128 * p i / T$ and for continuous-time systems, it is
logspace($\log 10(\mathrm{pi} / \mathrm{abs}(\mathrm{T}) / 100), \log 10(10 * \mathrm{pi} / \mathrm{abs}(\mathrm{T})), 128)$.
Discrete-time default frequency ranges can be changed by set t, like in

```
g = spa(z);
g = sett(g,T);
```


Out of Memory

If you run out of memory on computers with memory limitations, clear unnecessary variables and use the pack function. When you are using the iterative procedures armax, bj, oe, and pem it is a good idea to use pack to clean up after the start-up estimation procedure using, for example

```
th = armax(z,nn, 0);
pack
th = armax(z,th);
```

All the relevant System Identification Tool box functions have an optional variable MAXSI ZE that controls the memory/speed trade-off and is set automatically, based upon the best values for the machine you are using. The routines do not allow any matrix of size larger than MAXSI ZE to form. Instead they go into for-loops to handle the situation.

The default value of MAXSI ZE is set in the M-filei dmsi ze. Theoretically, MAXSI ZE is 8188 on the smaller machines, but since many matrices may form, it best to set the default value for these machines to MAXSI ZE $=4096$.

If you have memory problems, you can use the argument MAXSI ZE, or edit i dmsi ze, with values lower than the default.

If you have a large amount of input-output data, so that the memory delimiter gives you a slower response, usea portion of the data to calculate a good initial condition for the minimization, for example

```
th = armmx(z(1:500,:),[na nb nc],10,0.1);
th = armax(z,th);
```

On a small machine, if you have collected more than 8188 data points so that you cannot form $z=[y \quad u]$, no memory help is offered. You then have to build separate models for separate parts of the data and reconcile the models.

Memory-Speed Trade-Offs

On machines with no formal memory limitations, it is still of interest to monitor the sizes of the matrices that areformed. Thetypical situation is when an overdetermined set of linear equations is solved for the least-squares solution. The solution time depends, of course, on the dimensions of the corresponding matrix. The number of rows corresponds to the number of observed data, while the number of columns corresponds to the number of estimated parameters. The argument MAXSI ZE used with all the relevant M-files, guarantees that no matrix with morethan MAXSI ZE elements is formed. Larger data sets and/or higher order models are handled by for-loops. F or-loops give linear increase in time when the data record is increased, plus some overhead (and somewhat worse numerical properties).

If you regularly work with large data sets and/or high order models, it is advisable totailor the memory and speed trade-off to your machine by choosing the default value of MAXSI ZE in the M-file i dmsi ze carefully. Note that this value is allowed to depend on the number of rows and columns of the matrices formed.

Regularization

The Gauss-Newton direction is usually defined as

$$
g n=\left(\Psi^{\prime} \Psi\right)^{-1} * \Psi^{\prime *} e
$$

where Ψ is the $N \times n$ gradient matrix of the predictions with respect to the parameters, and eis the $N \times 1$ vector of residuals.

When the inverted matrix is ill-conditioned, you can add a small fraction of the identity matrix to it. This is called regularization. See Ljung (1987), Section 10.2 .

The routines in the System I dentification Tool box compute the Gauss-N ewton direction with

```
g=psi\e
```

which uses the MATLAB mechanism for dealing with underdetermined, overdetermined systems of equations. An advanced version of regularization is thus automatically included.

Because of the high precision of MATLAB, regularization is not invoked easily. You may see some very large nor mof gn-vect or values before you see the MATLAB message that the matrix is rank deficient.

A large value for the gn-vect or suggests that you decrease the model orders. However, if you are interested in how the regularization works, you can decrease the value of the machine epsilon. F or example, set

$$
\mathrm{eps}=0.000001
$$

and run the identification again.

Local Minima

The iterative search procedures in pem ar max, oe, and bj lead to theta values corresponding to a local minimum of the criterion function (3.39). Nothing guarantees that this local minimum is also a global minimum. The start-up procedure for black-box models in these routines is, however, reasonably efficient in giving initial estimates that lead to the global minimum.

If there is an indication that a minimum is not as good as you expected, try starting the minimization at several different initial conditions, to see if a smaller value of the loss function can be found.

Initial Parameter Values

When only orders and delays arespecified, thefunctions ar max, bj, oe, and pem use a start-up procedure to produce initial values. The start-up procedure goes through two to four least squares and instrumental variables steps. It is reasonably efficient in that it usually saves several iterations in the minimization phase. Sometimes it may, however, pay to use other initial conditions. For example, you can use an i v4 estimate computed earlier as an initial condition for estimating an output-error model of the same structure:

```
th1 = iv4(z,[na nb nk]);
[a,b] = th2pol y(th1);
th2 = pol y2th(1, b, 1, 1, a);
th3 = oe(z,th2);
```

Another example is when you want to try a model with one more delay (for example, three instead of two) because the leading b-coefficient is quite small:

```
th1 = armax(z,[\begin{array}{lll}{3}&{3}&{2}\end{array}]);
[a,b,c] = th2pol y(th1);
b(3) = 0;
th2 = pol y2th(a,b,c);
th3 = armax(z,th2);
```

If you decrease the number of delays, remember that pol y2t h strips away leading zeros. Suppose you go from three to two delays in the above example:

```
th1 = armmx(z,[3 3 2 3]);
[a,b,c] = th2pol y(th1);
b(3) = 0.00001;
th2 = pol y2th(a,b,c);
th3 = armax(z,th2);
```

Note that when constructing home-made initial conditions, the conditions must correspond to a stable predictor (C and F being Hurwitz polynomials), and that they should not contain any exact pole-zero cancellations.

For state-space and multi-output models, you must provide the initial parameter values either when defining the structure in ms 2 th or mf 2 th , or with the special initialization function thi nit. The basic approach is to use physical insight to choose initial values of the parameters with physical significance, and try some different (randomized) initial values for the others. F or models parametrized in canonical state-space form, use canst art to get started.

Linear Regression Models

A linear regression model is of the type

$$
\begin{equation*}
y(t)=\theta^{T} \varphi(t)+e(t) \tag{11.2}
\end{equation*}
$$

where $y(t)$ and $\varphi(t)$ are measured variables and $e(t)$ represents noise. Such models are very useful in most applications. They allow, for example, the inclusion of nonlinear effects in a simple way. The System Identification Toolbox function arx allows an arbitrary number of inputs. You can therefore handle arbitrary linear regression models with arx. F or example, if you want to build a model of the type

$$
\begin{equation*}
y(t)=b_{0}+b_{1} u(t)+b_{2} u^{2}(t)+b_{3} u^{3}(t) \tag{11.3}
\end{equation*}
$$

call

```
z = [y ones(u) u u. ^2 u. ^3];
th = arx(z,[0 1 1 1 1 0 0 0 0])
```

This is formally a model with one output and four inputs, but all the model testing in terms of compar e, idsi mand resid operate in the natural way for the model (11.2), once the data matrix z is defined as above.

Note that when pemis applied to linear regression structures, by default a robustified quadratic criterion is used. The search for a minimum of the criterion function is carried out by iterative search. Normally, use this robustified criterion. If you insist on a quadratic criterion, then set the argument I i min pemto zero. Then pemalso converges in one step.

Spectrum Normalization and the Sampling Interval

In the function spa the spectrum estimate is normalized with the sampling interval T as

$$
\begin{equation*}
\Phi_{y}(\omega)=T \sum_{k=-M}^{M} \hat{R}_{y}(k T) e^{-i \omega T} W_{M}(k) \tag{11.4}
\end{equation*}
$$

where

$$
\hat{R}_{y}(k T)=\frac{1}{N} \sum_{l=1}^{N} y(l T-k T) y(l T)
$$

(See also (3.3)). The normalization in et fe is consistent with (11.4). This normalization means that the unit of $\Phi_{y}(\omega)$ is "power per radians/time unit" and that the frequency scale is "radians/time unit." You then have

$$
\begin{equation*}
E y^{2}(t)=\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T} \Phi_{y}(w) d w \tag{11.5}
\end{equation*}
$$

In MATLAB language, therefore, you have $S 1 \approx S 2$ where

```
sp = spa(y); sp = sett(sp,T);
[ om PH| Y] = getff(sp);
S1 = sum( PH Y)/l ength(PH| Y)/T;
S2 = sum(y.^2)/I ength(y);
```

Note that PHI Y contains $\Phi_{v}(\omega)$ between $\omega=0$ and $\omega=\pi / T$ with a frequency step of $\pi / \mathrm{T} /(\mathrm{l}$ engt $\mathrm{h}(\mathrm{PHIY})$). The sum S 1 is, therefore, the rectangular approximation of the integral in (11.5). The spectrum normalization differs from the one used by spect rumin the Signal Processing Toolbox, and the above example shows the nature of the difference.

The normalization with T in (11.4) also gives consistent results when time series are decimated. If the energy above the Nyquist frequency is removed before decimation (as is done in i dr esamp), the spectral estimates coincide; otherwise you see fol ding effects.

Try the following sequence of commands:

```
th0 = pol y2th(1,[],[\begin{array}{llll}{1}&{1}&{1}&{1]);}\end{array}],\mp@code{l}
    %4th order MA-process
y = i dsi m( randn( 2000, 1), th0);
g1 = spa(y);
g2 = spa(y(1:4:2000));g2 = sett(g2,4);
ffpl ot([g1 g2]) % Fol di ng effects
g3 = spa(idresamp(y,4)); % Prefilter applied
g3 = sett(g3,4);
ffpl ot([g1 g3]) % No fol di ng
```

For a parametric noise (time series) model

$$
y(t)=H(q) e(t) \quad E e^{2}(t)=\lambda
$$

the spectrum is computed as

$$
\begin{equation*}
\Phi y(w)=\lambda \cdot T \cdot\left|H\left(e^{i w t}\right)\right|^{2} \tag{11.6}
\end{equation*}
$$

which is consistent with (11.4) and (11.5). Think of λT as the spectral density of the white noise source $e(t)$.

When a parametric noise model is transformed between continuous time and discrete time and/or resampled at another sampling rate, the functions
thc 2t hd and thd2t hc in the System I dentification Toolbox use formulas that are formally correct only for piecewise constant inputs. (See (3.32)). This approximation is good when T is small compared to the bandwidth of the noise. During these transformations the variance λ of the innovations $e(t)$ is changed so that the spectral density $\mathrm{T} \lambda$. remains constant. This has two effects:

- The spectrum scalings are consistent, so that the noise spectrum is essentially invariant (up to the N yquist frequency) with respect to resampling.
- Simulations with noise using i dsi mhas a higher noise level when performed at faster sampling.

This latter effect is well in line with the standard description that the underlying continuous-time model is subject to continuous-time white noise disturbances (which have infinite, instantaneous variance), and appropriate low-pass filtering is applied before sampling the measurements. If this effect is unwanted in a particular application, scale the noise source appropriately before applying i dsi m

Note the following cautions relating to these transformations of noise models. Continuous-time noise models must have a white noise component. Otherwise the underlying state-space model, which is formed and used in thc2t hd and thd2t hc, is ill-defined. Warnings about this are issued by pol y2t h and these functions. M odify the C-polynomial accordingly. Make the degree of the monic C-polynomial in continuous time equal to the sum of the degrees of the monic A- and D-polynomials; i.e., in continuous time

I engt $h(C)-1=(I$ engt $h(A)-1)+(I$ engt $h(D)-1)$.

Interpretation of the Loss Function

The value of the quadratic loss function is given as element 1,1 in the theta format, and also displayed by pr esent. F or multi-output systems, this is equal to the determinant of the estimated covariance matrix of the innovations.

F or most models the estimated covariancematrix of the innovations is obtained by forming the corresponding sample mean of the prediction errors, computed (using pe) from the model with the data for which the model was estimated.

Note the discrepancy between this value and the values shown during the minimization procedure (in pem ar max, bj, or oe, since these are the values of the robustified loss function (see under I i min Section 5).

Be careful when comparing loss function values between different structures that use very different noise models. An Output-Error model may have a better input-output fit, even though it displays a higher value of the loss function than, say, an ARX model.

Note that for ARX model s computed using i v4, the covariance matrix of the innovations is estimated using the provisional noise model that is used to form the optimal instruments. The loss function therefore differs from what would be obtained if you computed the prediction errors using the model directly from the data. It is still the best available estimate of the innovations covariance. In particular, it is difficult to compare the loss function in an ARX model estimated using ar x and one estimated using i v4.

Enumeration of Estimated Parameters

In some cases the parameters of a model are given just as an ordered list. This is the case for t h2par, and also when online information from the minimization routines are given. Furthermore, in ns 2 t h, you are asked to give a list of nominal/initial parameter values. In these cases it is important to know in what order the parameter are listed. The basic three cases are as follows:

- F or the input-output model (3.23) or its multi-input variant (5.2), you have the following al phabetical ordering

$$
\begin{aligned}
& \text { pars }=\left[a_{1}, \ldots, a_{n a}, b_{1}^{1}, \ldots, b_{n b 1}^{1}, b_{1}^{2}, \ldots b_{n b 2}^{2}, \ldots\right. \\
& b_{1}^{n u}, \ldots, b_{n b n u}^{n u}, c_{1}, \ldots, c_{n c}, d_{1}, \ldots, d_{n c}, \\
& \left.\quad f_{1}^{1}, \ldots f_{n f 1}^{1}, \ldots, f_{1}^{n u}, \ldots, f_{n f n u}^{n u}\right]
\end{aligned}
$$

Here superscript refers to the input number.

- For a state-space structure, defined by ms 2 th , the parameters in pars are obtained in the following order. The A matrix is first scanned row by row for free parameters. Then the B matrix is scanned row by row, and so on for the C, D, K, and X0 matrices. (See ns 2 t h in the Command Reference chapter.)
- For a state-space matrix that is defined by $\operatorname{mf} 2 \mathrm{th}$, the ordering of the parameters is the same as in the user-written M -file.

Multivariate ARX models are internally represented in state-space form. The parameter ordering follows the one described above. The ordering of the parameters may, however, not be transparent so it is better to useth2ar x and ar $\times 2 \mathrm{th}$ instead of th 2 par and m 2 th .

Complex-Valued Data

Some applications of system identification work with complex valued data, and thus create complex-valued models. Most of the routines in the SITB support complex data and models. This is true for the estimation routines ar, ar max, ar x, bj , covf, i var, i v4, oe, pem and spa, but (currently) not for canst art and n4si d. The transformation routines, like th2ff, th2zp, etc. also work for complex-valued models, but no pole-zero confidence regions are given. Note also that the parameter variance-covariance information then refers to the complex valued parameters, so no separate information about the accuracy of thereal and imaginary parts will begiven. Some display functions like compare and
i dpl ot do not work for the complex case. Use i dsi mand plot real and imaginary parts separately.

Strange Results

Strangeresults can of course be obtained in any number of ways. We only point out two cautions: It is tempting in identification applications to call the residuals "eps." Don't do that. This changes the machine ε, which certainly will give you strange results.

It is also natural to use names likest ep, phase, etc., for certain variables. Note though that these variables take precedence over M-files with the same name so be sure you don't use variable names that also are names of M-files.

Command Reference

This chapter contains detailed descriptions of all of the functions in the System I dentification Tool box. It begins with a list of functions grouped by subject area and continues with the entries in al phabetical order. Information is also available through the online Help facility.
By typing a function name without arguments, you also get immediate syntax help about its arguments.

For ease of use, most functions have several default arguments. The Synopsis first lists the function with the necessary input arguments and then with all the possible input arguments. The functions can be used with any number of arguments between these extremes. The rule is that missing, trailing arguments are given default values, as defined in the manual. Default values are also obtained by entering the arguments as the empty matrix [].
MATLAB does not require that you specify all of the output arguments; those not specified are not returned. For functions with several output arguments in the System Identification Toolbox, missing arguments are, as a rule, not computed, in order to save time.

	The Graphical User Interface
i dent	Open the interface.
mi dpr ef s	Set directory where to store start-up information.

	Simulation and Prediction
i di nput	Generate input signals.
i dsi m	Simulate a general linear system.
pe	Compute prediction errors.
pol y2th	Createa model structure for input-output models defined as numerator and denominator polynomials. pr edi ct

	Data Manipulation
dt rend	Remove trends from data.
i dfilt	Filter data.
i dresamp	Resample data.

	Nonparametric E stimation
covf	Estimate covariance function.
cr a fe	Estimate impulse response and covariance functions using correlation analysis.
spa	Estimate spectra and transfer functions using direct Fourier techniques.
	Estimate spectra and transfer functions using spectral analysis.

	Parameter Estimation
ar	Estimate AR model.
ar max	Estimate ARMAX model.
ar x	Estimate ARX model using least squares.
bj	Estimate Box-J enkins model.
canstart	Estimate multivariate models in canonical ivar
state-space form.	
ivx	Estimate AR model using instrumental variable
iv4	methods.
	Estimate ARX model using general instruments.
	Estimate ARX model using four-stage instrumental
variable method.	

	Parameter Estimation
oe	Estimate Output-Error model.
n4si d	Estimate state-space model using subspace method.
pem	Estimate general linear model.

	Model Structure Creation
arx2th	Define (multivariate) ARX structures.
canf orm	Generate canonical forms.
nf 2t h	Create arbitrary linear model structure via an M-file that you write.
modstruc	Define state-space models with known and unknown parameters.
ns 2th	Create model structure for linear state-space models with known and unknown parameters.
pol y2th	Create a model structure for input-output models defined as numerator and denominator polynomials.

	Manipulating Model Structures
fi xpar	Fix parameters in structures to given values.
set t	Set the sampling interval.
ss2th	Transform a state-space model to a parametrized canonical form.
thi nit	Select or randomize initial parameter values.
unfixpar	Allow certain earlier fixed parameters be estimated.

	Model Conversions
i dmødr ed	Reduce a model to lower order.
thc2t hd	Transform from continuous to discrete time.
thd2t hc	Transform from discrete to continuous time.
th2arx	Theta to ARX parameters.
th2ff	Theta to frequency functions and spectra.
th2par	Theta to estimated parameters and variances.
th2pol y	Theta to transfer function polynomials.
th2ss	Theta to state-space matrices.
th2tf	Theta to transfer functions.
th2zp	Theta to zeros, poles, and static gains.

	Model Presentation
bodepl ot	Plot Bode diagrams.
ff pl ot	Plot frequency functions and spectra.
i dpl ot	Display input-output data.
nyqpl ot	Plot Nyquist diagrams.
pr esent	Display model on screen.
zppl ot	Plot zeros and poles.

	Information Extraction
get $\mathrm{f} f$	Extract the frequency functions from the freqfunc format.
get t	Extract the sampling interval from the theta format.
get nfth	Extract the M-file name that defines the model structure.
get ncap	Extract from the theta format the number of data upon which model is based.
th2par	Extract the zeros and poles from the zepo format.
	Extract estimated parameters and variances from
the theta format.	

	Model Validation
compare	Compare model's simulated or predicted output with actual output.
i dsi m	Simulate a model.
pe	Compute prediction errors.
pr edi ct	Predict future outputs.
resi d	Compute and test model residuals.

	Assessing Model Uncertainty
i dsi msd	Simulate responses from several possible models.
th2ff	Compute frequency function and its standard deviation.
th2zp	Compute zeros, poles, static gains, and their standard deviations.

	Model Structure Selection
ar xst ruc	Compute loss functions for sets of ARX model structure.
i vst ruc	Compute loss functions for sets of output error model structures.
sel struc	Select structure.
st ruc	Generate sets of structures.

	Recursive Parameter Estimation
rarmax	Estimate ARMAX or ARM A models recursively.
rarx	Estimate ARX or AR models recursively.
roe	Estimate Box-J enkins models recursively.
rpem	Estimate Output-E rror models (IIR-filters) recursively.
rpl r	Estimate general input-output models using a recursive prediction error method.
segment	Estimate general input-output models using a recursive pseudo-linear regression method. Segment data and estimate models for each segment.

Purpose Estimate the parameters of an AR model for scalar time series.

```
Syntax th = ar(y,n)
    [th,refl] = ar(y,n,approach, wi n, maxsize,T)
```

The parameters of the AR model structure

$$
A(q) y(t)=e(t)
$$

are estimated using variants of the least-squares method.
Column vector y contains the time series data. Scalar n specifies the order of the model to be estimated (the number of A parameters in the AR model).

Note that the routine is for scalar time series only. For multivariate data use arx.

The estimate is returned in t h and stored in theta format. For the two lattice-based approaches, ' burg' and 'gl' (see below), variabler efl is returned containing the reflection coefficients in the first row, and the corresponding loss function values in the second. Thefirst column is the zero-th order model, so that the $(2,1)$ element of r ef I is the norm of the time series itself.

Variable appr oach allows you to choose an algorithm from a group of several popular techniques for computing the least-squares AR model. Available methods are as follows:
approach = ' fb ': The forward-backward approach. This is the default approach. The sum of a least-squares criterion for a forward model and the analogous criterion for a time-reversed model is minimized.
approach = 'Is': The least-squares approach. The standard sum of squared forward prediction errors is minimized.
approach = ' yw : The Yule-Walker approach. The Yule-Walker equations, formed from sample covariances, are solved.
approach = 'burg': Burg's lattice-based method. The lattice filter equations are solved, using the harmonic mean of forward and backward squared prediction errors.
approach = ' gl ': A geometric lattice approach. As in Burg's method, but the geometric mean is used instead of the harmonic one. .

The computation of the covariance matrix can be suppressed in any of the above methods by ending the appr oach argument with 0 (zero), for example, ' burg0' .

Windowing, within the context of AR modeling, is a technique for dealing with the fact that information about past and future data is lacking. There are a number of variants available:
wi ndow = ' now : No windowing. This is the default value, except when approach = ' yw. Only actually measured data are used to form the regression vectors. The summation in the criteria starts only at timen.
wi ndow = ' pr w : Pre-windowing. Missing past data are replaced by zeros, so that the summation in the criteria can be started at time zero.
wi ndow = ' pow : Post-windowing. Missing end data are replaced by zeros, so that the summation can be extended to time $\mathrm{N}+\mathrm{n}$. (N being the number of observations.)
wi ndow = ' ppw : Pre- and post-windowing. This is used in the Yule-Walker approach.

The combinations of approaches and windowing have a variety of names. The least-squares approach with no windowing is also known as the covariance method. This is the same method that is used in the ar x routine. The M ATLAB default method, forward-backward with no windowing, is often called the modified covariance method. The Yule-Walker approach, least-squares plus pre- and post-windowing, is also known as the correlation method.
ar only handles scalar time series. For multivariate series, use ar x.
See auxvar for an explanation of the input arguments maxsi ze and T.

```
Examples
See Also
References
Compare the spectral estimates of Burg's method with those found from the forward-backward nonwindowed method, given a sinusoid in noise signal:
```

```
y = sin([ 1: 300]') + 0. 5*randn( 300,1);
```

y = sin([1: 300]') + 0. 5*randn(300,1);
thb = ar(y,4,' burg');
thb = ar(y,4,' burg');
thfb = ar(y, 4);
thfb = ar(y, 4);
sgb = th2ff(thb);
sgb = th2ff(thb);
sfb = th2ff(thfb);
sfb = th2ff(thfb);
bodepl ot([sgb sfb])
bodepl ot([sgb sfb])
See Also auxvar, arx, etfe, ivar, spa, theta
References Marple, Jr., S. L. Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs, 1987, Chapter 8.

```

Purpose Estimate the parameters of an ARMAX or ARMA model.

\section*{Syntax \\ Description}
```

$\mathrm{th}=\operatorname{ar} \max (\mathrm{z}, \mathrm{nn})$
th = ar max $(z, n n, ' t r a c e ')$
[th, iter_i nfo] = armax(z, nn, maxiter,tol, limmaxize, T,'trace')

```

The parameters of the ARMAX model structure
\[
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
\]
are estimated using a prediction error method.
Matrix z contains the output-input data \(z=[y\) u] where \(y\) and \(u\) are column vectors (u is a matrix in the multi-input case). nn can be given either as
nn = [na nb nc nk]
or as
\(\mathrm{nn}=\mathrm{thi}\)
In the former case na, nb, and nc are the orders of the ARMAX model, and nk is the delay. In the latter case thi is an initial value, given in theta format. See Section 3 in the Tutorial for an exact definition of the orders.

For multi-input systems, nb and nk are row vectors, such that the k-th entry corresponds to the order and delay associated with the k-th input.

If \(z=y\) and \(n n=[n a n c]\), armax calculates an ARMA model for \(y\) :
\[
A(q) y(t)=C(q) e(t)
\]
th is returned with the resulting parameter estimates, together with estimated covariances, stored in theta format.
ar max does not support multi-output models. Use state-space model for this case (see canst art, n4si d, and pen)

If a last argument 'trace' is supplied, information about the progress of the iterative search for the model will be furnished to the MATLAB command window.

The optional auxiliary variables iter_i nfo, limmaiter, tol, maxsi ze, and T are explained under auxvar.

\footnotetext{
Algorithm
\(\begin{array}{ll}\text { See Also } & \text { ar } x, \text { auxvar, } b j, \text { oe, pem } t \text { het } \mathrm{a} \\ \text { References } & \text { Ljung (1987), equations (10.41), (10.42), (10.46), (10.75) }\end{array}\)
}

\section*{Purpose Estimate the parameters of an ARX or AR model.}
Syntax \(\quad\)\begin{tabular}{rl} 
th & \(=\operatorname{ar} x(z, n n)\) \\
\(t h\) & \(=\operatorname{ar} x(z, n n\), maxsize, \(T)\)
\end{tabular}

Description The parameters of the ARX model structure
\[
A(q) y(t)=B(q) u(t-n k)+e(t)
\]
are estimated using the least-squares method.
Matrix z contains the output-input data \(z=[y u]\) where \(y\) and \(u\) are column vectors. \(n \mathrm{n}\) is given as
\[
\mathrm{nn}=\left[\begin{array}{lll}
\mathrm{na} & \mathrm{nb} & \mathrm{nk}
\end{array}\right]
\]
defining the orders and delay of the ARX model. See Section 6 in the Tutorial for exact definitions of the orders and delays.
t h is returned as the least-squares estimates of the parameters, stored in theta format.

With \(z=y\) and \(n n=n a\), an AR model of order na for \(y\) is computed:
\[
A(q) y(t)=e(t)
\]

Models with several inputs
\[
A(q) y(t)=B_{1}(q) u_{1}\left(t-n k_{1}\right)+\ldots B_{n u} u_{n u}\left(t-n k_{n u}\right)+e(t)
\]
are handled by allowing \(u\) to contain each input as a column vector,
\[
u=[u 1 \ldots u n u]
\]
and by allowing nb and nk to be row vectors defining the orders and delays associated with each input.

Models with several inputs and several outputs are handled by allowing nn to contain one row for each output number. See "Defining M odel Structures" on page 3-29 for exact definitions.
The optional auxiliary parameters naxsi ze and T are explained under auxvar.

When the true noise term \(e(t)\) in the ARX model structure is not white noise and na is nonzero, the estimate does not give a correct model. It is then better to use ar max, bj , i v4, or oe.

\section*{Examples}

Algorithm

See Also

Here is an example that generates and estimates an ARX model:
```

A = [1 -1.5 0.7]; B = [lllll}
th0 = pol y2th(A,B);
u = i di nput(300,'rbs');
y = i dsi m[[u,randn(300, 1)],th0);
z = [y,u];
th = arx(z,[2 2 1]);

```

The least-squares estimation problem is an overdetermined set of linear equations that is solved using the MATLAB \operator.

The regression matrix is formed so that only measured quantities are used (no fill-out with zeros). When the regression matrix is larger than maxsi ze, the normal equations are formed in a for-loop and subsequently solved.

\author{
auxvar, ar, iv, iv4, theta
}
\begin{tabular}{|c|c|}
\hline Purpose & Compute loss functions for a set of different model structures of single-output ARX type. \\
\hline Syntax & \[
\begin{aligned}
& v=\operatorname{arxstruc}(z e, z v, N N) \\
& v=\operatorname{ar} x \operatorname{str} \operatorname{uc}(z e, z v, N N, \text { naxsi ze) }
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Description} & \begin{tabular}{l}
NN is a matrix that defines a number of different structures of the ARX type. Each row of NN is of the form
\[
\mathrm{nn}=[\mathrm{na} \mathrm{nb} \mathrm{nk}]
\] \\
with the same interpretation as described for arx. See str uc for easy generation of typical NN matrices for single-input systems.
\end{tabular} \\
\hline & Each of ze and zv are matrices containing output-input data [y u]. For multi-input systems, u has the corresponding number of columns, while for time series, no \(u\) is present. M odels for each of the model structures defined by NN are estimated using the data set ze. The loss functions (normalized sum of squared prediction errors) are then computed for these models when applied to the validation data set \(z v\). The data sets, ze and \(z v\), need not be of equal size. They could, however, bethe same sets, in which case the computation is faster. \\
\hline & \begin{tabular}{l}
Note that ar xst ruc is intended for single-output systems only. \\
\(v\) is returned with the loss functions in its first row. The remaining rows of \(v\) contain the transpose of NN , so that the orders and delays are given just bel ow the corresponding loss functions. The last column of \(v\) contains the number of data points in ze. The selection of a suitable model structure based on the information in v is best done using sel st ruc. See Section 8 in the Tutorial for advice on model structure selection, cross-validation, and the like.
\end{tabular} \\
\hline & See auxvar for an explanation of maxsize. \\
\hline \multirow[t]{2}{*}{Examples} & Compare first tofifth order models with one delay using cross-validation on the second half of the data set, and then select the order that gives the best fit to the validation data set: \\
\hline & \[
\begin{aligned}
& \text { NN }=\operatorname{struc}(1: 5,1: 5,1) ; \\
& V=\operatorname{arxstruc}(z(1: 200,:), z(201: 400,:), N N) ; \\
& \text { nn }=\operatorname{sel} \operatorname{struc}(\mathrm{V}, 0) ; \\
& \mathrm{th}=\operatorname{ar} x(z, \mathrm{nn}) ;
\end{aligned}
\] \\
\hline See Also & arx, ivstruc, sel struc, struc \\
\hline
\end{tabular}

\section*{Purpose}

Syntax

Description

Construct theta format matrix from ARX polynomials.
```

th = arx2th(A, B, ny, nu)
th = arx2th(A,B,ny, nu,l am, T)

```
\(\operatorname{ar} \times 2 \mathrm{th}\) creates a matrix containing parameters that describe the general multi-input, multi-output model structure of ARX type:
\[
\begin{aligned}
& y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
& B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{aligned}
\]

Here \(A_{k}\) and \(B_{k}\) are matrices of dimensions ny by ny and ny by nu, respectively (ny is the number of outputs, i.e., the dimension of the vector \(y(t)\) and nu is the number of inputs). "Defining M odel Structures" on page 3-29.

The arguments \(A\) and \(B\) are matrices that contain the \(A\) matrices and the \(B\) matrices of the model:
\[
\begin{aligned}
& A=\left[\begin{array}{lllll}
1 & A 1 & A 2 & \ldots & \text { Ana }
\end{array}\right] \\
& B=\left[\begin{array}{llll}
B 0 & B 1 & \ldots & B n b
\end{array}\right]
\end{aligned}
\]

Note that A al ways starts with the identity matrix, and that delays in the model are defined by setting the corresponding leading entries in B to zero. For a multivariate time series take B = [ ].

The arguments ny and nu denote the number of outputs and inputs, respectively.

The optional argument I amsets the covariance matrix of the driving noise source \(e(t)\) in the model above. The default value is the identity matrix.

The optional argument \(T\) defines the sampling interval (Default 1).
th is returned as a model structure in the theta format. See thet a.
The use of ar x2t h is twofold. You can use it to create models that are simulated (using i dsim) or analyzed (using th2ff, th2zp, etc.). You can also use it to define initial value models that are further adjusted to data (using pem). The free parameters in the structure are consistent with the structure of \(A\) and \(B\), i.e., leading zeros in the rows of B are regarded as fixed delays, and trailing zeros in A and B are regarded as a definition of lower order polynomials. These
zeros are fixed, while all other parameters arefree. The nominal values of these free parameters are set equal to the values in \(A\) and \(B\). The free parameters can be changed by thi nit and the structure can be manipulated by fi xpar and unf i xpar.

For a model with one output, ar \(x 2 t \mathrm{~h}\) is compatible with pol y 2 th . The internal representation is however different, and only a model structure that has been defined by ar x 2 th can be manipulated by fi xpar and unfixpar.

Examples

See Also
Simulate a second order ARX model with one input and two outputs, and then estimate a model using the simulated data :
```

A1 =[-1.5 0. 1;-0.2 1. 5];
A2 = [0.7 -0.3;0.1 0.7];
B1 = [1;-1];
B2 = [0.5; 1. 2];
th0 = arx2th([eye(2) A1 A2],[[0;0],B1 B2], 2, 1);
u = i di nput(300);
e = randn(300, 2);
y = i dsim(lu e],th0);
th = arx([y u],[[2 2;2 2],[2; 2],[1;1]]);

```
arx, fixpar, pol y2th, th2arx, unfixpar
Purpose Describe auxiliary variables iter_i nfo, I im maxiter, maxsize, tol, and T.
Syntax hel p auxvar
Description

Most of the functions have an optional argument maxsi ze that allows a trade-off between memory usage and speed. Several of the functions allow the sampling interval T to be specified. The iterative search procedures in ar max, bj, oe, and pem are controlled by the three parameters I im maxiter, and I im
naxsi ze: No matrix formed by the function is allowed to contain more than naxsi ze elements. Instead, the algorithms split the calculations into for-loops, which are slower. The default value of maxsi ze is set in the M-filei dmsi ze. On small machines, it is maxsi ze=4096. The main use of maxsi ze is to limit variable sizes when the algorithms run out of memory. See "Some Special Topics" on page 3-68 for more information.
T: Specifying the sampling interval T gives correct frequency scales on frequency function plots, and correct time scales when transforming to continuous time using \(t\) hd 2 thc . The default value is \(\mathrm{T}=1\).
maxiter: This variable determines the maximum number of iterations performed during a search for a minimum. The default value is maxit er \(=10\). maxiter \(=0\) returns the results of the special startup procedure.
tol : The iterations are continued until the norm of the Gauss-N ewton update vector is less than TOL. The iterations also terminate when the algorithm fails to find a lower value of the criterion and when the maximum number of iterations are reached. The default value is t ol \(=0.01\).
I i m This variable determines how the criterion is modified from quadratic to onethat gives linear weight tolarge errors. See "Parametric M odel Estimation" on page 3-22 for a more precise definition. The default value of I i mis 1.6 . I impo disables the robustification and leads to a purely quadratic criterion.
Default values of these parameters are obtained either by omitting trailing arguments or by entering them as the empty matrix [ ].
it er_i nfo: This output argument from the iterative numerical search algorithms ar max, bj , oe, and pem supplies information about the iterations. It is a row vector
```

iter_info = [l ast_iteration\#, l ast_fit_i mprovement,
norm_of _l ast _search_vector]

```
containing the indicated information. If the norm of the last search vector is larger than \(t\) ol, and the number of the last iteration is less than maxi ter, then the iterations were stopped since no smaller value of the criterion could be found along the search direction.

\author{
See Also \\ ar max, bj , oe, pem
}

\section*{Purpose Estimate the parameters of a Box-J enkins model.}

\section*{Syntax}
```

$\mathrm{th}=\mathrm{bj}(\mathrm{z}, \mathrm{nn})$
th $=$ bj ($z, n n$,'trace')
[th, iter_i nfo]= bj (z, nn, maxiter,tol, limmaxsi ze, T,'trace')

```

Description
The parameters of the Box-J enkins model structure
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t)
\]
are estimated using a prediction error method.
Matrix z contains the output-input data \(z=[y \quad u]\) where \(y\) and \(u\) are column vectors. In the multi-input case, u is a matrix containing the different inputs as columns. nn can be given either as
\[
\mathrm{nn}=[\mathrm{nb} \mathrm{nc} \mathrm{nd} \mathrm{nf} \mathrm{nk}]
\]
or as
\(\mathrm{nn}=\mathrm{thi}\)
In the former case, nb, nc, nd, and nf are the orders of the Box-J enkins model and \(n k\) is the delay. In the latter case, \(t\) hi is an initial value, given in theta format. See"The System Identification Problem" on page 3-8 for exact definitions of the model orders.
th is returned with the resulting parameter estimates and estimated covariances, stored in theta format.

The optional variables iter_i nfo, limmaiter, maxsize, tol, and T are explained under auxvar.

For multi-input systems, nb, nf, and nk are row vectors with as many entries as there are input channels. Entry number \(i\) then described the orders and delays associated with the \(i\)-th input.
bj does not support multi-output models. Use state-space model for this case (see canst art, n4si d, and pem)
```

If a last argument 'trace' is supplied, information about the progress of the iterative search for the model will be furnished to the MATLAB command window.

```

Examples

Algorithm

See Also
```

Here is an example that generates data and stores the results of the startup procedure separately:

```
```

B = [llllll}010.5]

```
B = [llllll}010.5]
C =[[1 -1 0. 2];
C =[[1 -1 0. 2];
D =[[\begin{array}{llll}{1}&{1.5}&{0.7}\end{array}];
D =[[\begin{array}{llll}{1}&{1.5}&{0.7}\end{array}];
F =[ [1 -1.5 0.7];
F =[ [1 -1.5 0.7];
th0 = pol y2th(1, B, C, D, F, 0. 1);
th0 = pol y2th(1, B, C, D, F, 0. 1);
e = randn(200,1);
e = randn(200,1);
u = i di nput(200);
u = i di nput(200);
y = idsim[lu e],th0);
y = idsim[lu e],th0);
z = [y u];
z = [y u];
thi = bj(z,[2 2 2 2 1],0);
thi = bj(z,[2 2 2 2 1],0);
th = bj(z,thi);
th = bj(z,thi);
present(th)
```

present(th)

```
bj uses essentially the same al gorithm as ar max with modifications to the computation of prediction errors and gradients.
armax, auxvar, oe, pem theta
Purpose Plot frequency functions in Bode diagram form.
SyntaxDescriptionSee Also et \(f\) e, \(f f\) pl ot, \(f r\) eqfunc, get \(f f\), nyqpl ot, \(s p a, t h 2 f f\)

Purpose Define multivariable state-space canonical form model structures.
Syntax \(\quad\)\begin{tabular}{rl}
ms & \(=\) canf or m or or der \(\mathrm{s}, \mathrm{nu})\) \\
ms & \(=\) canf or m or der \(\mathrm{s}, \mathrm{nu}, \mathrm{dkx})\)
\end{tabular}
canf or mis, like nodst ruc, a function that defines model parameterizations in state-space form, which are used in nฐ 2 t h to create model structures in the theta format. The only use of the resulting matrix ms is as an input to ms 2 th .

The model considered is in state-space form:
\[
\begin{gathered}
\dot{x}(t)=A(\theta) x(t)+B(\theta) u(t)+K(\theta) e(t) \\
y(t)=C(\theta) x(t)+D(\theta) u(t)+e(t)
\end{gathered}
\]

Thefunction applies both to the continuous- and discrete-time cases; which one is determined only when the structure is formed with ns 2 th .
or ders: The (pseudo-observability) indices order s define which matrix elements are fixed (to zero or one) and which are left free as parameters. or ders is a row vector with as many entries as there are outputs. Element \(k\) of or ders describes how many delayed values of the output are required to appropriately predict the \(k\)-th component of the output. The sum of the order indices is the order of the system (the dimension of x ):
```

n = sum(orders)

```

The exact structure is defined in Appendix 4.A of Ljung (1987). Briefly, the A matrix contains \(p * n\) parameters, where \(p\) is the number of outputs and \(n\) is the number of states. The \(C\) matrix contains only zeros and ones, while the \(B\) matrix is filled with parameters.
nu: The number of inputs.
dkx : The argument dkx determines some additional structure of the matrices of the state-space model to be estimated. It is a row vector with three entries:
\[
d k x=\left[\begin{array}{lll}
d, & k, & x
\end{array}\right]
\]

The entries refer to the matrices \(K, D\), and the initial state \(x(0)\) of the state-space model given above.
\(\mathrm{k}=1\) indicates that the K-matrix in the model (the K alman Gain) will be fully parameterized, while \(k=0\) means that this matrix will be fixed to zero. This will give a so-called output error model.
\(\mathrm{d}=1\) indicates that D-matrix in the model (the direct term from input to output) will be fully parametrized, while \(d=0\) means that this matrix will be fixed to zero. This also implies that there will be a delay of (at least) one sample between the input and the output.
\(x=1\) indicates that the initial state \(x(0)\) will be parameterized, while \(x=0\) means that the initial state will be fixed to zero.

Default is
```

dkx = [0, 1, 0]

```

An alternative to canf or mis thefunction canst art. It also provides good initial estimates for the free parameters.

\section*{Examples}

See Also
References

Write out the state-space matrices for a sixth order system with three outputs and two inputs with NaN denoting free parameters:
```

ps =[l2 1 3];
ns = canf orm(ps,2);
th = ns 2th(ms,'c',ones(1, 18+12+18)*NaN);
[A,B,C,D,K] = th2ss(th)

```
canst art, fi xpar, modstruc, ms \(2 t h\), unf i xpar
Ljung (1987), Appendix 4.A.
\begin{tabular}{|c|c|}
\hline Purpose & Define and initialize statespace canonical form model structures. \\
\hline Syntax & \[
\begin{aligned}
& \mathrm{th}=\text { canstart }(\mathrm{z}, \text { or ders }, n u) \\
& \mathrm{th}=\text { canstart }(\mathrm{z}, \text { or ders, nu, dkx })
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Description} & or der s, nu, dkx: These arguments define the state-space model parameterization exactly as for the function canf orm In the present case or der s can also betaken as a scalar, giving the model order (dimension of state vector). Then a default choice of parameterization is made. \\
\hline & \begin{tabular}{l}
The output \(t h\) is a matrix in the theta format. It defines a state-space model parameterization according to the arguments or der s, nu and dkx. The values of the parameters in th are estimated from the data matrix
\[
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
\] \\
where \(y\) is the matrix of output signals, one column for each output, and \(u\) is the matrix of input signals, again one column for each input.
\end{tabular} \\
\hline & Choosing the order indices for many systems is not critical in the sense that most \(n\)-th order systems can be described by any set of order (pseudo-observability) indices whose sum is n. See "M odel Structure Selection and Validation" on page 3-49 for more information. \\
\hline & The model th could be further refined by using pem \\
\hline Algorithm & The state-space model is first estimated using n4si d, and then transformed to the chosen canonical form using ss2t h. \\
\hline \multirow[t]{2}{*}{Examples} & A system with two inputs and two outputs is estimated with a third order model: \\
\hline & ```
th = canstart(z, 3, 2);
th = pem(z,th);
resid(z,th);
``` \\
\hline See Also & canf orm pem \\
\hline
\end{tabular}
Purpose Compare measured outputs with model outputs.
Syntax

compare(z,th) ;

[yh,fit] = compare(z,th,k, sampnr,level adj)

\section*{Description \(\quad z\) is the output-input data in the usual format}
\[
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
\]
where \(y\) is a matrix whose \(r\)-th column is the \(r\)-th output signal and correspondingly for the input u. compar e computes the output yh that results when the model th is simulated with the input u . The result is plotted (yellow/ solid) together with the corresponding measured output y (magenta/dashed). The mean square fit
\[
\text { fit }=\text { norm(} y h-y) / s q r t(l \text { engt } h(y))
\]
is also computed and displayed. For multi-output systems this is done separately for each output. Pressing the Return key advances the plots.
The argument k computes the k -step ahead prediction of y according to the model th instead of the simulated output. In the calculation of \(y h(t)\), the model can use outputs up to time \(t-k: y(s), s=t-k, t-k-1, \ldots\) (and inputs up to the current time t). The default value of k is inf , which obtains a pure simulation from the input only.
The argument sampnr indicates that only the sample numbers in this row vector are plotted and used for the calculation of the fit. The whole data record is used for the simulation/prediction, though. If the optional argument I evel adj is set to 'yes' , the simulated/predicted output and the measured output arelevel adjusted so that they both start at level zero. (This applies also to the calculation of the fit.) This allows for discounting of drift phenomena in the data.

\section*{Examples}
Split the data record into two parts. Use the first one for estimating a model and the second one to check the model's ability to predict six steps ahead:
```

ze = z(1: 250,:);
zv = z(251: 500,: );
th = armax(ze,[ 2 3 1 0]);
compare(zv, th, 6) ;

```
See Also idsimpredict
Purpose Estimate time series covariance functions.
Syntax \(R=\operatorname{covf}(z, M)\)

\[
R=\operatorname{covf}(z, M \operatorname{maxsi} z e)
\]
Description \(\quad z\) is an \(N\) by \(n z\) matrix and Mis the maximum delay -1 for which the covariance function is estimated.
\(R\) is returned as an \(n z^{2} \times M\) matrix with entries
\[
R(i+(j-1) n z, k+1)=\hat{R}_{i j}(k)=\frac{1}{N} \sum_{t=1} z_{i}(t) z_{j}(t+k)
\]
where \(z_{j}\) is the \(j\)-th column of \(z\) and missing values in the sum are replaced by zero.
The optional argument maxsi ze controls the memory size as explained under auxvar.
The easiest way to describe and unpack the result is to use
```

reshape(R(:,k+1),nz,nz) = E z(t) *z'(t+k)

```
Here' is complex conjugate transpose, which also explains how complex data are handled. The expectation symbol E corresponds to the sample means.
Algorithm When nz is at most two, and when permitted by maxsize, a fast Fourier transform technique is applied. Otherwise, straightforward summing is used.

\section*{See Also spa}

\section*{Purpose Perform correlation analysis and estimate impulse response.}
\begin{tabular}{|c|c|}
\hline Syntax & ```
cra(z);
[ir,R,cl] = cra(z,M na, pl ot);
cra(R);
``` \\
\hline Description & The output-input data are given as
\[
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
\] \\
\hline
\end{tabular}
with \(y\) as the output column vector and \(u\) as the input column vector. The routine only handles single-input-single-output data pairs. (F or the multivariate case, apply cr a to two signal s at a time.) cra prewhitens the input sequence, i.e., filters u through a filter chosen so that the result is as uncorrelated (white) as possible. The output y is subjected to the same filter, and then the covariance functions of the filtered \(y\) and \(u\) are computed and graphed. The cross correlation function between (prewhitened) input and output is also computed and graphed. Positive values of the lag variable then corresponds to an influence from \(u\) to later values of y . In other words, significant correlation for negative lags is an indication of feedback from \(y\) to \(u\) in the data.

A properly scaled version of this correlation function is also an estimate of the system's impulse response i \(r\). This is also graphed along with \(99 \%\) confidence levels. The output argument ir is this impulse response estimate, so that its first entry corresponds to lag zero. (Negative lags are excluded in i r.)

The output argument R contains the covariance/correlation information as follows: The first column of R contains the lag indices. The second column contains the covariance function of the (possibly filtered) output. The third column contains the covariance function of the (possibly prewhitened) input, and the fourth column contains the correlation function. The plots can be redisplayed by cra(R).

The output argument cl is the \(99 \%\) confidence level for the impulse response estimate.

The optional argument Mdefines the number of lags for which the covariance/ correlation functions are computed. These are from - Mto M, so that the length of \(R\) is \(2 M+1\). The impulse response is computed from 0 to \(M\) The default value of \(M\) is 20.
```

 For the prewhitening, the input is fitted to an AR model of order na. The third argument of cra can change this order from its default value na \(=10\). With na \(=0\) the covariance and correlation functions of the original data sequences are obtained.
 pl ot: pl ot $=0$ gives no plots. pl ot $=1$ (default) gives a plot of the estimated impul se response together with a 99% confidence region. pl ot $=2$ gives a plot of all the covariance functions.
Examples
Compare a second order ARX model's impulse response with the one obtained by correlation analysis:

```
```

ir = cra(z);

```
ir = cra(z);
th = arx(z,[2 2 1]);
th = arx(z,[2 2 1]);
i mp = [ 1; zer os(19, 1)];
i mp = [ 1; zer os(19, 1)];
irth = idsim(imp,th);
irth = idsim(imp,th);
subpl ot (211)
subpl ot (211)
pl ot([ir irth])
pl ot([ir irth])
title('impul se responses')
title('impul se responses')
subpl ot (212)
subpl ot (212)
pl ot ([ cunsum(ir), cumsum(irth) ])
pl ot ([ cunsum(ir), cumsum(irth) ])
title('step responses')
title('step responses')
See Also
covf, spa
```


Purpose Remove trends from output-input data.

Syntax \quad| $z d$ | $=d t \operatorname{rend}(z)$ |
| ---: | :--- |
| $z d$ | $=d t \operatorname{rend}(z, o, b r k p)$ |

Description
z is a matrix, with data organized in column vectors. dt rend removes the trend from each column and returns the result in zd .

The default ($o=0$) removes the zero-th order trends, i.e., the sample means are subtracted.

With $o=1$, linear trends are removed, after a least-squares fit. With br kp not specified, one single line is subtracted from the entire data record. A continuous piecewise linear trend is subtracted if brkp contains breakpoints at sample numbers given in a row vector.

Note that dt rend differs somewhat from det rend in the Signal Processing Toolbox.

Examples Remove a V-shaped trend from the output with its peak at sample number 119, and remove the sample mean from the input:

```
zd(:, 1) = dt rend(z(:, 1), 1, 119);
zd(:, 2) = dtrend(z(:, 2));
```

Purpose Estimate empirical transfer functions and periodograms.
Syntax

Description

Examples

Algorithm
$g=\operatorname{etfe}(z)$
$\mathrm{g}=\mathrm{etf} \mathrm{e}(\mathrm{z}, \mathrm{M} \mathrm{N}, \mathrm{T})$
et f e estimates the transfer function g of the general linear model

$$
y(t)=G(q) u(t)+v(t)
$$

The matrix z contains the output-input data $z=\left[\begin{array}{ll}y & u\end{array}\right]$, where y and u are column vectors. Theroutine works only for single-input, single-output systems.
For a time series, $z=y$. Then g is returned as the periodogram of y.
g is given in frequency function format (see freqf unc), with the estimate of $G\left(e^{i \omega}\right)$ at the frequencies
$w=[1: N] / N * p i / T$
The default values of N and T are 128 and 1 , respectively. N must be power of two.

When Mis specified other than the default value $M=[$], a smoothing operation is performed on the raw spectral estimates. The effect of Mis then similar to the effect of Min spa. This can be a useful alternativetos pa for narrowband spectra and systems, which otherwise require large values of M.

When et f e is applied to time series, the corresponding spectral estimate is normalized in the way that is defined in "Some Special Topics" on page 3-68. Note that this normalization may differ from the one used by spect rumin the Signal Processing Toolbox.

Compare an empirical transfer function estimate to a smoothed spectral estimate:

```
ge = etfe(z);
gs = spa(z);
bodepl ot([ge gs])
```

The empirical transfer function estimate is computed as the ratio of the output Fourier transform to the input Fourier transform, using $f f t$. The periodogram
is computed as the normalized absolute square of the F ourier transform of the time series.

The smoothed versions (Mless than the length of z) are obtained by applying a Hamming window to the output FFT times the conjugate of the input FFT, and to the absolute square of the input FFT, respectively, and subsequently forming the ratio of the results. The length of this Hamming window is equal to the number of data points in z divided by M plus one.

See Also freqf unc, spa

ffplot

Purpose Plot frequency functions and spectra.

Syntax	$f f \mathrm{pl}$ ot (g)
	ffpl ot $([\mathrm{g} 1 \mathrm{~g} 2 \ldots \mathrm{gn}])$
	ffpl ot $(\mathrm{g}, \mathrm{sd}, \mathrm{C}$, mode $)$

Description This function has exactly the same syntax as bodepl ot. The only difference is that it gives graphs with linear frequency scal es and Hz as the frequency unit.

See Also bodepl ot , fr eqfunc, get $\mathrm{f} f$

Purpose Fix parameters in structures defined by ms 2 th and ar x 2 th .

```
Syntax thn = fixpar(tho, matrix)
thn = fixpar(tho, matrix, el ements, parval)
```

The fi xpar function produces a new model structure t hn in the theta format from an old onet ho, by fixing certain parameters to certain values. The matrix t ho must be originally defined by ar x, ar x2t h, canst art, i v4, or ns 2 th but may have been modified later on by fi xpar, pem thi nit, or unf i xpar.

To modify a state-space structure

$$
\begin{gathered}
\dot{x}(t)=A(\theta) x(t)+B(\theta) u(t)+K(\theta) e(t) \\
y(t)=C(\theta) x(t)+D(\theta) u(t)+e(t)
\end{gathered}
$$

the argument nat rix is set equal to one of ' A ', ' B ', ' C ', ' D ',' K ', or ' $x 0$ ' . The argument el ements is a matrix with two columns, in which each row specifies the indices of the element in the chosen system matrix that need to be fixed. For example, to fix the 1,2-element and the 3,5-element of the A matrix use
thn = fi xpar(tho, ' A' , [1, 2; 3, 5]) ;

If the argument el ements is omitted (or entered as the empty matrix) all elements of the indicated matrix will be fixed. In this case par val can be given a scalar number, and all the indicated elements will be fixed to that number.

The default is that the elements are fixed to their nominal (initial or currently estimated) value. To fix them to something else use the fourth input argument par val. The r-th entry of this vector contains the value corresponding to the element defined by ther-th row of el ements.
To modify an ARX model

$$
\begin{aligned}
& y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
& B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{aligned}
$$

the argument natrix is set equal to one of ' $\mathrm{A} 1 \mathrm{I}^{\prime}$, ' A 2 ' , ..., ' BO ' , ' B 1 ' , The argument el ements is then a matrix with two columns, where each row gives
the indices of the element in the chosen ARX matrix that need to be fixed. The role of par val is the same as for the state-space case above.

The routine does not apply to special model structures that you have originally defined using iff 2 t h , or to black-box input-output models other than ARX models. Fixing certain parameters can, in those cases, be achieved by using the third argument in pemduring the estimation phase.

Examples

See Also
Converting a state-space structure with all elements in the Kalman gain matrix K free to an output error structure in which K is fixed to zero.

```
thn = fixpar(thn,'K',[],0)
```

Fixing the b_{2} parameter to 1 in a scalar ARX model, and then estimating the remaining parameters:

```
th = arx(z,[lllll
th = fi xpar(th,' B2',[1, 1],1);
th = pem(z,th);
```

thet a, thi ni t, unf i xpar

Purpose	Describe the frequency-function format.
Syntax	hel p freqf unc
Description	Frequency functions are created by et fe , spa , and th 2 f f , and used by bodepl ot, ff pl ot, and nyqpl ot. The internal format of the freqfunc format is intended to be transparent. The basic way to display the information is to use the plot commands. You can also retrieve the information from the format by the function get $f f$. This entry gives details of the internal representation, but this information is not necessary for normal use of the System Identification Toolbox.
	The freqfunc format contains information about frequency values, amplitudes, and phases, as well as their standard deviations. These are all given as columns. The first row of a freqf unc matrix contains integers, that, in coded form, describe the significance of the col umn in question. The interpretation of these integers is as follows:
	For transfer functions and spectra associated with output number 1 : $\mathrm{n}=0$: The column is a spectrum.
	$\mathrm{n}=50$: The column contains standard deviations of a spectrum.
	$n=100$: The column contains frequencies for the spectrum.
	$\mathrm{n}=\mathrm{k}$, where k is value between 1 and 19: The column contains amplitude values for the transfer function associated with input number k.
	$\mathrm{n}=\mathrm{k}+20$: The column contains phase values (in degrees) for input number k . $\mathrm{n}=\mathrm{k}+50$: The column contains amplitude standard deviations for input number k .
	$\mathrm{n}=\mathrm{k}+70$: The column contains phase standard deviations for input number k.
	$\mathrm{n}=\mathrm{k}+100$: The column contains the frequency values for input number k .
	For the samequantities associated with output number ky, add $(k y-1) * 1000$ to the numbers above.

The specified frequencies are for a discrete-time model, which is by default, equally spaced from 0 (excluded) to π / T over 128 values. Here T is the sampling interval (default =1). F or a continuous-time model, the frequencies are 128 values, logarithmically spread over three decades, up to a decade over the underlying Nyquist frequency (seeth2ff).

Examples

See Also

You can compute and graph the frequency functions at arbitrary frequency w(a row vector with an arbitrary number of elements) with

$$
\begin{aligned}
& g=\operatorname{spa}(z, M w) \\
& g=\operatorname{th2ff}(t h, k u, w)
\end{aligned}
$$

The MATLAB function I ogspace is useful for creating such frequency vectors.
bodepl ot, et $f e, f f$ pl ot, get $f f$, nyqpl ot, set t, spa, t h2ff
Purpose Retrieve frequency functions and spectra from the freqfunc format.
Syntax [w, amp, phas] = getff(g)
[w , amp, phas, sdamp, sdphas] = getff(g, ku, ky)
Description
Examples Make your own plot of the periodogram with linear scales:

per = etfe(y);
[$w, a m p]=$ getff(per);
pl ot (w , amp)
title('Periodogram of sei smic data')

Purpose
 Extract zeros and poles from the zepo format.

Syntax \quad| $[z e, p o]$ | $=$ get $z p(z e p o)$ |
| ---: | :--- |
| $[z e, p o]$ | $=$ get $z p(z e p o, k u, k y)$ |

Description
The basic use of get zp is to extract the poles and zeros of the coded format that th2zp results in. zepo contains this information and is typically the output of th2zp. ku contains the input number (just one) and ky the output number. The noise source number k is here counted as input number -k.
ze contains the zeros and po the poles of the dynamics associated with input number ku and output number ky. The default values of ku and ky are both 1.

Note that for the noise dynamics, zepo normally just contains information about the zeros and poles from noise source k to output number k, (no cross terms). To extract this information enter
[ze, po] = getzp(zepo, 0, k)
See Also th2zp, zpformzppl ot

getmfth, getncap, gett

Purpose	Extract information from the theta format.
Syntax	$\begin{aligned} & \text { nymfile }=\text { get nfth(th) } \\ & N=\text { get ncap(th) } \\ & T=\text { get } t(t h) \end{aligned}$
Description	These functions retrieve some information that is coded into the theta format. mynfile is the name of the M -file that you write to define a model structure created by nf 2 th .
	N is the number of data, from which a certain model $t h$ is estimated. If the model is not estimated N is returned as [].
	Tis the sampling interval of the model th . If T is negative, the model is a continuous-time one that has been estimated from data with the sampling interval abs(T).
See Also	nfi 2 th , set t

Purpose Open the graphical user interface

Syntax	ident
i dent (sessi on, di rect or y)	

Description

Examples

ident(‘iddatal.sid’)
i dent(' mydata. si d', ' \mat I ab\dat a\cdpl ayer \')
Purpose Filter data using Butterworth filters.
Syntax

 zf = idfilt(z, ord, Wh)

 [zf,thf] = idfilt(z, ord, Wh, hs)
 Description
Algorithm

Ljung (1987), Chapter 13.

The used filter is the same as but er in the Signal Processing Tool box would give. Also, the zero-phase filter is equivalent tofiltfilt in that toolbox.

Purpose

Syntax

Description

Generate signals, typically to be used as inputs for identification.
$\mathrm{u}=\mathrm{i}$ di nput (N)
$\mathrm{u}=\mathrm{i}$ di nput ($\mathrm{N}, \mathrm{type}$, band, I evel s)
$\mathrm{u}=\mathrm{i}$ di nput (N , ' si ne', band, I evel s, auxvar)
i di nput generates input signals of different kinds, that are typically used for identification purposes. Only scalar inputs are generated.
N is the number of data points generated, i.e., the length of u.
t ype defines the type of input signal to be generated. This argument takes one of the following values:

- type = 'rs' : This gives a random, Gaussian signal.
- type = 'rbs': This gives a random, binary signal.
- type = 'prbs': This gives a pseudo-random, binary signal.
- type = ' si ne' : This gives a signal which is a sum of sinusoids.

Default istype = 'rbs'.
The frequency contents of the signal is determined by the argument band. For thechoicestype = 'rs', 'rbs', and 'si ne', this argument is a row-vector with two entries

```
band = [ w ow, whi gh]
```

that determine the lower and upper bound of the pass-band. The frequencies w ow and whi gh are expressed in fractions of the Nyquist frequency. A white noise character input is thus obtained for band $=\left[\begin{array}{ll}0 & 1\end{array}\right]$, which also is the default value.

For the choicetype = 'prbs' we have

```
band = [ t wol ogp, M]
```

where the periodicity of the generated PRBS is $2 \uparrow$ wol ogp -1 , and Mis such that the signal is constant over intervals of length $1 / \mathrm{M}$ t wol ogp $=0$ gives the maximum length PRBS, corresponding to t wol ogp $=18$. Also in this case the default is band $=\left[\begin{array}{ll}0 & 1\end{array}\right]$.

The argument I evel s defines the input level. It is a row vector

```
l evel s = [mi nu, mmxu]
```

such that the signal u will always be between the values min nu and maxu for the choicestype $=$ 'rbs', 'prbs' and'si ne'. For type = 'rs', the signal level is such that min is the mean value of the signal, minus onestandard deviation, while maxu is the mean value plus one standard deviation. Gaussian white noise with zero mean and variance one is thus obtained for I evel s = [-1, 1], which is also the default value.

For the option type $=$ ' si ne', there is a fourth argument

```
auxvar = [no_of_si nusoi ds, no_of_tri al s]
```

determining the number of sinusoids to be used in the input signal. The variableno_of _tri al s determines how many trials to be made to minimize the signal amplitude by assigning random phases to the different sinusoids. Default is auxvar $=\left[\begin{array}{ll}10,10\end{array}\right]$.

Algorithm

See Also

Reference

Very simple algorithms are used. The frequency contents is achieved for ' rs' by an eighth order Butterworth, non-causal filter, using idfilt. This is quite reliable. The same filter is used for the ' rbs' case, before making the signal binary. This means that the frequency contents is not guaranteed to be precise in this case.

For the ' si ne' case, the frequencies are selected to be equally spread over the chosen pass band, and each sinusoid is given a random phase. A number of trials are made, and the phases that give the smallest signal amplitude are selected. (The amplitude is then scaled so as to satisfy the specifications of l evel s.)

The Frequency Domain System Identification Tool box contains several commands for input design that utilize more sophisticated algorithms.

For PRBS, see, e.g., Söderström and Stoica (1989), Chapter C5.3.

Purpose
 Reduce the order of a model in theta format.

$\begin{array}{ll}\text { Syntax } & \quad \text { THRED }=\mathrm{i} \text { dmodr ed(TH) } \\ \text { THRED }=\mathrm{i} \text { dmodr ed(TH, ORDER, OE) }\end{array}$
Description

Algorithm

Examples

The functions (d) bal real and (d) modred from the Control Systems Tool box are used. The plot, in case ORDER = [], shows the vector g as returned from (d) bal real .

Build a high order multivariable ARX model, reduce its order to 3 and compare the frequency responses of the original and reduced models:

```
TH = arx([y u],[4*ones(3, 3), 4*ones(3, 2), ones( 3, 2)]);
THRED = i dmodr ed(TH, 3);
bodepl ot([trf(TH),trf(THRED)])
```

Use the reduced order model as initial condition for a third order state-space model:

THI $=s s 2 t h($ THRED $)$;
THSS = pent [y u], TH) ;

See Also
 ss2th

Purpose Plot input-output data.

Syntax idpl ot (z)
 i dpl ot (z, int, T, ny, pc)

Description $\quad z$ is theoutput-input data $z=[y u]$ to be graphed. A split plot is obtained with the output on top and the inputs, one by one if several, at the bottom. Pressing the Return key advances the plot.

The data points specified in the row vector i nt are graphed. The default value of i nt is all the data. You can use the sampling interval T (default $\mathrm{T}=1$) to give correct time axes.
The argument ny is the number of outputs in the data matrix. Default is ny $=1$. The input is piecewise constant between sampling points, and it is graphed accordingly. If you prefer linear interpolation between input data points, use $\mathrm{pc}=$ 'li'. The default value is $\mathrm{pc}=$ ' pc '.

Examples Plot only a portion of the data points:

```
    i dpl ot (z, 100: 200)
```

Purpose	Resample data by interpolation and decimation.
Syntax	```zr = idresamp(z,R) [zr, R_act] = idresamp(z,R,filter_order,tol)```
Description	z : The data to be resampled. Each column of z contains a signal.
	$z r$: The resampled data. The columns of $z r$ correspond to those of z.
	R : The resampling factor. The new data record will correspond to a new sampling interval of R times the original one. $R>1$ thus corresponds to decimation and $R<1$ corresponds to interpolation. Any positive real number for R is allowed, but it will be replaced by a rational approximation (R _act).
	R_act : The actually achieved resampling factor.
	filter_order: The order of the presampling filters used before interpolation and decimation. Default is 8 .
	tol : The tolerance in the rational approximation of R. Default is 0.1.
Algorithm	The resampling factor is first approximated by a rational number by
	[num den] = rat (R, t ol). The data are then interpolated by a factor den and then decimated by a factor num The interpolation and decimation are preceded by prefiltering, and follow the same algorithms as in the routines int erp and deci mat e in the Signal Processing Toolbox.
Caution	For signals that have much energy around the Nyquist frequency (like piece-wise constant inputs), the resampled waveform may look "very different," due to the prefiltering effects. The frequency and information contents for identification is, however, not mishandled.
Example	Resample by a factor 1.5 and compare the signals.
	pl ot (t, u)
	[ur,ra] =idresamp(u, 1.5); pl ot ($\mathrm{t}, \mathrm{u}, \mathrm{ra*t}, \mathrm{ur}$)

Purpose	Simulate systems specified in theta format.
Syntax	$\begin{aligned} & y=i d s i m[u e], t h) \\ & {[y, y s d]=i d s i m(u, t h)} \end{aligned}$
Description	th describes an arbitrary model in the theta format. i dsi mreturns y containing the simulated output, corresponding to the input sequence u (one column for each input) and the noise e. If e is omitted, a noise-free simulation is obtained.
	The noise-sequence e is scaled by $\sqrt{\lambda}$, where λ is the noise variance (loss function) as specified by t . To achieve the correct noise effect, givee zero mean and unit variance.
	For multi-output systems simulated with noise, e should have as many columns as the numbers of outputs. The noise is again scaled using the noise covariance matrix in $t h$.
	The second output argument is the standard deviation of the simulated output. This option is however not available for state-space models.
	If th is a continuous-time model, it is first converted to discrete time with sampling interval abs(T). See "Some Special Topics" on page 3-68
Examples	Simulate a given system th0 (for example created by pol y2th):
	$e=r a n d n(500,1) ;$
	$\mathrm{u}=\mathrm{i}$ di nput (500, ' pr bs') ;
	$y=i d s i m[u e], t h 0) ;$
	Validate a model by comparing a measured output y with one simulated using an estimated model th:
	$\begin{aligned} & \mathrm{yh}=\mathrm{idsim} \mathrm{u}, \mathrm{th}) \text {; } \\ & \mathrm{pl} \text { ot }([\mathrm{y} y \mathrm{yh}]) \end{aligned}$

Algorithm In case the model is of input-output type, idsi muses the MATLAB filter function. F or state-space models, it uses I titr.

See Also idsimsd, pol y2th
Purpose Simulate theta format system with uncertainty.
Syntax i dsimsd(u,th)
i dsimsd(u, th, N, noi se)
Description
ExamplesPlot the step response of the model th and evaluate how it varies in view of themodel's uncertainty:

```
step1 = [zer os(5,1); ones(20,1)];
i dsi m&d(stepl,th)
```

See Also idsimth2ff,th2zp

Purpose Compute fit between simulated and measured output for a group of model structures.

Syntax

Description
v = ivstruc(ze, zv, NN)
$v=i v s t r u c(z e, z v, N N, p, m a x s i z e)$
NN is a matrix that defines a number of different structures of the ARX type. Each row of NN is of the form
nn = [na nb nk]
with the same interpretation as described for ar x. See st ruc for easy generation of typical NN matrices for single-input systems.
Each of ze and zv are matrices containing output-input data [y u]. For multi-input systems, u has the corresponding number of columns. M odels for each model structure defined in NN are estimated using the instrumental variable (IV) method on data set ze. The estimated models are simulated using the inputs from data set $z v$. The normalized quadratic fit between the simulated output and the measured output in zv is formed and returned in v. The rows below the first row in v are the transpose of NN , and the last row contains the logarithms of the condition numbers of the IV matrix

$$
\sum \varsigma(t) \varphi^{T}(t)
$$

A large condition number indicates that the structure is of unnecessarily high order (see page 415 in Ljung (1987)).
The information in vis best analyzed using sel str uc.
If p is equal to zero, the computation of condition numbers is suppressed. For the use of maxsi ze, see auxvar.
The routine is for single-output systems only.

IMPORTANT: The IV method used does not guarantee that the obtained models are stable. The output-error fit calculated in v may then be misleading.

Examples

Algorithm

See Also

Compare the effect of different orders and delays, using the same data set for both the estimation and validation:

```
v = i vstruc(z, z, struc( 1: 3, 1: 2, 2: 4));
nn = sel struc(v)
th = iv4(z,nn);
```

A maximum order ARX model is computed using the least-squares method. Instruments are generated by filtering the input(s) through this model. The models are subsequently obtained by operating on submatrices in the corresponding large IV matrix.
arxstruc, iv4, sel struc, st ruc

Purpose	Estimate the parameters of an ARX model using theinstrumental variable(IV) method with arbitrary instruments.
Syntax	$\begin{aligned} & \mathrm{th}=\mathrm{ivx}(z, n n, x) \\ & \mathrm{th}=\mathrm{ivx}(z, \mathrm{nn}, \mathrm{x}, \text { maxsize, }) \end{aligned}$
Description	i vx is a routine anal ogous to thei v4 routine, except that you can use arbitrary instruments. These are contained in the matrix x. Make this the same size as the output, i.e., the first column(s) of z. The instruments used are then analogous to the regression vector itself, except that y is replaced by x.
	Note that i vx does not return any estimated covariance matrix for $t h$, since that requires additional information.
	Usei v4 as the basic IV routine for ARX model structures. The main interest in i vx lies in its use for nonstandard situations; for example when there is feedback present in the data, or when other instruments need to be tried out. Note that there is also an IV version that automatically generates instruments from certain filters you define (type hel piv).
See Also	i v4, i var
References	Ljung (1987), page 198.

Purpose	Estimate the parameters of an ARX model using an approximately optimal four-stage instrumental variable (IV) procedure.
Syntax	$\begin{aligned} & \mathrm{th}=\mathrm{i} v 4(z, n n) \\ & \mathrm{th}=\mathrm{i} v 4(z, n n, \text { maxsize, }) \end{aligned}$
Description	This routine is an alternative to ar x and the use of the arguments are entirely anal ogous to the ar x function. The main difference is that the procedure is not sensitive to the color of the noise term $e(t)$ in the model equation.
	For an interpretation of the loss function (innovations covariance matrix), consult "Some Special Topics" on page 3-68.
Examples	Here is an example of a two-input one-output system with different delays on the inputs u_{1} and u_{2} :
	```z = [y u1 u2]; nb = [2 2]; nk = [lll}0\mathrm{ 2]; th = iv4(z,[2 nb nk]);```
Algorithm	The first stage uses the ar x function. The resulting model generates the instruments for a second-stage IV estimate. The residuals obtained from this model are modeled as a high-order AR model. At the fourth stage, the input-output data are filtered through this AR model and then subjected to the IV function with the same instrument-filters as in the second stage.
	For the multi-output case, optimal instruments are obtained only if the noise sources at the different outputs have the same color. The estimates obtained with the routine are reasonably accurate though even in other cases.
See Also	$\operatorname{ar} x$, oe
References	Ljung (1987), equations (15.21)-(15.26).

## Purpose

Package model structures you define into the theta model format.

Syntax	$\mathrm{th}=\mathrm{mf} 2 \mathrm{th}$ ( model , cd, parval )
	$\mathrm{th}=\mathrm{nf} 2 \mathrm{th}$ ( model , cd, parval , aux, I anbda, T )

th is returned as a model structure in the theta format. model is the name of an M -file that defines how the state-space matrices depend on the parameters to be estimated. The format of this M -file is given below. The argument cd must be assigned either the value ' $c$ ' which designates that the underlying parameterization refers to a continuous-time model, or the value ' $d$ ', indicating that the model parameterization is inherently a discrete-time one.

The argument par val contains the nominal values of the parameters. This is a row vector of the same length as the number of free parameters in the model structure. The argument aux is a matrix of auxiliary variables that the M-file can use for various purposes.

T denotes the sampling interval of the data, for which the model is going to be estimated (and the sampling interval that is used when the model is used for simulation and prediction). GiveT a positive value even if the underlying model is defined to be continuous time.

The model structure corresponds to the general linear state-space structure

$$
\begin{gathered}
x(t+T)=A(\theta) x(t)+B(\theta) u(t)+K(\theta) e(t) \\
x(0)=x_{0}(\theta) \\
y(t)=C(\theta) x(t)+D(\theta) u(t)+e(t)
\end{gathered}
$$

The matrices in this time-discrete model can be parameterized in an arbitrary way by the vector $\theta$. Write the format for the M-file as follows:

$$
[A, B, C, D, K, x 0]=\text { mynfile(pars, } T, \text { aux })
$$

Here the row vector pars contains the parameters $\theta$, and the output arguments A, B, C, D, K, and x0 are the matrices in the discrete-time model description that correspond to this value of the parameters.

T is the sampling interval, and aux is any matrix of auxiliary variables with which you want to work. (In that way you can change certain constants and other aspects in the model structure without having to edit the M-file.) Note that the two arguments T and aux must be included in the function head of the $M$-file, even if they are not utilized within the $M$-file.

If the underlying parameterization is a continuous-time one, it is still the discrete-time model matrices, corresponding to the sampling interval T that should be delivered by the M -file. However. it is desirable that if the M -file myfile is called with a negative value of $T$, it outputs the matrices of the corresponding continuous-time state-space model. If such a feature is included in the $M$-file, use $c d=1 \mathrm{c}$ '. This allows for easy transformations between continuous and discrete time using the normal functions $t$ hc $2 t$ hd and $t$ hd 2 thc .
"Defining Model Structures" on page 3-29 contains several examples of typical M-files that define model structures.

## Examples

Use the M-file ' mynoi se' given in Section 6 to obtain a physical parametrization of the Kalman gain:
thn $=$ nf 2t h('mynoi se' , ' d' , [ $0.1,-2,1,3,0.2], 1$ )
$\mathrm{th}=\operatorname{pent}(\mathrm{z}, \mathrm{thn})$

Syntax	midpref $s$   mid dpref $s($ pat $h)$

Description
Warning

```
midpr ef s
midpr ef s(path)
``` case
or in the UNIX case
Purpose

Select a directory for i dpref s. mat, a file that stores the graphical user interface's start-up information.

The graphical user interface i dent allows a large number of variables for customized choices. These include the window layout, the default choices of plot options, and names and directories of the four most recent sessions with i dent. This information is stored in the file i dpr ef s. mat, which should be placed on the user's MATLABPATH. The default, automatic location for this file is in the same directory as the user's st ar t up. mfile.
midpr ef s is used to select or change the directory where you store i dpref s.mat. Either type midprefs, and follow the instructions, or give the directory name as the argument. Include all directory delimiters as in the PC
midprefs('c: \matlablool box\local\')
midprefs('/ home/ I jung/mat lab/ ' )
The file i dpr ef s. mat contains a variable with the directory name, which also needs to be updated. Therefore, do not just move it using the file system. Always use midpref s to change the directory for i dpref s. mat.

\section*{Purpose Define state-space structure with unknown elements.}
Syntax \(\quad\)\begin{tabular}{rl}
ms & \(=\operatorname{modstruc}(A, B, C, D, K)\) \\
\(m \Phi\) & \(=\operatorname{modstruc}(A, B, C, D, K, x 0)\)
\end{tabular}

Description

Examples

See Also
modst ruc is, like canf or \(m\) a function that defines model parameterizations in state-space form, which are used in nฐ 2 t h to create model structures in the theta format. The only use of the resulting matrix \(m s\) is as an input to \(n s 2 t h\).

The model considered is in state-space form:
\[
\begin{gathered}
\dot{x}(t)=A(\theta) x(t)+B(\theta) u(t)+K(\theta) e(t) \\
x(0)=x_{0}(\theta) \\
y(t)=C(\theta) x(t)+D(\theta) u(t)+e(t)
\end{gathered}
\]

The function applies both to the continuous and discrete-time cases; which one is determined only when the structure is formed with ns 2 th .

The input arguments \(A, B, C, D, K\), and \(x 0\) are the matrices of the above state-space model. Numerical values in these matrices indicate fixed (known) entries, while the symbol NaN marks an element that is not known and you need to estimate.

The default value of the initial state vector \(x 0\) is the zero vector, but it may also contain parameters you need to estimate.

Define a continuous-time model structure in diagonal form with the two (real) poles and the numerator unknown:
```

A = [NaN, 0; 0, NaN];
B = [NaN; NaN];
C = [1, 1];
D = 0;
K = [0; 0];
ms = modstruc(A,B, C, D, K)
th = ns2th(ms,'c');

```
canform fi xpar, ms 2 th , thinit, unfi xpar

\section*{Purpose} Package standard state-space parameterizations into the theta model format.

\author{
Syntax \\ Description
}
```

$\mathrm{th}=\mathrm{n}$ 2th(nฐ)
th $=\mathrm{ns} 2 \mathrm{th}$ (ns, cd, parval, lambda, T$)$

```

Thefunction returns \(t h\) as a model structurein the theta format for further use
in estimating, simulating, and analyzing models. The argument ms defines which parameters are fixed and which ones you need to estimate. It is typically formed by modstruc or canf orm

The argument cd indicates whether the state-space matrices in ms refer to a continuous-time model ( \(c d=\) ' c ') or a discrete-time model ( \(c d=\) ' d '). \(c d=\) ' \(d\) ' is the default.

F or a continuous-time model there are two options for how to sampleit, as it is fitted to observed sample data (in pen): By selecting cd = ' czoh' (continuous, zero order hold) the input is assumed to be piecewise constant over the sampling interval. By selecting cd = ' cf oh' (continuous, first order hold), the input is supposed to be piecewise linear between the samples. This means that the continuous-time input \(u(t)\) is obtained by linear interpolation between the sampled values. Use cd = 'czoh' (which is the default for continuous-time models) if the system has been controlled using a piece-wise constant input. Use cd = ' cf oh' if the input has been a continuous function during the data acquisition.

The row vector parval contains the nominal values of the free parameters (those that correspond to NaN in nฐ). These nominal values are used as initial estimates when the parameters in \(t \mathrm{~h}\) are identified with pem They are al so used whenever the model th is simulated or analyzed. The default value of parval is all zeros.

The numbering of the parameters in parval (as well as in all other contexts in which the model parameters are listed) is as follows. The matrix A is first scanned, row by row, for free parameters, then the matrix B is scanned, again row by row, and then C, D, K, and X0 each of them row by row. The order in which the free parameters are found by this scanning defines the ordering in parval.

Note that setting all initial estimates equal to zero is not a good starting point for the iterative search for parameter estimates in pem since this case often corresponds to a nonobservable/noncontrollable model. It is better to give more realistic values of par val or to randomize them using \(t\) hi nit.

The argument I ambda gives the covariance matrix of theinnovation \(e(t)\) for the sampling interval indicated in \(T\). The default value of I ambda is the unit matrix.

T denotes the sampling interval of the data, for which the model is going to be estimated (and the sampling interval that is used when the model is used for simulation and prediction). GiveT a positive value even if the underlying model is defined to be continuous time.

\section*{Examples Define a continuous-time model structure corresponding to}
\[
\begin{gathered}
\dot{x}=\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{2}
\end{array}\right] x+\left[\begin{array}{l}
\theta_{3} \\
\theta_{4}
\end{array}\right] u \\
y=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x+e
\end{gathered}
\]
with initial values
\[
\theta=\left[\begin{array}{llll}
-0.2 & -0.3 & 2 & 4
\end{array}\right]
\]
and estimate the free parameters:
```

A = [NaN, 0; 0, NaN];
B = [NaN; NaN];
C = [1, 1];
ns = modstruc(A, B, C, 0, [0; 0]);
th = nฐ2th(ms,'c',[-0. 2, -0.3, 2, 4]);
th = pem(z,th);

```

See Also canformfixpar, modstruc, pemthinit, unf ixpar
Purpose Select the step size for numerical differentiation.
Syntax

nds \(=\) nuder st(pars)
Description The function pemuses numerical differentiation with respect to the model parameters when applied to state-space structures. The same is true for the functions \(t h 2 f f\) and \(t h 2 z p\) when the parameter covariance information is translated to frequency function and zero-pole accuracy (again only for state-space structures). Finally, the command thd2t hc uses numerical differentiation when translating the covariance information for any model structure.
The step size used in these numerical derivatives is determined by the M-file nuder st. The output argument nds is a row vector whose \(k\)-th entry gives the increment to be used when differentiating with respect the \(k\)-th element of the parameter vector pars.
The default version of nuder st uses a very simple method. The step size is the maximum of \(10^{-7}\) and \(10^{-4}\) times the absolute value of the current parameter. You can adjust this to the actual value of the corresponding parameter by editing nuder st. N ote that the nominal value, for example 0 , of a parameter may not reflect its normal size.
\begin{tabular}{|c|c|}
\hline Purpose & Plot Nyquist curve of frequency function. \\
\hline Syntax & \begin{tabular}{l}
nyqpl ot ( g ) \\
nyqpl ot ([g1 g2 ... gn]) \\
nyqpl ot ( \(\mathrm{g}, \mathrm{sd}\), mode)
\end{tabular} \\
\hline \multirow[t]{4}{*}{Description} & nyqpl ot is an alternative to bodepl ot and ff pl ot to graph frequency functions in the freqfunq format. The Nyquist diagram of a frequency function is a graph of its imaginary part against its real part. \\
\hline & The argument g is the frequency function in question, given in the freqfunc format, typically as the output of th2ff,spa, or et fe. Several plots are obtained in the same diagram by simply listing the different frequency functions after each other. These need not be specified at the same frequencies (although they have to be of the same length). \\
\hline & If the frequency function(s) contains information about several different input-output pairs, the default is that the \(N\) yquist plot for each pair is graphed separately. Pressing the Return key advances from one pair to the next. With mode \(=\) ' sane' all plots corresponding to the same input aregiven in the same diagram. \\
\hline & If \(s d\) is given a value larger than 0 , a confidence region around the nominal Nyquist plot is marked with dash-dotted lines. This region corresponds to sd standard deviations. (The information in g does not contain the correlation between the magnitude and phase estimates. The confidence region is therefore only approximate. It is computed by plotting thetwo curves \(g \pm s d \Delta g\), where \(\Delta g\) is the standard deviation (magnitude and phase) of \(g\).) \\
\hline Examples & \[
\begin{aligned}
& g=\operatorname{th2ff(thnod)} \\
& \text { nypl ot }(g, 3)
\end{aligned}
\] \\
\hline See Also & bodepl ot, et fe, ff pl ot, freqf unc, spa, th2ff \\
\hline
\end{tabular}

\section*{Purpose}

\section*{Syntax}

Description

Estimate state-space models using a subspace method.
```

TH = n4si d(z)
[TH,AO] = n4si d(z, or der,ny,auxord, dkx, maxsize, T,'trace')

```

The function n4si d estimates models in state-space form, and returns them in the theta format. It handles an arbitrary number of input and outputs, including the time series case (no input). The state-space model is in the innovations form:
```

x(t+1) = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)

```

TH: The resulting model in theta format. No covariance information about the uncertainty of the model is contained in TH.

AO: See under auxor d below.
z: A matrix that contains the output-input data: z = [y u], where y and uare column vectors. In the multi-variable case, u and y contain one column for each output and input. In the time series case \(z=y\).
or der : The desired order of the state-space model. If or der is entered as a row vector (like or der = [ 1: 10], which is the default choice), preliminary calculations for all the indicated orders are carried out. A pl ot will then be given that shows the relative importance of the dimension of the state vector. M ore precisely, the singular values of the Hankel matrices of the impulse response for different orders are graphed. Y ou will be prompted to select the order, based on this plot. The idea is to choose an order such that the singular values for higher orders are comparatively small. If or der = ' best ' , a model of "best" (default choice) order is computed, among the orders 1:10.
ny: The number of outputs in the data set \(z\). Default is ny \(=1\).
auxor d: An "auxiliary order" used by the al gorithm. This can be seen as a prediction horizon, and it should belarger than the order. The default value is auxord \(=1.2 *\) or der +3 . Thechoice of auxor d could havea substantial influence on the model quality, and there are no simple rules for how to choose it. If you enter auxor d as a row vector (likeauxor d = [ 5: 15]), models for all these values will be computed. The prediction error for each of the models are computed using the data \(z\), and that value of auxord that minimizes the fit will be selected. This value is returned as the output argument AO. If the last given
argument to n4sid is ' trace', information about the different choices of auxor d will be given to the screen. Note that auxor d can be chosen as a vector, only if or der is a given value (no vector).
dkx : The argument dkx determines some additional structure of the matrices of the state-space model to be estimated. It is a row vector with three entries:
```

dkx = [d, k, x]

```

The entries refer to the matrices K, D, and the initial state \(\mathrm{X}(0)\) of the state-space model given above.
\(\mathrm{k}=1\) indicates that the K-matrix in the model (the Kalman Gain) will be estimated, while \(k=0\) means that this matrix will be fixed to zero. This will give a so called output error model.
\(\mathrm{d}=1\) indicates that D-matrix in the model (the direct term from input to output) will be estimated, while \(d=0\) means that this matrix is fixed to zero. This also implies that there will be a delay of (at least) one sample between the input and the output.
\(x=1\) indicates that the initial state \(x(0)\) will be estimated and stored in the model TH, while \(x=0\) means that the initial state will be taken as zero. Note that the initial state is something that relates to the particular data set for which the model was estimated, and may not be relevant when the model is evaluated on a new set of data.

Default is
```

dkx = [0, 1, 0]

```

The optional variables maxsi ze and T are explained under AUXVAR.
trace: Letting the last input argument be 'trace', gives information to the command line about the choice of auxiliary order, in case this is given as a vector.

Algorithm Thefunction implements the methods described in P. Van Overschee and B. De M oor: N4SID:Subspace algorithms for the identication of combined deteministic-stochastic systems. Automatica, Vol. 30, No 1, pp. 75-93, 1994.

The algorithm is complemented with a separate linear least-squares step to re-estimate the matrices B, D, and X(0), which enter linearly.

\section*{Examples}

See Also
Build a fifth order model from data with three inputs and two outputs. Try several choices of auxiliary orders. Look at the frequency response of the model. (Note that there will be no confidence intervals!)
```

z = [y1 y2 u1 u2 u3];
th = n4sid(z,5, 2, 7: 15,'trace');
bodepl ot(trf(th))

```

Use the resulting model as initial values for estimating a state-space model of the same order using the prediction error method:
```

thi = ss2th(th);
thp = pem(z,thi);

```
auxvar, canstart, pemthet a

\section*{Purpose Estimate the parameters of an Output-Error model.}
```

Syntax \quad th $=o e(z, n n)$
th $=o e(z, n n, ' t r a c e ')$
[th, iter_info] = oe(z, nn, maxiter,tol, limmaxsize, T, 'trace')

```

Description The parameters of the Output-Error model structure
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
\]
are estimated using a prediction error method.
Matrix z contains the output-input data \(z=[y u]\) where \(y\) and \(u\) are column vectors. nn can be given either as
\[
\mathrm{nn}=\left[\begin{array}{lll}
\mathrm{nb} & \mathrm{nf} & \mathrm{nk}
\end{array}\right]
\]
or as
\[
\mathrm{nn}=\mathrm{thi}
\]

In the former case, nb, and nf are the orders of the Output-Error model and nk is the delay. In the latter case, this is an initial value for the estimate, given in theta format. See "The System I dentification Problem" on page 3-8 for an exact definition of the orders and delay.
th is returned with the resulting parameter estimates and estimated covariances, stored in theta format.

The optional variables iter_i nfo, limmaxiter, maxsi ze, tol, and T are explained under auxvar.

For multi-input models, nb, nf, and nk arerow vectors, such that entry number i gives the orders and delays associated with the i-th input.
oe does not support multi-output models. Use state-space model for this case (see canstart, n4si d, and pern)

If a last argument ' trace' is supplied, information about the progress of the iterative search for the model will be furnished to the MATLAB command window.

Algorithm

See Also
oe uses essentially the same al gorithm as ar max with modifications to the computation of prediction errors and gradients.
armax, auxvar, bj, pemt het a
Purpose Compute the prediction errors associated with a model and a data set.
Syntax ..... \(\mathrm{e}=\mathrm{pe}(\mathrm{z}, \mathrm{th})\)
DescriptionMatrix \(z\) is the output-input data set, \(z=\left[\begin{array}{ll}y & u\end{array}\right.\), and \(t h\) is a model specified intheta format. e is returned containing the prediction errors that result whenmodel t h is applied to the data,
\[
e(t)=H^{-1}(q)[y(t)-G(q) u(t)]
\]
See Also resid, theta

\section*{Purpose Estimate the parameters of general linear models.}
```

Syntax th = pen(z,nn)
th = pem(z, nn,'trace')
[th, iter_i nfo] = pentz, nn,i ndex, maxiter,tol,lim...
mmxsize,T,'trace')

```

Description
The function pemhandles all model structures, including the general multi-input-single-output structure
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]
and general structures defined by fixpar, nf \(2 \mathrm{th}, \mathrm{ns} 2 \mathrm{t} h\), t hi nit, and unf i xpar. Multivariable ARX structures defined by ar x2t h are also covered.

The matrix \(z\) contains the output-input data \(z=[y]\), where \(y\) and \(u\) are column vectors (in the multi-variable case \(u\) and \(y\) contain one col umn for each input and output).
\(n n\) is given either as
```

 nn = [na nb nc nd nf nk]
    ```
or as
nn = thi

In the former case, na, nb, nc, nd, and nf are the orders of the model and nk is the delay(s). F or multi-input systems, nb, nf, and nk are row vectors giving the orders and delays of each input. (See Section 3 of the Tutorial for exact definitions of the orders).

In the latter case, thi defines a model structure and an initial value for the estimate, given in theta format.
th is returned with the resulting parameter estimates and estimated covariances, stored in theta format.

The optional argument i ndex is a row vector that contains the indices of the parameters that are to be estimated. The others remain fixed to their nominal values. The ordering of the parameters is defined under t h2par. The default
value of index is that all free parameters areestimated. Theoptional variables iter_i nfo, lim maxiter, maxsize, tol, and T are explained under auxvar.

If a last argument ' trace' is supplied, information about the progress of the iterative search for the model will be furnished to the MATLAB command window.

For the special cases of single-input models of Output-Error, ARMAX, and Box-J enkins type, it is more efficient to use oe, ar max, and bj .

\section*{Examples}

\section*{Algorithm}

See Also armax, auxvar, bj, oe, thet a

\section*{Purpose}

Construct theta format matrix for input-output models.

\section*{Syntax}

Description
\(\mathrm{th}=\operatorname{poly2th}(\mathrm{A}, \mathrm{B})\)
\(\mathrm{th}=\operatorname{pol} y 2 \mathrm{th}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{I} \mathrm{am} \mathrm{T})\)
pol y2th creates a matrix containing parameters that describe the general
multi-input-single-output model structure:
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]

\section*{A, B, C, D, and F specify the polynomial coefficients.}

For single-input systems, these are all row vectors in the standard MATLAB format:
\[
A=\left[\begin{array}{llll}
1 & a 1 & a 2 & \ldots
\end{array}\right]
\]

A, C, D, and F all start with 1, while B contains leading zeros to indicate the delays. See "Defining M odel Structures" on page 3-29.

For multi-input systems, B and F are matrices with one row for each input.
For time series, B and F are entered as empty matrices:
\[
B=[] ; \quad F=[] ;
\]

I amis the variance of the white noise sequence \(e(t)\), while T is the sampling interval.

A negative value of \(T\) indicates that the model is a continuous-time one. Then the interpretation of the arguments is that
\[
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]
\]
corresponds to the polynomial \(s^{3}+2 s^{2}+3 s+4\) in the Laplace variable s, and so on. F or continuous-time systems I amindicates the level of the spectral density of the innovations. (A sampled version of the model has the innovations variance I am T , where T is the sampling interval. The continuous-time model must have a white noise component in its noise description. See "Some Special Topics" on page 3-68.

Trailing arguments C, D, F, I am and T can be omitted, in which case they are taken as 1. (If \(\mathrm{B}=[\) ] , then F is taken as [ ].)

For discrete-time models ( \(\mathrm{T}>0\) ), note the following: pol y2t h strips any trailing zeros from the polynomials when determining the orders. It al so strips leading zeros from the B polynomial to determine the delays. Keep this in mind when you use pol y2th and th2pol y to modify earlier estimates to serve as initial conditions for estimating new structures. See "Some Special Topics" on page 3-68.

\section*{Examples}

To create a system of ARMAX type (the "Åström system"):
```

A = [1 -1.5 0.7];
B =[[$$
\begin{array}{lll}{0}&{1}&{0.5}\end{array}
$$];
C = [1 -1 0.2];
th0 = pol y2th(A, B, C);

```

This gives a system with one delay ( \(n k=1\) ).
Create the continuous-time model
\[
y(t)=\frac{1}{s(s+1)} u_{1}(t)+\frac{s+3}{s^{2}+2 s+4} u_{2}(t)+e(t)
\]

Sample it with \(\mathrm{T}=0.1\) and then simulate it without noise:
```

B={0 1; 1 3];
F=[1 1 0; 1 2 4]
t h=pol y2t h(1, B, 1, 1, F, 1, -1)
t hd=t hc 2t hd(th, 0.1)
y=i dsim[u1 u2],thd);

```

\section*{See Also idsimtheta}

\section*{Purpose Predict the output k-step ahead.}

\section*{Syntax \(\quad p=\) predict \((z, t h)\) \\ [yp,thpred] = predict(z,th,k)}

Description
\(z\) is the output-input data in the usual format
\[
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
\]
where \(y\) is a matrix whose \(r\)-th column is the \(r\)-th output signal and correspondingly for the input u.

The argument \(k\) indi cates that the \(k\)-step ahead prediction of \(y\) according to the model th (in the theta format) is computed. In the cal culation of \(\mathrm{yp}(\mathrm{t})\) the model can use outputs up to time
\(t-k: y(s), s=t-k, t-k-1, \ldots\)
and inputs up to the current time \(t\). The default value of \(k\) is 1 .
The output yp is a matrix of the same size as \(y\), and its \(i, j\) element contains the predicted value of the corresponding element in y . The output argument t hpr ed contains the \(k\)-step ahead predictor in the theta format, in the case that th corresponds to an input-output model. (The predictor is a system with \(n y+n u\) inputs and \(n y\) outputs, ny being the number of outputs and \(n u\) the number of inputs to \(t h\).)

An important use of predi ct is to evaluate a model's properties in the mid-frequency range. Simulation with i dsi m(which conceptually corresponds to \(\mathrm{k}=\mathrm{i} \mathrm{nf}\) ) can lead to levels that drift apart, since the low frequency behavior is emphasized. One step ahead prediction is not a powerful test of the model's properties, since the high frequency behavior is stressed. The trivial predictor \(\hat{y}(t)=y(t-1)\) can give good predictions in case the sampling of the data is fast.

Another important use of predi ct is to evaluate models of time series. The natural way of studying a time series model's ability to reproduce observations is to compare its \(k\)-step ahead predictions with actual data.

Note that for output-error models, there is no difference between the k-step ahead predictions and the simulated output, since, by definition, output-error models only use past inputs to predict future outputs.
Algorithm

For a model th that is an input-output model, the formula (3.31) in Ljung (1987) is applied to compute the predictor. For state-space models, the state equations are simulated k -steps ahead with initial value \(x(t-k)=\hat{x}(t-k\), where \(\hat{x}(t-k)\) is the Kalman filter state estimate.
Examples
Simulate a time series, estimate a model based on thefirst half of the data, and evaluate the four step ahead predictions on the second half:
```

th0 = pol y2th([1 -0. 99],[],[1 -1 0. 2]);
y = i dsi m(randn(400, 1), th0);
th = armax(y(1: 200),[1 2]);
yp = predi ct (y,th,4);
pl ot([y(201: 400),yp(201: 400)])

```
Note that the last two commands also are achieved by
compare( y, th, 4, 201: 400) ;
See Also compare, idsimpe
Purpose Display the information in a theta matrix.
Syntax present (th)
Description This function displays the polynomials of the model \(t h\), together with their standard deviations, loss function, and Akaike's Final Prediction Error Criterion (FPE) (which essentially equals theAIC). It also displays information about how th was created.Leading zeros in B correspond to delays; therefore, the delay is nk if B startswith nk exact zeros.
For input-output models, the estimated standard deviations are given just below the estimated parameters. (N ote that leading zeros and ones are exact and have zero standard deviation.)
For state-space models and multivariable ARX models, the standard deviations are given as fake, imaginary parts of the parameter estimates.
See Also ..... thet a

Purpose Estimate recursively the parameters of an ARMAX or ARMA model.
```

Syntax thm = rarmax(z, nn, adm, adg)
[thmyhat,P,phi,psi] = ...
rarmax(z, nn, adm adg, th0, P0, phi 0, psi 0)

```

Description
The parameters of the ARMAX model structure
\[
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
\]
are estimated using a recursive prediction error method.
Matrix z contains the output-input data \(z=[y\) u] where \(y\) and \(u\) are column vectors. nn is given as
```

nn = [na nb nc nk]

```
where na, \(n b\), and \(n c\) are the orders of the ARMAX model, and \(n k\) is the delay. See equations (3.16)-(3.18) in Chapter 3, "Tutorial" for an exact definition of the orders.

If \(z=y\) and \(n n=[n a n c], r \operatorname{rarmx}\) estimates the parameters of an ARMA model for y :
\[
A(q) y(t)=C(q) e(t)
\]

Only single-input, single-output models are handled by rarmax. Use rpemfor the multi-input case.

The estimated parameters are returned in the matrix thm Thek-th row of thm contains the parameters associated with timek, i.e., they are based on the data in the rows up to and including row k in z . Each row of t hmcontains the estimated parameters in the following order:
\[
\text { thm(k,: ) = [a1, a2, ..., ana, b1, ..., bnb, c1, ..., cnc }]
\]

See equations (3.16),(3.18) in Chapter 3, "Tutorial" for more information. yhat is the predicted value of the output, according to the current model, i.e., row \(k\) of yhat contains the predicted value of \(z(k, 1)\) based on all past data.

The actual algorithm is selected with the two arguments admand adg. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector, consistent with the rows of thm The default value of th 0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. Seer arx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phi \(0, \mathrm{psio}, \mathrm{phi}\), and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend in a rather complicated way on the chosen model orders. The normal choice of phi 0 and psi 0 is to use the outputs from a previous call to rarmax with the same model orders. (This call could of course be a dummy call with default input arguments.) The default values of phi 0 and psi 0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want \(\mathrm{nk}=0\), shift the input sequence appropriately and use \(\mathrm{nk}=1\).

\section*{Algorithm}

Examples

The general recursive prediction error algorithm (11.44), (11.47)-(11.49) of Ljung (1987) is implemented. See "Recursive Parameter Estimation" on page 3-61 for more information.

Compute and plot, as functions of time, the four parameters in a second order ARMA model of a time series given in the vector \(y\). The forgetting factor algorithm with a forgetting factor of 0.98 is applied.
```

thm = rarmmx(y,[2 2],'ff',0.98);
pl ot (thm)

```

\section*{Purpose Estimate recursively the parameters of an ARX or AR model.}
```

Syntax thm = rarx(z, nn, adm, adg)
[thm yhat,P, phi] = rarx(z, nn, adm adg, th0, P0, phi 0)

```

Description The parameters of the ARX model structure
\[
A(q) y(t)=B(q) u(t-n k)+e(t)
\]
are estimated using different variants of the recursive least-squares method.
Matrix z contains the output-input data \(z=[y\) u] where \(y\) and \(u\) are column vectors. nn is given as
\[
\mathrm{nn}=\left[\begin{array}{lll}
\mathrm{na} & \mathrm{nb} & \mathrm{nk}
\end{array}\right]
\]
where na and nb are the orders of the ARX model, and nk is the delay. See equation (3.16) in the Tutorial for an exact definition of the orders.

If \(z=y\) and \(n n=n a, r a r x\) estimates the parameters of an AR model for \(y\) :
\[
A(q) y(t)=e(t)
\]

Models with several inputs
\[
A(q) y(t)=B_{1}(q) u_{1}\left(t-n k_{1}\right)+\ldots B_{n u} u_{n u}\left(t-n k_{n u}\right)+e(t)
\]
are handled by allowing \(u\) to contain each input as a column vector,
\[
u=[u 1 \ldots . u n u]
\]
and by allowing nb and nk to be row vectors defining the orders and delays associated with each input.

Only single-output models are handled by rarx.
The estimated parameters are returned in the matrix thm The \(k\)-th row of thm contains the parameters associated with timek, i.e., they are based on the data
in the rows up to and including row \(k\) in \(z\). Each row of \(t\) hmcontains the estimated parameters in the following order:
```

thm(k,:) = [a1, a2, ..., ana, b1, ..., bnb]

```

See equation (3.16) in Chapter 3, "Tutorial". In the case of a multi-input model, all the b parameters associated with input number 1 are given first, and then all the b parameters associated with input number 2, and so on.
yhat is the predicted value of the output, according to the current model, i.e., row \(k\) of yhat contains the predicted value of \(z(k, 1)\) based on all past data.

The actual algorithm is selected with the two arguments adg and adm These are described in "Recursive Parameter Estimation" on page 3-61. The options are as follows:

With \(\operatorname{adm}=f^{\prime} f^{\prime}\) and adg \(=1\) amthe forgetting factor al gorithm (10.6abd) \(+(10.8)\) is obtained with forgetting factor \(\lambda=1\) am This is what is often referred to as Recursive Least Squares, RLS. In this case the matrix P (see below) has the following interpretation: \(R_{2} / 2 * \mathrm{P}\) is approximately equal to the covariance matrix of the estimated parameters. Here \(R_{2}\) is the variance of the innovations (the true prediction errors e(t) in (10.3)).

With adm = ug' and adg = gamthe unnormalized gradient algorithm (10.6abc)+(10.9) is obtained with gain gamma=gam This algorithm is commonly known as unnormalized Least Mean Squares, LMS. Similarly adm \(=n g\) ' and adg = gam gives the normalized gradient or Normalized Least Mean Squares, NLMS algorithm (10.6abc) + (10.10). In these cases \(P\) is not defined or applicable.

With \(\operatorname{adm}=k f\) ' and adg \(=\) R1 the Kalman Filter Based algorithm (10.6) is obtained with \(R_{2}=1\) and \(R_{1}=R 1\). If the variance of the innovations e(t) is not unity but \(R_{2}\), then \(R_{2} * \mathrm{P}\) is the covariance matrix of the parameter estimates, while \(R_{1}=\mathrm{RI} / R_{2}\) is the covariance matrix of the parameter changes in (10.4).

The input argument th0 contains the initial value of the parameters; a row vector, consistent with the rows of thm (See above.) The default value of \(\mathrm{th0}\) is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. The default value of PO is \(10^{4}\) times the identity matrix.

The arguments phi 0 and phi contain initial and final values, respectively, of the data vector:
\[
\varphi(t)=[y(t-1), \ldots, y(t-n a), u(t-1), \ldots u(t-n b-n k+1)]
\]

Then, if
\[
z=[y(1), u(1) ; \ldots ; y(N), u(N)]
\]
you have phi \(0=\varphi(1)\) and phi \(=\varphi(N)\). The default value of phi 0 is all zeros. For online use of \(r\) ar \(x\), use phi \(0, t h 0\), and PO as the previous outputs phi , \(t\) hm(last row), and P.

Note that the function requires that the delay nk be larger than 0 . If you want \(\mathrm{nk}=0\), shift the input sequence appropriately and use \(\mathrm{nk}=1\).

\section*{Examples}

Adaptive noise canceling: The signal y contains a component that has its origin in a known signal \(r\). Remove this component by estimating, recursively, the system that relates \(r\) to \(y\) using a sixth order FIR model together with the NLMS algorithm:
```

z = [y r];
[thm, noi se] = rarx(z,[0 6 1],'ng',0.1);
%oi se is the adaptive esti mate of the noi se
%omponent of y
pl ot (y-noi se)

```

If the above application is a true online one, so that you want to plot the best estimate of the signal \(y\) - noi se at the same time as the data \(y\) and \(u\) become available, proceed as follows:
```

phi = zeros(6, 1); P=1000*eye(6);
th = zeros(1,6); axi s([0 100 -2 2]);
pl ot (0, 0,'*'), hol d
%Whe l oop:
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P, phi] = rarx([y r],'ff',0.98,th, P, phi);
pl ot (ti me,y-ns,' *')
time = time +Dt
end

```

This example uses a forgetting factor al gorithm with a forgetting factor of 0.98. readAD represents an \(M\)-file that reads the value of an A/D converter at the indicated time instance.

\section*{Purpose Estimate recursively the parameters of a Box-J enkins model.}
\begin{tabular}{|c|c|}
\hline Syntax & \(\mathrm{thm}=\mathrm{rbj}(\mathrm{z}, \mathrm{nn}, \mathrm{adm} \mathrm{adg})\) \\
\hline & [ thm yhat, \(\mathrm{P}, \mathrm{phi}, \mathrm{psi}]=\) \\
\hline & rbj ( \(\mathrm{z}, \mathrm{nn}\), adm adg, th0, P0, phi 0, psi 0) \\
\hline
\end{tabular}

Description
The parameters of the ARMAX model structure
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t)
\]
are estimated using a recursive prediction error method.
Matrix z contains the output-input data \(z=[y\) u] where \(y\) and \(u\) are column vectors. nn is given as
\[
\mathrm{nn}=[\mathrm{nb} \mathrm{nc} \text { nd } \mathrm{nf} \mathrm{nk}]
\]
where nb, nc, nd, and nf are the orders of the Box-J enkins model, and nk is the delay. See equations (3.21) and (3.14),(3.18), (3.22) and (3.29) in the Tutorial for an exact definition of the orders.

Only single-input, single-output models are handled by rbj. Use rpemfor the multi-input case.

The estimated parameters are returned in the matrix thm The k -th row of thm contains the parameters associated with timek, i.e., they are based on the data in the rows up to and including row \(k\) in \(z\). Each row of \(t\) hmcontains the estimated parameters in the following order:
```

thm(k,:) = [b1, ..., bnb, c1, ...,cnc, d1,....,dnd, f1,..., fnf]

```
(See equations (3.14),(3.18),(3.22) and (3.20) in the Tutorial.)
yhat is the predicted value of the output, according to the current model, i.e., row \(k\) of yhat contains the predicted value of \(z(k, 1)\) based on all past data.

The actual algorithm is selected with the two arguments admand adg. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector, consistent with the rows of \(t \mathrm{hm}\) (See above.) The default value of th 0 is all zeros.

The arguments P0 and P are the initial and final values, respectively of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phi 0 , psi 0 , phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend in a rather complicated way on the chosen model orders. The normal choice of phi 0 and psi 0 is to use the outputs from a previous call tor bj with the same model orders. (This call could, of course, be a dummy call with default input arguments.) The default values of phi 0 and psi 0 are all zeros.

Note that the function requires that the delay nk is Iarger than 0. If you want \(\mathrm{nk}=0\), shift the input sequence appropriately and use \(\mathrm{nk}=1\).

\section*{Algorithm}

The general recursive prediction error algorithm (11.44) of Ljung (1987) is implemented. See also "Recursive Parameter Estimation" on page 3-61.
\begin{tabular}{|c|c|}
\hline Purpose & Compute and test the residuals (prediction errors) of a model. \\
\hline Syntax & \[
\begin{aligned}
& {[e, r]=r e s i d(z, t h)} \\
& {[e, r]=r \text { esi } d(z, t h, M \text { maxsize })} \\
& r \text { resid(r); }
\end{aligned}
\] \\
\hline \multirow[t]{6}{*}{Description} & \begin{tabular}{l}
Matrix z contains the output-input data \(z=[y \operatorname{u}]\), where \(y\) and \(u\) are column vectors. In the multivariable case, \(y\) and \(u\) are matrices, with columns corresponding to the different inputs and outputs. \\
th is the model to be evaluated on the given data set, defined in theta format. e is returned with the residuals (prediction errors) associated with the model and the data.
\end{tabular} \\
\hline & The autocorrelation function of e and the cross correlation between e and the input(s) u are computed and displayed. The 99\% confidence intervals for these values are also computed and displayed as dotted (red) curves. The computation of these values is done assuming e to be white and independent of u . The functions are displayed up to lag M which is 25 by default. \\
\hline & The correlation information is returned with \(r\). The plots can then be reviewed by \\
\hline & resid(r) ; \\
\hline & See "Model Structure Selection and Validation" on page 3-49 for more information. \\
\hline & The argument maxsi ze is explained under auxvar. \\
\hline \multirow[t]{2}{*}{Examples} & Here are some typical model validation commands: \\
\hline & ```
e = resid(z,th);
pl ot (e)
compare(z,th);
``` \\
\hline See Also & auxvar, compare, pem thet a \\
\hline References & Ljung (1987), Section 16.5. \\
\hline
\end{tabular}

\section*{Purpose Estimate recursively the parameters of an Output-Error model.}

\section*{Syntax \(\quad\) thm \(=\) roe(\(z, n n\), adm adg \()\) \\ [thm yhat, P, phi , psi] = roe(z, nn, adm adg, th0, PO, phi 0, psi 0) \\ The parameters of the Output-Error model structure}
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)
\]
are estimated using a recursive prediction error method.
Matrix z contains the output-input data \(z=[y u]\) where \(y\) and \(u\) are column vectors. nn is given as
```

nn = [nb nf nk]

```
where \(n b\) and \(n f\) are the orders of the Output-E rror model, and \(n k\) is the delay. See equations (3.14) and (3.19)-(3.20) in the Tutorial for an exact definition of the orders.

Only single-input, single-output models are handled by roe. Use r pemfor the multi-input case.

The estimated parameters are returned in the matrix thm The k -th row of thm contains the parameters associated with time k, i.e., they arebased on the data in the rows up to and including row k in z .

Each row of t hmcontains the estimated parameters in the following order:
```

thm k,: ) = [b1,..., bnb, f1,....,fnf]

```

See equations (3.14), (3.20) in the Tutorial.
yhat is the predicted value of the output, according to the current model, i.e., row \(k\) of yhat contains the predicted value of \(z(k, 1)\) based on all past data.

The actual algorithm is selected with the two arguments adg and adm These are described under rarx.

The input argument tho contains the initial value of the parameters, a row vector, consistent with the rows of \(t \mathrm{hm}\) (See above.) The default value of \(t h 0\) is all zeros.

The arguments PO and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phi 0, psi 0 , phi , and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend in a rather complicated way on the chosen model orders. The normal choice of phi 0 and psi 0 is to use the outputs from a previous call to roe with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phi 0 and psi 0 are all zeros.

Note that the function requires that the delay \(n k\) is larger than 0 . If you want \(\mathrm{nk}=0\), shift the input sequence appropriately and use \(\mathrm{nk}=1\).

\section*{Algorithm}

\author{
See Also oe, rarx, rbj, rpl r,
}

\section*{Purpose}

Syntax

\section*{Description}

Estimate recursively the parameters of a general multi-input single-output linear model.
thm = r pem(\(z, n n\), adm adg \()\)
[thm, yhat, P, phi, psi] = rpemiz, nn, adm adg, th0, P0, phi 0, psi 0)
The parameters of the general linear model structure
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]
are estimated using a recursive prediction error method.
Matrix z contains the output-input data \(z=[y u]\) where \(y\) and \(u\) are column vectors (in the multi-input case u contains one col umn for each input). nn is given as
\[
\mathrm{nn}=[\mathrm{na} \mathrm{nb} \mathrm{nc} \text { nd nf nk] }
\]
where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. For multi-input systems nb, nf, and nk are row vectors giving the orders and delays of each input. See equations (3.13)-(3.23) in the Tutorial for an exact definition of the orders.

The estimated parameters are returned in the matrix \(t \mathrm{hm}\) The \(k\)-th row of thm contains the parameters associated with time k, i.e., they arebased on the data in the rows up to and including row k in z . Each row of t hmcontains the estimated parameters in the following order:
```

thm(k,: ) = a1, a2, ..., ana, b1, ..., bnb, ...
c1, ..., cnc, d1, ..., dnd, f1, ..., f nf ]

```

See equations (3.13)-(3.23) in the Tutorial. F or multi-input systems the B part in the above expression is repeated for each input before the \(C\) part begins, and also the \(F\) part is repeated for each input. This is the same ordering as in th2par.
yhat is the predicted value of the output, according to the current model, i.e., row \(k\) of yhat contains the predicted value of \(z(k, 1)\) based on all past data.
\begin{tabular}{ll}
Algorithm & \begin{tabular}{l}
The general recursive prediction error algorithm (11.44) of Ljung (1987) is \\
implemented. See also "Recursive Parameter Estimation" on page 3-61.
\end{tabular} \\
For the special cases of ARX/AR models, and of single-input ARMAX/ARMA, \\
Box-J enkins, and Output-Error models, it is more efficient to userarx, \\
rarmax, rbj, and roe.
\end{tabular}
Purpose

Estimate recursively the parameters of a general multi-input single-output linear model.
Syntax
Description
See Also
thm \(=r \operatorname{ll} r(z, n n, a d m, a d g)\)
[thm yhat, \(\mathrm{P}, \mathrm{phi}]=\mathrm{rpl}\) r(z, nn, adm, adg, th0, P0, phi 0)
This is a direct alternative to \(r\) pemand has essentially the same syntax. See rpemfor an explanation of the input and output arguments.
rpl r differs from rpemin that it uses another gradient approximation. See Section 11.5 in Ljung (1987). Several of the special cases are well known algorithms.
When applied to ARMAX models, (\(n n=\left[\begin{array}{ll}n a & n b \\ n c & 0 \\ 0\end{array}\right]\)) , rpl r gives the Extended Least Squares, ELS method. When applied to the output error structure (nn = [0 nb 00 nf nk\(]\)) the method is known as HARF in the adm \(=' f f\) ' case and SHARF in the \(a d m=1 n g '\) case.
\(r p l r\) can al so be applied to the time series case in which an ARMA model is estimated with
\[
\begin{aligned}
& z=y \\
& n n=\left[\begin{array}{ll}
n a & n c
\end{array}\right]
\end{aligned}
\]
You can thus userpl r as an alternative to rarmax for this case.

\footnotetext{
pem rarmax, rarx, rbj, roe, rpem
}

Purpose Segment data and estimate models for each segment.
```

Syntax segm = segment (z,nn)
[ segm V, t hm R2e] = segment (z, nn, R2, q, R1, M th0, P0, II , mu)

```

\section*{Description}
```

segnent builds models of AR, ARX, or ARMAX/ARMA,

$$
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
$$

```
assuming that the model parameters are piece-wise constant over time. It results in a model that has split the data record into segments over which the model remains constant. The function models signals and systems that may undergo abrupt changes.

The argument \(z\) is the output-input data
\[
z=\left[\begin{array}{ll}
y & u
\end{array}\right]
\]
where \(y\) is a column vector containing the outputs and \(u\) is a column vector containing the inputs. If the system has several inputs, u has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model
nn = [na nb nc nk]
where na, nb , and nc are the orders of the corresponding polynomials. See (3.13)-(3.18) in Chapter 3, "Tutorial". M oreover nk is the delay. If the model has several inputs, nb and nk are row vectors, giving the orders and del ays for each input.

For an ARX model (\(\mathrm{nc}=0\)) enter
\[
\mathrm{nn}=\left[\begin{array}{lll}
\mathrm{na} & \mathrm{nb} & \mathrm{nk}
\end{array}\right]
\]

For an ARMA model of a time series
```

z = y
nn = [na nc]

```
and for an AR model
nn = na

The output argument segmis a matrix, whose k-row contains the parameters corresponding to time \(k\). This is analogous to the output argument thmin rarx and rar max. The output argument \(t\) hmof segment contains the corresponding model parameters that have not yet been segmented. That is, they are not piecewise constant, and therefore correspond to the outputs of the functions rar max and rarx. In fact, segment is an alternative to these two algorithms, and has a better capability to deal with time variations that may be abrupt.

The output argument V contains the sum of the squared prediction errors of the segmented model. It is a measure of how successful the segmentation has been.

The input argument \(R 2\) is the assumed variance of the innovations \(e(t)\) in the model. The default value of R2 is that it is estimated. Then the output argument R2e is a vector whosek-th element contains the estimate of R2 at time k.

The argument q is the probability that the model undergoes at an abrupt change at any given time. The default value is 0.01 .

R1 is the assumed covariance matrix of the parameter jumps when they occur. The default value is the identity matrix with dimension equal to the number of estimated parameters.

Mis the number of parallel models used in the al gorithm (see bel ow). Its default value is 5 .
th0 is the initial value of the parameters. Its default is zero. P0 is the initial covariance matrix of the parameters. The default is 10 times the identity matrix.

II is the guaranteed life of each of the models. That is, any created candidate model is not abolished until after at least II time steps. The default is II \(=1\). \(M_{1}\) is a forgetting parameter that is used in the scheme that estimates R2. The default is 0.97 .

The most critical parameter for you to choose is R2. It is usually more robust to have a reasonable guess of R2 than to estimate it. Typically, you need to try different values of R2 and evaluate the results. (See the example bel ow.) sqrt(R2) corresponds to a change in the value \(y(t)\) that is normal, giving no indication that the system or the input might have changed.

Algorithm

Examples

The algorithm is based on Mparallel models, each recursively estimated by an algorithm of Kalman filter type. Each is updated independently, and its posterior probability is computed. The time varying estimate \(t\) hmis formed by weighting together the Mdifferent models with weights equal to their posterior probability. At each time step the model (among those that have lived at least I I samples) that has the lowest posterior probability is abolished. A new model is started, assuming that the system parameters have jumped, with probability q, a random jump from the most likely among the models. The covariance matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest posterior probability is tracked back and thetime instances whereit jumped are marked. This defines the different segments of the data. (If no models had been abolished in the algorithm, this would have been the maximum likelihood estimates of the jump instances.) The segmented model segmis then formed by smoothing the parameter estimate, assuming that the jump instances are correct. In other words, the last estimate over a segment is chosen to represent the whole segment.

Check how the algorithm segments a sinusoid into segments of constant levels. Then use a very simple model \(\mathrm{y}(\mathrm{t})=\mathrm{b}_{1} * 1\), where 1 is a faked input and \(b_{1}\) describes the piecewise constant level of the signal \(\mathrm{y}(\mathrm{t})\) (which is simulated as a sinusoid).
```

y = sin([ 1: 50]/ 3)';
thm = segment([y,ones(y)],[00 1 1],0.1);
pl ot ([ thm y])

```

By trying various values of R2 (0.1 in the above example), more levels are created as R2 decreases.

\section*{Purpose Select model order (structure).}
Syntax \(\quad\)\begin{tabular}{rl}
{\([\mathrm{nn}, \mathrm{vnod}]\)} & \(=\) sel \(\operatorname{struc}(\mathrm{v})\) \\
{\([\mathrm{nn}, \mathrm{vnod}]\)} & \(=\operatorname{sel} \operatorname{struc}(\mathrm{v}, \mathrm{c})\)
\end{tabular}

Description
sel st ruc is a function to help choose a model structure (order) from the information contained in the matrix v obtained as the output from ar xst r uc or i vstruc.

The default value of c is ' pl ot ' . This graphs the values of the loss functions in v against the total number of parameters in the corresponding model structure. If \(v\) was generated by i vst \(r u c\), so that it also contains the condition numbers of the IV matrices, then these are also graphed against the number of parameters. Based on inspection of these plots, you can choose a suitable number of parameters, and nn returns the best structure with this number of parameters.

If \(c=\) ' log ', the logarithms of the loss functions are graphed instead.
\(c=\) ' ai c' gives no plots, but returns in nn the structure that minimizes Akaike's Information Theoretic Criterion (AIC),
\[
V_{m o d}=V^{*}\left(1+2^{*}(d / N)\right)
\]
where V is the loss function, d is the total number of parameters in the structure in question, and N is the number of data points used for the estimation.
c = ' mall ' returns in nn the structure that minimizes Rissanen's Minimum Description Length (MDL) criterion.
\[
V_{m o d}=V^{*}\left(1+\log (N)^{*} d / N\right)
\]

When c equals a numerical value, the structure that minimizes
\[
V_{\text {mod }}=V^{*}\left(1+c^{*} d / n\right)
\]
is selected.
The output argument vmod has the same format as v, but it contains the logarithms of the accordingly modified criteria.

The formal grounds for applying AIC or MDL require that ve generated by ar xstruc with ze \(=z v\). When cross-validation is used (ze different from zv), the logical choice is \(c=0\).

When selecting model structures, it is important to assess carefully whether the benefit of a better fit is worth the additional complexity of a higher order model. See Chapter 3, "Tutorial" for more information.

\section*{Examples}

See Also arxstruc, ivstruc, st ruc

\section*{Purpose \\ Set the sampling interval directly.}

\section*{Syntax modn \(=\operatorname{set} t(\bmod , T)\)}

Description

See Also freqf unc, thet a

\section*{Purpose Estimate frequency response and spectrum by spectral analysis.}

\section*{Syntax [g, phi v] = spa(z)}
[g, phi v, z_spe] = spa(z, M, w, maxsize, T)
Description
spa estimates the transfer function \(g\) and the noise spectrum phi \(v=\Phi_{v}\) of the general linear model
\[
y(t)=G(q) u(t)+v(t)
\]
where \(\Phi_{v}(\omega)\) is the spectrum of \(v(\mathrm{t})\).
Matrix z contains the output-input data \(z=[y \operatorname{u}]\), where \(y\) and \(u\) are column vectors. If there are several inputs, u is a matrix with one column for each input. The data may be complex-valued.
\(g\) is returned in the frequency function format (see freqf unc) with the estimate of \(G\left(e^{i \omega}\right)\) at the frequencies \(\omega\) specified by row vector w . The default value of wis
\[
\mathrm{w}=[1: 128] / 128 * \mathrm{pi} / \mathrm{T}
\]
phi \(v\) is returned with the autospectrum estimate of \(\Phi_{v}(\omega)\) at the same frequencies. Both outputs are returned with estimated standard deviations (seefreqf unc).

Mis the length of the lag window used in the calculations. The default value is
\[
M=\min (30, l \text { engt } h(z) / 10)
\]

Changing the value of Mexchanges bias for variance in the spectral estimate. As Mis increased, the estimated functions show more detail, but are more corrupted by noise. The sharper peaks a true frequency function has, the higher mit needs. See et \(f\) e as an alternative for narrowband signals and systems.

T is the sampling interval and maxsi ze controls the memory-speed trade-off (see auxvar).

For time series \(z=y, g\) is returned with the estimated output spectrum and its estimated standard deviation.

IMPORTANT: For multi-output data the argument Mmust be entered as a row vector of the same length as the number of outputs. This is the way the distinction between inputs and outputs in \(z\) is clarified. For default window size use in the multi-output case
\[
M=\left[\begin{array}{llll}
-1, & -1, & \ldots, & -1
\end{array}\right]
\]

The optional third output argument z_spe gives directly the spectrum matrix of \(z\) as follows:
reshape(\(\left.z_{\text {_ spe }}(:, k), n z, n z\right)=\) The spectrum \(S\) at frequency \(W(k)\)
where \(n z\) is the number of channels in the data matrix \(z\) and
\[
S=\sum_{m=-M}^{M} E z(t+m) z(t)^{\prime} \exp (-i W(k) m T) \operatorname{win}(m)
\]

Here win(\(m\)) is weight at lag \(m\) of an \(M\)-size Hamming window and \(W(k)\) is the frequency value i rad/s. Note that ' denotes complex-conjugate transpose.
The normalization of the spectrum differs from the one used by spect \(r\) umin the Signal Processing Toolbox. See "Some Special Topics" on page 3-68 for a more precise definition.

\section*{Examples}

With default frequencies
\[
\begin{aligned}
& \mathrm{g}=\mathrm{spa}(\mathrm{z}) \\
& \text { bodepl ot }(\mathrm{g})
\end{aligned}
\]

With logarithmically spaced frequencies
```

w = l ogspace(-2, pi,128);
[g,phiv] = spa(z,[],w);
%(empty matrix gi ves default)
bodepl ot([g phi v],3)

```
plots the estimated spectrum together with confidence intervals of three standard deviations.
Algorithm The covariance function estimates are computed using covf. These are multiplied by a Hamming window of Iag size Mand then Fourier transformed. The relevant ratios and differences are then formed. For the default frequencies, this is done using FFT, which is more efficient than for user-defined frequencies. For multi-variable systems, a straightforward for-loop is used.
Note that \(M=\Upsilon\) is in Table 6.1 of Ljung (1987). The standard deviations are computed as on pages 155-156 and 264 of Ljung (1987).
See Also auxvar, bodepl ot, et \(f e, f f p l\) ot, \(f r\) eqf unc, \(t h 2 f f\)
References Ljung (1987), Section 6.4.
Purpose Create a model structure parametrized in canonical form.
Syntax

\[
\mathrm{THS}=\mathrm{ss} 2 \mathrm{th}(\mathrm{TH})
\]

\[
\text { THS }=\mathrm{ss} 2 \mathrm{th}(\mathrm{TH}, \text { orders })
\]
Description
Examples
See Also

canf orm canst art, ms 2 th , n4sid

M ake a parametrized state-space model from given matrices A, B, C, D, and K and use it as initial condition for pemestimation:
```

th1 = ms 2th(modstruc(A, B, C, D, K) ,' d' );
thi = ss2th(th1);
th = pem(z,thi );

```

Let the model obtained from n4si d be used as the initial value for prediction error estimation:
```

thn = n4sid(z,3);
thp = pem(z, ss2th(thn));

```

Purpose Generate model structure matrices.

\section*{Syntax \(\quad N N=\operatorname{struc}(N A, N B, N K)\)}

Description st ruc returns in NN the set of model structures comprised of all combinations of the orders and delays given in row vectors NA, NB, and NK. The format of NN is consistent with the input format used by arxstruc and i vstruc. The command is intended for single-input systems only.

\section*{Examples}

The statement
\[
\mathrm{NN}=\operatorname{struc}(1: 2,1: 2,4: 5) ;
\]
produces
\begin{tabular}{ccc}
NN & \multicolumn{2}{l}{} \\
1 & 1 & 4 \\
1 & 1 & 5 \\
1 & 2 & 4 \\
1 & 2 & 5 \\
2 & 1 & 4 \\
2 & 1 & 5 \\
2 & 2 & 5
\end{tabular}
Purpose Convert a model from continuous time to discrete time.
Syntax \(\mathrm{thd}=\mathrm{thc} 2 \mathrm{t} h \mathrm{~d}(\mathrm{thc}, \mathrm{T})\)
Description
ExamplesDefine a continuous-time system and study the poles and zeros of the sampledcounterpart:
```

thc = pol y2t h(1, 1, 1, 1, [1 1 0], 1, -1);
thd = thc2thd(thc, 0.5);
zppl ot(th2zp(thd))

```
See Also thd2t hc
\begin{tabular}{|c|c|}
\hline Purpose & Convert a model from discrete to continuous time. \\
\hline Syntax & \[
\begin{aligned}
& \mathrm{thc}=\mathrm{thd} 2 \mathrm{thc}(\mathrm{thd}) \\
& \mathrm{thc}=\mathrm{t} \text { hd2t hc(} \mathrm{thd}, \text { del ay, NoP) }
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Description} & The discrete-time model thd, given in the theta format, is converted to a continuous-time counterpart t hc. The covariance matrix of the parameters in the model is also translated using Gauss' approximation formula and numerical derivatives of the transformation. The step sizes in the numerical derivatives are determined by the function nuderst. To inhibit the translation of the covariance matrix and save time, enter NoP \(=1\). \\
\hline & If the discrete-time model contains pure time delays, i.e., \(n k>1\), then these are first removed before the transformation is made. These delays should then be appended as pure time-delay (deadtime) to the continuous-time model. This is done automatically by \(\mathrm{th} 2 \mathrm{f} f\). To have the time delay approximated by a finite-dimensional continuous system, enter del ay \(=\) 'del '. The default is del ay \(=\) ' nodel \({ }^{\prime}\). \\
\hline & If the innovations variance is \(\lambda\) in \(t\) hd, and its sampling interval is \(T\), then the continuous-time model has an indicated level of innovations spectral density equal to \(T * \lambda\). \\
\hline & IMPORTANT: The transformation from discrete to continuous time is not unique. thd 2 t hc selects the continuous-time counterpart with the slowest time constants, consistent with the discrete-time model. The lack of uniqueness also means that the transformation may be ill-conditioned or even singular. In particular, poles on the negative real axis, in the origin, or in the point 1 , are likely to cause problems. Interpret the results with care. \\
\hline \multirow[t]{2}{*}{Examples} & Transform an identified model to continuous time and compare the frequency responses of the two models: \\
\hline & ```
gd = th2ff(th);
thc = thd2thc(th);
gc = th2ff(thc);
bodepl ot ([gd, gc], 3)
``` \\
\hline See Also & nuderst, the 2t hd \\
\hline References & See "Some Special Topics" on page 3-68. \\
\hline
\end{tabular}

\section*{Purpose Describe the theta format.}

\section*{Syntax hel p theta \\ hel \(p\) thss}
t het a is a packed matrix containing information about both a model structure and its nominal or estimated parameters. It also contains other relevant information about the identification result.

This model format is the basic format with the System Identification Toolbox. It is used by all parametric identification methods and it can betransformed to many other model representations. See the tables in the beginning of this chapter for more details.

The internal format of the theta format is intended to be transparent to the user. The basic way to di splay the information is to use the present command. Some specific information is retrieved from the format by the functions get nff h , get ncap, get t , and th 2 par . This entry gives the details of the internal representation, but this information is not necessary for most users of the System Identification Tool box. The formats differ whether the underlying model is in state-space form or of the input-output black box character.
I. For the general multi-input singleoutput linear model structure
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]

A, B, C, D, and F are polynomials in the delay operator of orders na, nb, nc, nd, and nf , respectively. If the system has nu inputs, \(\mathrm{nb}, \mathrm{nf}\) and nk are row vectors of dimension nu containing information about the orders and delays associated with each of the inputs. In the case of a time series (no u), B and F are not defined.

Let n be the sum of all the orders (the number of estimated parameters) and let
```

r = max(n, 7, 6 + 3 nu)

```

Then \(t\) het \(a\) is a \((3+n) r\) matrix organized as follows:
- Row 1 has entries: estimated variance of e, sampling interval T, nu, na, nb, nc, nd, nf, and nk.
- Row 2 has entries: FPE (Akaike's Final Prediction Error), year, month, date, hour, minute and command by which the model was generated. The matrix entry \((2,7)\) thus contains the coded number of which command generated the model. This number is less than 20 for the black-box models of the type above.
- Row 3 is the vector of estimated parameters, A, B , C, D, and F, (excluding leading 1 s and 0 s ).
- Rows 4 to \(3+n\) contain the estimated covariance matrix.
- For continuous-time models, a possible element \((4+n, 1)\) contains a dead-time for the system. This is used when computing frequency functions in \(t\) h2f \(f\).
II. F or models that are defined as state-space structures there is an underlying M -file that defines the structure. This M -file is called by
\([A, B, C, D, K, X 0]=\operatorname{mf}\) name (par, \(T\), aux \()\)
(See nf 2 th .) F or model structures that are defined by ns 2 th , the name of this M-file is ssmodx9 or ssmodx8 and the argument aux is the actual model structure ms created by modstruc. Notice in particular that multi-output ARX models are internally represented as state-space models with the aid of ssmodx9.

Suppose that the number of estimated parameters is n and that the length of the name of your M-file nf name is r. Suppose also that the model has ny outputs and that the size of the argument aux above is nr times nc . Then t het a is a matrix of dimension
\(\max (\mathrm{n}, \mathrm{ny}, \mathrm{nc}, 7+\mathrm{r})\) by \(3+\mathrm{n}+\mathrm{nr}+\mathrm{ny}\) )
organized as follows:
- Row 1 has entries: determinant of innovations covariance, sampling interval, number of inputs, number of outputs, number of estimated parameters, number of rows of aux, number of columns of aux, and name of M -file that defines the structure.
- Row 2 contains the entries: FPE (Akaike's Final Prediction Error), year, month, date, hour, minute, and command by which the model was generated. This last one is a number larger than 20 for state-space structures.
- Entry ( 2,8 ) is interpreted as follows: " 1 " means that the underlying parameterization is in continuous time, using ssmodx9. "Il" means that the underlying parameterization is in continuous time, to be sampled by first-order-hold, using ssmodx8. "2" means that it is in discrete time, again using ssmodx9. " 3 " means that the model is a multivariate ARX model. " 4 " means that the underlying parameterization is in discrete time and user defined. " 5 " means that the model is a user-defined continuous-time parameterization, equipped with sampling inhibition when called with a negative value of \(T\).
- Row 3 contains the estimated (nominal) values of the parameters.
- Rows 4 to \(3+\mathrm{n}\) contain the estimated covariance matrix of the parameters.
- Rows \(4+n\) to \(3+n+n r\) contain the matrix aux.
- Rows \(4+n+n r\) to \(3+n+n r+n y\) contain the covariance matrix of the innovations of the model.

Purpose Set initial values for the parameters to be estimated.
Syntax \(\quad\)\begin{tabular}{rl} 
th & \(=\) thinit \((\mathrm{th} 0)\) \\
th & \(=\mathrm{thinit}(\mathrm{th} 0, \mathrm{R}\), pars, sp\()\)
\end{tabular}

Description

See Also
canst art, nf 2 th , mฐ 2 th , pem

\section*{Purpose Extract the ARX parameters from a theta format model.}

\section*{Syntax}
[A, B] = th2arx(th)
\([A, B, d A, d B]=t h 2 a r x(t h)\)

\section*{Description}
th is the model in the theta format. A and B are returned as the matrices that define the ARX structure:
\[
A=\left[\begin{array}{lllll}
1 & A 1 & A 2 & \ldots & \text { Ana }
\end{array}\right]
\]
\[
B=\left[\begin{array}{llll}
B 0 & B 1 & \ldots & B n b
\end{array}\right]
\]
where
\[
y(t)+A_{1} y(t-1)+\ldots+A_{n a} y(t-n a)=B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)
\]

Delays in the system are indicated by leading zeros in the B matrices. See Section 6 in the Tutorial.
dA and dB are the standard deviations of A and B .
See Also ar \(\times 2 \mathrm{th}\)

Purpose

Syntax

\section*{Description}

Compute the frequency response and standard deviations of a theta format model.
[g, phi v] =th2ff(th)
[g, phiv] =th2ff(th, ku, w, ky)
\(t h 2 f f\) computes the frequency functions of \(t h\), where \(t h\) is a matrix in theta format containing a general model.
g is returned with the transfer function estimate (see (3.4), (3.23), and (3.25) in the Tutorial)
\[
G\left(e^{i \omega}\right)
\]
computed at the frequencies \(\omega\) given in row vector w. If th has several inputs and outputs, \(g\) is computed for the input and output numbers specified in row vectors ku and ky, respectively. The format of g is detailed under freqf unc. The default values of ku and ky are all input and output pairs contained in \(t h\).

For a time continuous model the frequency function \(G(i \omega\) ) is obtained instead.
Phi \(v\left(\Phi_{v}\right)\) is returned with theestimated noise spectrum for each of the outputs
\[
\Phi_{v}(\omega)=\lambda^{*} T^{*}\left|H\left(e^{i w t}\right)\right|^{2}
\]
where \(\lambda\) is the estimated variance of \(e(t)\) (the loss function) specified by \(t h\). phi \(v\) is computed at the same frequencies as \(g\). The normalization of the spectrum differs from the one used by spect rumin the Signal Processing Toolbox. See "Some Special Topics" on page 3-68, for a precise definition. Note that no cross-spectra between different outputs are computed.

The standard deviations of the frequency function(s) and the spectra are also computed, using the Gauss approximation formula. F or models with complicated parameter dependencies, numerical differentiation is applied. The step sizes for the numerical derivatives are determined by nuder st .

The default values of the frequencies are in the discrete-time case are
\[
w=[1: 128] / 128 * p \mathrm{pi} / T
\]
whereT is the sampling interval specified by th (default \(=1\) ) and for the continuous-time case
\[
\mathrm{w}=\text { I ogspace }(\log 10(\mathrm{pi} / \operatorname{abs}(\mathrm{T}) / 100), \log 10(10 * \mathrm{pi} / \operatorname{abs}(\mathrm{T})), 128)
\]
where abs( \(T\) ) is the "underlying" sampling interval for the continuous-time model.

The frequency functions can be graphed with bodepl ot , ffpl ot, and nyqpl ot.

IMPORTANT: The command \(t r f\) has the same syntax as \(t\) h2f \(f\) but does not calculate the standard deviations, and can be considerably faster.
\begin{tabular}{|c|c|}
\hline Examples & Compare the results from spectral analysis and an ARMAX model (input-output dynamics only). \\
\hline & ```
th = armmx(z,[lllll);
gp = th2ff(th);
gs = spa(z);
bodepl ot([gs gp])
``` \\
\hline & Plot, but don't store, the frequency function \(g\) associated with \(t h\) : bodepl ot (th2ff(th)) \\
\hline See Also & bodepl ot, et fe, ff pl ot, nyqpl ot, sett, spa \\
\hline
\end{tabular}

\section*{Purpose Extract the parameters from the theta format.}

\section*{Syntax [par, P, I am = th2par(th)}

Description \(\quad \mathrm{t}\) h is a model, defined in the theta format. par is returned as the nominal or estimated values of the free parameters in \(t h\). The covariance matrix of the parameters is obtained as P, and I amis the variance (covariance matrix) of the innovations.

The ordering for the parameters is as follows. For the general input-output model (7.2), you have
\[
\begin{aligned}
& \text { pars }=\left[a_{1}, \ldots, a_{n a}, b_{1}^{1}, \ldots, b_{n b 1}^{1}, \ldots, b_{1}^{2}, \ldots, b_{n b 2}^{2}, \ldots\right. \\
& \left.\qquad b_{1}^{n u}, \ldots, b_{n b n u}^{n u}, \ldots, c_{1}, \ldots, c_{n c}, d_{1}, \ldots, d_{n c}, f_{1}^{1}, \ldots, f_{n f 1}^{1}, \ldots, f_{1}^{n u}, \ldots, f_{n f n u}^{n u}\right]
\end{aligned}
\]

Here, superscript refers to the input number.
For a state-space structure, defined by \(n s 2 t h\), the parameters in pars are obtained in the following order: The A matrix is first scanned row by row for free parameters. Then the B matrix is scanned row by row, and so on for the C, D, K, and X0 matrices. (Seens 2th.)

For a state-space matrix that is defined by nf 2 th , the ordering of the parameters is the same as in your M -file.

Multivariate ARX models are internally represented in state-space form. The ordering of the parameters may not be transparent in this case; it is better to useth2arx.

\section*{Purpose}

Syntax
Description

Convert theta matrix into its component polynomials.
[A, B, C, D, F, LAM T] = th2pol y(th)
This is essentially the inverse of the pol y 2 th function. It returns the polynomials of the general model
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]
as contained by the matrixt h in theta format. See "Examining M odels" on page 3-40.

LAM is the noise variance and T is the sampling interval.
See Also pol y2th, th2tf,theta

\section*{Purpose Transform a model to state-space form.}
\begin{tabular}{ll}
Syntax & {\([A, B, C, D, K, X 0]=t h 2 s s(t h)\)} \\
{\([A, B, C, D, K, X O, d A, d B, d C\)} & \(d D, d K, d X 0]=t h 2 s s(t h)\)
\end{tabular}

Description

Algorithm \(\begin{aligned} & \text { The computation of the standard deviations in the input-output case assumes } \\ & \text { that an A polynomial is not used together with a F or D polynomial in (7.2). For } \\ & \text { the computation of standard deviations in the case that the state-space } \\ & \text { parameters are complicated functions of the parameters, Gauss approximation } \\ & \text { formula is used together with numerical derivatives. The step sizes for this } \\ & \text { differentiation are determined by nuder st. }\end{aligned}\).
See Also mf 2th, nฐ 2 th , nuderst

\section*{Purpose Transform a model to transfer function form.}

Syntax

\section*{Description}

\section*{Examples}
```

[num den] = th2tf(th)
[ num, den] = th2tf(th,iu)

```
th is a model given in the theta format. numis a matrix whose row number k gives the numerator polynomial associated with the transfer function from input number i u to output number \(k\). den is a row vector giving the (common) denominator polynomial for these transfer functions. The default value of \(i u\) is 1.

The formats of numand den arethe same as those used by the Signal Processing Tool box and the Control Systems Tool box, both for continuous-time and discrete-time models. See "Examining M odels" on page 3-40.

To obtain the transfer function from noise source number \(k\), enter \(\mathrm{i} u=-\mathrm{k}\).
For a continuous-time model
\[
\begin{aligned}
& \text { num }=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \\
& \text { den }=\left[\begin{array}{lll}
1 & 3 & 0
\end{array}\right]
\end{aligned}
\]
corresponds to the transfer function
\[
G(s)=\frac{s+2}{s^{2}+3 s}
\]

For a discrete-time model
\[
\begin{aligned}
& \text { num }=\left[\begin{array}{lll}
2 & 4 & 0
\end{array}\right] \\
& \text { den }=\left[\begin{array}{llll}
1 & 2 & 3
\end{array}\right]
\end{aligned}
\]
corresponds to the transfer function
\[
H(z)=\frac{2 z^{2}+4 z}{z^{3}+2 z^{2}+3 z+5}
\]
which is the same as
\[
H(q)=\frac{2 q^{-1}+4 q^{-2}}{1+2 q^{-1}+3 q^{-2}+5 q^{-3}}
\]

\section*{See Also}

Purpose
Syntax

Description

Compute zeros, poles, and static gains of a theta format model.
[zepo, k] = th2zp(th)
[zepo, k] = th2zp(th, ku, ky, thresh)
For any model described in theta format by t h, the poles and zeros and static gains, along with their standard deviations are computed. The poles and zeros are stored in coded form in the matrix zepo, while the static gains are returned in k.

The best way to display the information in zepo is to plot it using zppl ot . The information can also be retrieved with get zp.

The first row of k contains the integer (jy-1)*1000+ju, where jy is the output number and ju is the input number for the gain in question. The second row of k contains the corresponding gains, and the third row the standard deviation of the gain in question.

NOTE: The gain here is the static gain, i.e., the steady state gain from a step in input number ju to output number jy. It is thus the same for a discrete-time and a continuous-time representation of the same model. This is different from the routines ss2zp and zp2ss in the Signal Processing Tool box, which use the transfer function gain, i.e., the coefficient of the highest power in the numerator.

Row vectors ku and ky contain the indices of the inputs and outputs, respectively, for which the zeros, poles and gains are to be computed. In this context, the noise e(t) is counted as inputs with negative numbers. That is, noise source number ju (the ju-th component of e(t) is counted as input number ju. The value 0 in the vector ku is the default for "all noise sources." The default values of ku and ky are all inputs and all outputs (no noise inputs).

The optional argument t hr esh is a threshold for the computation of the zeros. Zeros at infinity may, due to the numerical procedure, end up as large, finite values. To avoid this, any zero whose absolute value is larger than t hr esh is regarded to be at infinity. The default value of \(t\) hresh is 100000.

The procedure handles both models in continuous and discrete time.

For the general discrete-time multi-input, single-output model
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]
the zeros are the roots of \(z^{n b+n k} B(z)\) (with \(z\) replacing the forward shift operator q\()\), and the poles are the roots of \(z^{n a+n f} A(z) F(z)\). The static gain is \(k=B(1) /(A(1) F(1))\).

F or models that are internally represented in state-space form, the poles are the eigenvalues of the system matrix. The zeros are the zeros of the corresponding transfer function. These zeros may thus differ from the transmission zeros associated with the multivariable system. To find the trans-mission zeros, first useth2ss and then apply tzer o from the Control System Toolbox.

Note that you cannot rely on information about zeros and poles at the origin and at infinity. (This is a somewhat confusing issue anyway.)
zepo is returned in a format that allows easy plotting with zppl ot . (Then zeros and poles at theorigin and at infinity areignored.) Theroutinezpf or mis useful when comparing different models.

The alternative routine zp has the same syntax as \(t\) h2zp but does not compute standard deviations. This can be a useful alternative, when the standard deviations are not of interest, and computation time for th 2 zp is long. M oreover, zp uses ss2zp from the Signal Processing Tool box, which may give better numerical accuracy in difficult cases.

Note: Although zp computes zeros and poles for all combinations of noise sources and outputs, present in the indices ky, ku, the command th2zp only gives information about poles and zeros from noise source number ju to output number ju (if ku contains the number -ju).

\section*{Algorithm}

The standard deviations are computed using Gauss's approximation formula, using the parameter covariance matrix contained in th. When the transfer function depends on the parameters in a complicated way, numerical
differentiation is applied. The step sizes for the differentiation are determined in the \(M\)-file nuder st .

Note that Gauss's approximation formula gives infinite variance to poles and zeros that are exactly repeated.

\section*{Examples}

See Also

The statement
```

zppl ot(th2zp(th))

```
plots, but does not store, the poles and zeros.
To compare the zeros and poles of second and third order ARX models (input-output dynamics only), use
```

th2 = arx(z,[[2 2 1]);
th3 = arx(z,[[$$
\begin{array}{lll}{3}&{3}&{1}\end{array}
$$]);
zp2 = th2zp(th2);
zp3 = th2zp(th3);
zppl ot(zpf orm(zp2, zp3))

```
get \(z p\), t het a, zepo, zpf or mppl ot

\section*{Purpose Free parameters in structures defined by ms 2 th and arx2th.}
Syntax \(\quad\)\begin{tabular}{rl}
thn & \(=u n f i x p a r(t h o, ~ m a t r i x)\) \\
thn & \(=u n f i x p a r(t h o, ~ m a t r i x, ~ e l ~ e m e n t s) ~\)
\end{tabular}

Description
This function is the inverse of fi xpar. The interpretation of the arguments is the same. unf i xpar makes the indicated parameters free parameters to be estimated. The nominal/initial values of these parameters are taken to be equal to their actual values in the structure tho.

See Also fixpar, ms 2 th , t het a , thi nit

\section*{Purpose Describe the zeros and pole format.}

\section*{Syntax hel \(p\) zepo}

\section*{Description}

The zepo format is created by th 2 zp and zp and used by zppl ot . It contains information about zeros and poles and their standard deviations. Theinternal format is intended to be transparent to the user. The basic way to display the information is to use the zppl ot command. Some specific infor-mation is retrieved from the format by the function get \(z p\). This entry gives the details of the internal representation, but this information is not necessary for most users of the System I dentification Tool box.

The first row of the matrix consists of integers that give information about what the column below contains. The integers are coded in the following way:
- The zeros associated with input number ku and output number ky correspond to the number (ky -1)*1000 + ku.
- The standard deviations of these zeros correspond to the number (ky-1)*1000 + ku +60.
- The poles associated with input number ku and output number ky correspond to the number (ky -1)*1000 + ku +20 .
- The standard deviation of these poles correspond to the number (ky -1)*1000 + ku +80.
- Thezeros associated with noise input number ky and output number ky (only these are normally represented) correspond to the number \(500+\mathrm{ky}\).
- The standard deviation of these, the corresponding poles, and their standard deviations are obtained by adding 60, 20, and 80, respectively to this number.
- Positions corresponding to nonexisting zeros and poles (as well as zeros and poles at infinity) are represented by i nf.
- If any of the above numbers is negative, it indicates that the pole or zero representation corresponds to a continuous-time model. Then the absolute value of the number has the interpretation above.
- For complex conjugated pairs, thefirst row in the corresponding entry for the standard deviation contains a complex number whose real and imaginary parts are the standard deviations of the real and imagi nary parts, respectively, of the pole or zero in question. The next row entry (corres-ponding to the conjugate pole or zero) contains a real number that is the correlation between the real and imaginary parts.

\author{
See Also get zp, th2zp, zpf orm zppl ot
}
\begin{tabular}{|c|c|}
\hline Purpose & Merge zero-pole information from different models. \\
\hline Syntax & zepo = zpform(zepo1, zepo2, ...,ku) \\
\hline Description & The zeros and poles in zepo1, zepo2, ... from different models are merged into one matrix to be used by zppl ot . zepo1, zepo2, ... have the format as produced by th2zp. ku is an optional row vector containing the input numbers to be picked out when forming zepo. The default value is ku is equal to all inputs present in zepo1, zepo2, ... A maximum of five input arguments to zpf or mis possible. \\
\hline \multirow[t]{3}{*}{Examples} & The statement \\
\hline & zppl ot (zpf or mozpbj 2, zpbj 4, zpax2, zpax4, 0)) \\
\hline & compares the noise characteristics from four different models. \\
\hline See Also & th2zp, zppl ot \\
\hline
\end{tabular}

\section*{Purpose Plot zeros and poles.}
\begin{tabular}{|c|c|}
\hline Syntax & zppl ot (zepo) \\
\hline & \begin{tabular}{l}
zppl ot (zpformizepo1, zepo2, \\
zppl ot (zepo, sd, mode, axi s)
\end{tabular} \\
\hline
\end{tabular}

\author{
Description
}

The zeros and poles specified by zepo (see zepo for the format) are graphed, with o denoting zeros and \(x\) denoting poles. Poles and zeros associated with the sameinput, but different models, arealways graphed in the same diagram, and pressing the Return key advances the plot from one model to the next. On col or screens poles, zeros and their confidence regions, corresponding to the same model all have the same color. Poles and zeros at infinity areignored. For discrete-time models, zeros and poles at the origin are also ignored.
If sd has a value larger than zero, confidence regions around the poles and zeros are also graphed. The regions corresponding to sd standard deviations are marked. The default valueis \(s d=0\). Notethat the confidence regions may sometimes stretch outside the plot, but they are al ways symmetric around the indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a unit circle is also drawn.

When zepo contains information about several different inputs, there are some options:
node \(=\) ' sub' splits the screen into several plots.
mode = ' same' gives all plots in the same diagram. Pressing the Return key advances the plots.
mode \(=\) ' sep' erases the previous plot before the next input is treated.
The default value is mode \(=\) ' sub' .
axi \(s=[x 1 \times 2\) y1 y2] fixes the axis scaling accordingly. axis = mis the same as
\[
\operatorname{axi} \mathrm{s}=[-\mathrm{mm}-\mathrm{mm}]
\]
```

Examples
zpbj = th2zp(thbj 2);
zpax = th2zp(tharmax4);
zpoe = th2zp(thoe3);
zppl ot (zpf or m(zpoe, zpax, zpbj ), 3)
show all zeros and poles of three models along with the confidence regions corresponding to three standard deviations.
See Also th2zp, zpf or m

```

\section*{A}
adaptive noise cancelling 4-82
Akaike's Final Prediction Error (F PE) 3-50
AR model 3-23
ARARMAX structure 3-12
ARMAX model 2-22
ARMAX structure 3-11
ARX model 1-6, 2-20, 3-6, 3-10, 3-17, 3-22, 3-29

\section*{B}
basic tools 3-3
Bode diagram 2-29
Bode plot 1-9
Box-J enkins (BJ) structure 3-11
Box-J enkins model 2-22
Burg's method 3-23

\section*{C}
canonical forms 3-35
communication window ident 2-2
comparisons using compare 3-48
complex-valued data 3-79
correlation analysis 1-4, 2-14, 3-15, 3-20
covariance function 3-9
covariance method 3-23
creating models from data 2-2
cross correlation function 3-52
cross spectrum 3-16

\section*{D}

Data Board 2-3
data handling checklist 2-12
data representation 2-7, 3-19
data views 1-4
delays 3-10, 3-31
detrending the data 2-10
disturbance 1-5
drift matrix 3-63
dynamic models, introduction 1-5

\section*{E}
estimation data 1-4
estimation method
instumental variables 3-17
prediction error approach 2-18, 3-17
estimation methods
direct 2-14
parametric 2-14
subspace method 3-18, 3-25
exporting to the MATLAB workspace 2-32
extended least squares (ELS) 3-66

\section*{F}
fault detection 3-67
feedback 1-13
freqfunc format 3-20
frequencies 3-28
frequency
function 2-15
functions 3-8, 3-20
plots 3-8
range 3-8
response 2-15
scales 3-8
frequency domain description 3-10
frequency response 1-9

\section*{G}

Gauss-Newton minimization 3-24
geometric lattice method 3-23
graphical user interface (GUI) 2-2
GUI 2-2
topics 2-34

\section*{H}

Hamming window 3-21

\section*{I}
ident window 2-34
identification process, basic steps 1-10
importing data into the GUI 2-9
impulse response 1-9, 2-29, 3-8, 3-9, 3-15
Information Theoretic Criterion (AIC) 3-50
initial condition 3-24
initial parameter values 3-37
innovations form 3-13, 3-33
input signals 1-5
instrumental variable 3-17
(IV) method 3-22
technique 3 -23
iterations 3-27
iterative search 3-24

\section*{K}

Kalman-gain matrix 3-33

\section*{L}
lag widow 3-16
layout 2-35

\section*{M}
main ident window 2-34
maximum likelihood
criterion 3-26
method 3-17
memory horizon 3-63
model
output-error 1-7
properties 1-9
set 1-4
state-space 1-7
structure 2-17, 3-3
structure selection 3-3
structures 3-29
uncertainty 3-53
validation 1-4
view functions 2-27
views 1-4, 1-7, 2-4
Model Board 2-3
multivariable ARX model 3-30
multivariable systems 1-16, 3-23

\section*{N}
noise 1-5
noise model 1-7
noise source 1-7, 2-31
noise-free simulation 1-8
noise-free simulations 3-53
nonparametric 3-10, 3-19
nonparametric identification 1-4
Normalized Gradient (NG) Approach 3-64
numerical differentiation 3-37

\section*{0}
offsets 3-58
outliers
signals 1-4
output signals 1-5
Output-Error (OE) structure 3-11
Output-Error model 1-7, 2-22

\section*{P}
parametric identification 1-4
periodogram 3-21
poles 1-9
prediction
error identification 2-18
error method 3-17
prefiltering 2-11
prefiltering signals 2-11

\section*{Q}

Quickstart menu item 2-12

\section*{R}
recursive
identification 3-4, 3-61
least squares 3-64
parameter estimation 3-61
references list 1-19
resampling 2-11
robust estimation techniques 3-27

\section*{S}
sampling interval 3-30
selecting data ranges 2-11
Sessions 2-5
shift operator 3-8
simulating data 2-12
spectra 3-8, 3-16
spectral analysis 1-4, 3-16, 3-20
spectrum 3-9, 3-20
startup identification procedure 1-12
state vector 3-13
state-space
form 3-13
model 1-7, 2-24
modeling 3-4
models 3-33
step response 1-9, 2-29
structure 1-4
subspace method 3-18, 3-25

\section*{T}
theta format 3-22, 3-29
time domain description 3-9
time-continuous systems 3-30
transfer function 1-6
transient response 1-9, 2-29

\section*{U}

Unnormalized Gradient (UG) Approach 3-64

\section*{V}
validation data 1-4

\section*{W}
white noise 3-9
window sizes 3-21
Working Data set 2-3
workspace variables 2-6

\section*{Y \\ Yule-Walker approach 3-23}

\section*{Z \\ zeros 1-9}```

[^0]: NOTE: Confidence intervals are supported for most models and properties, except models estimated using n4si d and et fe, and the k-step ahead prediction-property.

