
Computation

Visualization

Programming

User’s Guide

Lennart Ljung

System Identification
Toolbox

For Use with MATLAB®

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

System Identification Toolbox User’s Guide
 COPYRIGHT 1988 - 1997 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: April 1988 First printing
July 1991 Second printing
May 1995 Third printing
August 1995 Reprint

☎
FAX

✉

@

Contents
1
The System Identification Problem

What is System Identification? . 1-2
How is that done? . 1-2
How do you know if the model is any good? 1-2
Can the quality of the model be tested in other ways? 1-2
What models are most common? . 1-2
Do you have to assume a model of a particular type? 1-2
What does the System Identification Toolbox contain? 1-2
Isn’t it a big limitation to work only with linear models? . . . 1-3
How do I get started? . 1-3
Is this really all there is to System Identification? 1-3

The Signals . 1-5
The Basic Dynamic Model . 1-6
Variants of Model Descriptions . 1-6
How to Interpret the Noise Source . 1-7
Terms to Characterize the Model Properties 1-9

Impulse Response . 1-9
Step Response . 1-9
Frequency Response . 1-9
Zeros and Poles . 1-9
Model Unstable . 1-13
Feedback in Data . 1-13
Noise Model . 1-13
Model Order . 1-14
Additional Inputs . 1-14
Nonlinear Effects . 1-14
Still Problems? . 1-14
Fit Between Simulated and Measured Output 1-15
Residual Analysis Test . 1-15
Pole Zero Cancellations . 1-15
What Model Structures Should be Tested? 1-15

Multivariable Systems . 1-16
Available Models . 1-16
Working with Subsets of the Input Output Channels 1-17
Some Practical Advice . 1-17
iv

v Contents
Reading More About System Identification 1-19

2
The Graphical User Interface

The Model and Data Boards . 2-2
The Working Data . 2-3
The Views . 2-3
The Validation Data . 2-4
The Work Flow . 2-4
Management Aspects . 2-4
Workspace Variables . 2-5
Help Texts . 2-6
Data Representation . 2-7
Getting Data into the GUI . 2-8
Taking a Look at the Data . 2-10
Preprocessing Data . 2-10

Detrending . 2-10
Selecting Data Ranges . 2-11
Prefiltering . 2-11
Resampling . 2-11
Quickstart . 2-12

Checklist for Data Handling . 2-12
Simulating Data . 2-12
The Basics . 2-14
Direct Estimation of the Impulse Response 2-14
Direct Estimation of the Frequency Response 2-15
Estimation of Parametric Models . 2-17

Estimation Method . 2-18
Resulting Models . 2-19
How to Know Which Structure and Method to Use 2-19

ARX Models . 2-20
The Structure . 2-20
Entering the Order Parameters . 2-20
Estimating Many Models Simultaneously 2-20
Estimation Methods . 2-21
Multi-Output Models . 2-21

ARMAX, Output-Error and Box-Jenkins Models 2-22
The General Structure . 2-22
The Special Cases . 2-22
Entering the Model Structure . 2-23
Estimation Method . 2-23

State-Space Models . 2-24
The Model Structure . 2-24
Entering Black-Box State-Space Model Structures 2-24
Estimating Many Models Simultaneously 2-24
Estimation Methods . 2-25

User Defined Model Structures . 2-25
State-Space Structures . 2-25
Any Model Structure . 2-26

Views and Models . 2-27
The Plot Windows . 2-28

File . 2-28
Options . 2-28
Style . 2-29
Channel . 2-29
Help . 2-29

Frequency Response and Disturbance Spectra 2-29
Transient Response . 2-29
Poles and Zeros . 2-30
Compare Measured and Model Output 2-30
Residual Analysis . 2-31
Text Information . 2-32

Present . 2-32
Modify . 2-32

Further Analysis in the MATLAB Workspace 2-32
Mouse Buttons and Hotkeys . 2-34

The Main ident Window . 2-34
Plot Windows . 2-34

Troubleshooting in Plots . 2-35
 Layout Questions and idprefs.mat . 2-35
Customized Plots . 2-36
Import from and Export to Workspace 2-36
What Cannot be Done Using the GUI 2-37
vi

vii Contents
3
Tutorial

Impulse Responses, Frequency Functions, and Spectra 3-8
Polynomial Representation of Transfer Functions 3-10
State-Space Representation of Transfer Functions 3-13
Continuous-Time State-Space Models 3-14
Estimating Impulse Responses . 3-15
Estimating Spectra and Frequency Functions 3-16
Estimating Parametric Models . 3-17
Subspace Methods for Estimating State-Space Models 3-18
Data Representation . 3-19
Correlation Analysis . 3-20
Spectral Analysis . 3-20
ARX Models . 3-22
AR Models . 3-23
General Polynomial Black-Box Models 3-23
State-Space Models . 3-25
Optional Variables . 3-26
Polynomial Black-Box Models . 3-29
Multivariable ARX Models . 3-30
State-Space Models with Free Parameters 3-33

Discrete-Time Innovations Form . 3-33
System Dynamics Expressed in Continuous Time 3-33
The Black-Box, Discrete-Time Case 3-34

State-Space Models with Coupled Parameters 3-36
State-Space Structures: Initial Values and
Numerical Derivatives . 3-37
Some Examples of User-Defined Model Structures 3-38
Theta Format: th . 3-40
Frequency Function Format: ff . 3-41
Zero-Pole Format: zp . 3-43
State-Space Format: ss . 3-43
Transfer Function Format: tf . 3-44
Polynomial Format: poly . 3-45
The ARX Format: arx . 3-45
Transformations Between Discrete and Continuous Models . 3-46

Continuous-Time Models . 3-46
Discrete-Time Models . 3-46
Transformations . 3-47

Simulation and Prediction . 3-47

Comparing Different Structures . 3-49
Checking Pole-Zero Cancellations . 3-51
Residual Analysis . 3-52
Noise-Free Simulations . 3-53
Assessing the Model Uncertainty . 3-53
Comparing Different Models . 3-54
Conditioning of the Prediction Error Gradient 3-55
Selecting Model Structures for Multivariable Systems 3-55
Offset Levels . 3-58
Outliers . 3-58
Filtering Data . 3-58
Feedback in Data . 3-59
Delays . 3-59
The Basic Algorithm . 3-61
Choosing an Adaptation Mechanism and Gain 3-62
Available Algorithms . 3-65
Segmentation of Data . 3-67
Time Series Modeling . 3-68
The Sampling Interval . 3-70
Out of Memory . 3-71
Memory-Speed Trade-Offs . 3-72
Regularization . 3-72
Local Minima . 3-73
Initial Parameter Values . 3-73
Linear Regression Models . 3-74
Spectrum Normalization and the Sampling Interval 3-75
Interpretation of the Loss Function . 3-77
Enumeration of Estimated Parameters 3-78
Complex-Valued Data . 3-79
Strange Results . 3-79

4
Command Reference
viii

ix Contents

Basic Questions About System Identification 1-2

Common Terms Used in System Identification 1-4

Basic Information About Dynamic Models 1-5

The Basic Steps of System Identification 1-10

A Startup Identification Procedure 1-12

Reading More About System Identification. 1-18
1

The System Identification
Problem

1 The System Identification Problem

1-2
1. Basic Questions About System Identification

What is System Identification?
System Identification allows you to build mathematical models of a dynamic
system based on measured data.

How is that done?
Essentially by adjusting parameters within a given model until its output
coincides as well as possible with the measured output.

How do you know if the model is any good?
A good test is to take a close look at the model’s output compared to the
measured one on a data set that wasn’t used for the fit (“Validation Data”).

Can the quality of the model be tested in other ways?
It is also valuable to look at what the model couldn’t reproduce in the data (“the
residuals”). This should not be correlated with other available information,
such as the system's input.

What models are most common?
The techniques apply to very general models. Most common models are
difference equations descriptions, such as ARX and ARMAX models, as well as
all types of linear state-space models.

Do you have to assume a model of a particular type?
For parametric models, you have to specify the structure. However, if you just
assume that the system is linear, you can directly estimate its impulse or step
response using Correlation Analysis or its frequency response using Spectral
Analysis. This allows useful comparisons with other estimated models.

What does the System Identification Toolbox contain?
It contains all the common techniques to adjust parameters in all kinds of
linear models. It also allows you to examine the models’ properties, and to
check if they are any good, as well as to preprocess and polish the measured
data.

Isn’t it a big limitation to work only with linear models?
No, actually not. Most common model nonlinearities are such that the
measured data should be nonlinearly transformed (like squaring a voltage
input if you think that it’s the power that is the stimuli). Use physical insight
about the system you are modeling and try out such transformations on models
that are linear in the new variables, and you will cover a lot!

How do I get started?
If you are a beginner, browse through Chapter and then try out a couple of the
data sets that come with the toolbox. Use the graphical user interface (GUI)
and check out the built-in help functions to understand what you are doing.

Is this really all there is to System Identification?
Actually, there is a huge amount written on the subject. Experience with real
data is the driving force to understand more. It is important to remember that
any estimated model, no matter how good it looks on your screen, has only
picked up a simple reflection of reality. Surprisingly often, however, this is
sufficient for rational decision making.
1-3

1 The System Identification Problem

1-4
2. Common Terms Used in System Identification
This section defines some of the terms that are frequently used in System
Identification.

• Estimation Data is the data set that is used to fit a model to data. In the
GUI this is the same as the Working Data.

• Validation Data is the data set that is used for model validation purposes.
This includes simulating the model for these data and computing the
residuals from the model when applied to these data.

• Model Views are various ways of inspecting the properties of a model. They
include looking at zeros and poles, transient and frequency response, and
similar things.

• Data Views are various ways of inspecting properties of data sets. A most
common and useful thing is just to plot the data and scrutinize it.
So-called outliers could be detected then. These are unreliable
measurements, perhaps arising from failures in the measurement
equipment. The frequency contents of the data signals, in terms of
periodograms or spectral estimates, is also most revealing to study.

• Model Sets or Model Structures are families of models with adjustable
parameters. Parameter Estimation amounts to finding the “best” values
of these parameters. The System Identification problem amounts to finding
both a good model structure and good numerical values of its parameters.

• Parametric Identification Methods are techniques to estimate
parameters in given model structures. Basically it is a matter of finding (by
numerical search) those numerical values of the parameters that give the
best agreement between the model’s (simulated or predicted) output and the
measured one.

• Nonparametric Identification Methods are techniques to estimate
model behavior without necessarily using a given parametrized model set.
Typical nonparametric methods include Correlation analysis, which
estimates a system’s impulse response, and Spectral analysis, which
estimates a system’s frequency response.

• Model Validation is the process of gaining confidence in a model.
Essentially this is achieved by “twisting and turning” the model to scrutinize
all aspects of it. Of particular importance is the model’s ability to reproduce
the behavior of the Validation Data sets. Thus it is important to inspect the
properties of the residuals from the model when applied to the Validation
Data.

3. Basic Information About Dynamic Models
System Identification is about building Dynamic Models. Some knowledge
about such models is therefore necessary for successful use of the toolbox.The
topic is treated in several places in the Chapter and there is a wide range of
textbooks available for introductory and in-depth studies. For basic use of the
toolbox, it is sufficient to have quite superficial insights about dynamic models.
This section describes such a basic level of knowledge.

The Signals
Models describe relationships between measured signals. It is convenient to
distinguish between input signals and output signals. The outputs are then
partly determined by the inputs. Think for example of an airplane where the
inputs would be the different control surfaces, ailerons, elevators, and the like,
while the outputs would be the airplane’s orientation and position. In most
cases, the outputs are also affected by more signals than the measured inputs.
In the airplane example it would be wind gusts and turbulence effects. Such
‘‘unmeasured inputs’’ will be called disturbance signals or noise. If we denote
inputs, outputs, and disturbances by u, y, and e, respectively, the relationship
can be depicted in the following figure.

Figure 1-1: Input Signals u, Output Signals y, and Disturbances e

All these signals are functions of time, and the value of the input at time t will
be denoted by u(t). Often, in the identification context, only discrete-time points
are considered, since the measurement equipment typically records the signals
just at discrete-time instants, often equally spread in time with a
sampling interval of T time units. The modeling problem is then to describe
how the three signals relate to each other.

y

e

u

1-5

1 The System Identification Problem

1-6
The Basic Dynamic Model
The basic relationship is the linear difference equation. An example of such
an equation is the following one.

y(t) -1.5y(t-T)+0.7y (t -2T)=0.9u(t-2T)+0.5u(t-3T)+e (t) (ARX)

Such a relationship tells us, for example, how to compute the output y(t) if the
input is known and the disturbance can be ignored:

y(t)=1.5y (t -T)-0.7y (t -2T)+0.9u(t-2T)+0.5u(t-3T)

The output at time t is thus computed as a linear combination of past outputs
and past inputs. It follows, for example, that the output at time t depends on
the input signal at many previous time instants. This is what the word
dynamic refers to. The identification problem is then to use measurements of
u and y to figure out

• The coefficients in this equation (i.e., -1.5, 0.7, etc.)

How many delayed outputs to use in the description (two in the example:

y(t-T) and y(t-2T))

• The time delay in the system is (2T in the example: you see from the second
equation that it takes 2T time units before a change in u will affect y) and

• How many delayed inputs to use (two in the example: u(t-2T) and u(t-3T))

Variants of Model Descriptions
The model given above is called an ARX model. There are a handful of
variants of this model known as Output-Error (OE) models, ARMAX models,
FIR models, and Box-Jenkins (BJ) models. These are described later on in
the manual. At a basic level it is sufficient to think of them as variants of the
ARX model allowing also a characterization of the properties of the
disturbances e.

General linear models can be described symbolically by

y=Gu+He

which says that the measured output y(t) is a sum of one contribution that
comes from the measured input u(t) and one contribution that comes from the
noise He. The symbol G then denotes the dynamic properties of the system, that
is, how the output is formed from the input. For linear systems it is called the
transfer function from input to output. The symbol H refers to the noise

properties, and is called the noise model. It describes how the disturbances at
the output are formed from some standardized noise source e(t).

State-space models are common representations of dynamical models. They
describe the same type of linear difference relationship between the inputs and
the outputs as in the ARX model, but they are rearranged so that only one
delay is used in the expressions. To achieve this, some extra variables, the
state variables, are introduced. They are not measured, but can be
reconstructed from the measured input-output data. This is especially useful
when there are several output signals, i.e., when y(t) is a vector. Chapter gives
more details about this. For basic use of the toolbox it is sufficient to know that
the order of the state-space model relates to the number of delayed inputs and
outputs used in the corresponding linear difference equation. The state-space
representation looks like

x (t+1)=Ax(t)+Bu(t)+Ke(t)

y (t)=Cx(t)+Du(t)+e(t)

Here x(t) is the vector of state variables. The matrix K determines the noise
properties. Notice that if K = 0, then the noise source e(t) affects only the
output, and no specific model of the noise properties is built. This corresponds
to H = 1 in the general description above, and is usually referred to as an
Output-Error model. Notice also that D = 0 means that there is no direct
influence from u(t) to y(t). Thus the effect of the input on the output all passes
via x(t) and will thus be delayed at least one sample. The first value of the state
variable vector x(0) reflects the initial conditions for the system at the
beginning of the data record. When dealing with models in state-space form, a
typical option is whether to estimate D, K, and x(0) or to let them be zero.

How to Interpret the Noise Source
In many cases of system identification, the effects of the noise on the output are
insignificant compared to those of the input. With good signal-to-noise ratios
(SNR), it is less important to have an accurate noise model. Nevertheless it is
important to understand the role of the noise and the noise source e(t), whether
it appears in the ARX model or in the general descriptions given above.

There are three aspects of the noise that should be stressed:

• understanding white noise

• interpreting the noise source

• using the noise source when working with the model
1-7

1 The System Identification Problem

1-8
These aspects are discussed one by one.

How can we understand white noise? From a formal point of view, the noise
source e(t) will normally be regarded as white noise. This means that it is
entirely unpredictable. In other words, it is impossible to guess the value of e(t)
no matter how accurately we have measured past data up to time t-1.

How can we interpret the noise source? The actual noise contribution to the
output, H e(t), has real significance. It contains all the influences on the
measured y, known and unknown, that are not contained in the input u. It
explains and captures the fact that even if an experiment is repeated with the
same input, the output signal will typically be somewhat different. However,
the noise source e(t) need not have a physical significance. In the airplane
example mentioned earlier, the noise effects are wind gusts and turbulence.
Describing these as arising from a white noise source via a transfer function H,
is just a convenient way of capturing their character.

How can we deal with the noise source when using the model? If the model is
used just for simulation, i.e., the responses to various inputs are to be studied,
then the noise model plays no immediate role. Since the noise source e(t) for
new data will be unknown, it is taken as zero in the simulations, so as to study
the effect of the input alone (a noise-free simulation). Making another
simulation with e(t) being arbitrary white noise will reveal how reliable the
result of the simulation is, but it will not give a more accurate simulation result
for the actual system’s response.

The need and use of the noise model can be summarized as follows:

• It is, in most cases, required to obtain a better estimate for the dynamics, G.

• It indicates how reliable noise-free simulations are.

• It is required for reliable predictions and stochastic control design.

Terms to Characterize the Model Properties
The properties of an input-output relationship like the ARX model follow from
the numerical values of the coefficients, and the number of delays used. This is
however a fairly implicit way of talking about the model properties. Instead a
number of different terms are used in practice:

Impulse Response
The impulse response of a dynamical model is the output signal that results
when the input is an impulse, i.e., u(t) is zero for all values of t except t=0,
where u(0)=1. It can be computed as in the equation following (ARX), by letting
t be equal to 0, 1, 2, ... and taking y(-T)=y(-2T)=0 and u(0)=1.

Step Response
The step response is the output signal that results from a step input, i.e., u(t)
is zero for negative values of t and equal to one for positive values of t. The
impulse and step responses together are called the model’s transient
response.

Frequency Response
The frequency response of a linear dynamic model describes how the model
reacts to sinusoidal inputs. If we let the input u(t) be a sinusoid of a certain
frequency, then the output y(t) will also be a sinusoid of this frequency. The
amplitude and the phase (relative to the input) will however be different. This
frequency response is most often depicted by two plots; one that shows the
amplitude change as a function of the sinusoid’s frequency and one that shows
the phase shift as function of frequency. This is known as a Bode plot.

Zeros and Poles
The zeros and the poles are equivalent ways of describing the coefficients of a
linear difference equation like the ARX model. The poles relate to the
“output-side” and the zeros relate to the “input-side” of this equation. The
number of poles (zeros) is equal to number of sampling intervals between the
most and least delayed output (input). In the ARX example in the beginning of
this section, there are consequently two poles and one zero.
1-9

1 The System Identification Problem

1-1
4. The Basic Steps of System Identification
The System Identification problem is to estimate a model of a system based on
observed input-output data. Several ways to describe a system and to estimate
such descriptions exist. This section gives a brief account of the most important
approaches.

The procedure to determine a model of a dynamical system from observed
input-output data involves three basic ingredients:

• The input-output data

• A set of candidate models (the model structure)

• A criterion to select a particular model in the set, based on the information
in the data (the identification method)

The identification process amounts to repeatedly selecting a model structure,
computing the best model in the structure, and evaluating this model’s
properties to see if they are satisfactory. The cycle can be itemized as follows:

1 Design an experiment and collect input-output data from the process to be
identified.

2 Examine the data. Polish it so as to remove trends and outliers, select useful
portions of the original data, and apply filtering to enhance important
frequency ranges.

3 Select and define a model structure (a set of candidate system descriptions)
within which a model is to be found.

4 Compute the best model in the model structure according to the
input-output data and a given criterion of fit.

5 Examine the obtained model’s properties

6 If the model is good enough, then stop; otherwise go back to Step 3 to try
another model set. Possibly also try other estimation methods (Step 4) or
work further on the input-output data (Steps 1 and 2).

The System Identification Toolbox offers several functions for each of these
steps.
0

For Step 2 there are routines to plot data, filter data, and remove trends in
data.

For Step 3 the System Identification Toolbox offers a variety of nonparametric
models, as well as all the most common black-box input-output and state-space
structures, and also general tailor-made linear state-space models in discrete
and continuous time.

For Step 4 general prediction error (maximum likelihood) methods as well as
instrumental variable methods and sub-space methods are offered for
parametric models, while basic correlation and spectral analysis methods are
used for nonparametric model structures.

To examine models in Step 5, many functions allow the computation and
presentation of frequency functions and poles and zeros, as well as simulation
and prediction using the model. Functions are also included for
transformations between continuous-time and discrete-time model
descriptions and to formats that are used in other MATLAB toolboxes, like the
Control System Toolbox and the Signal Processing Toolbox.
1-11

1 The System Identification Problem

1-1
5. A Startup Identification Procedure
There are no standard and secure routes to good models in System
Identification. Given the number of possibilities, it is easy to get confused about
what to do, what model structures to test, and so on. This section describes one
route that often works well, but there are no guarantees. The steps refer to
functions within the GUI, but you ca6n also go through them in command
mode. See Chapter for the basic commands.

Step 1 Looking at the Data
Plot the data. Look at them carefully. Try to see the dynamics with your own
eyes. Can you see the effects in the outputs of the changes in the input? Can
you see nonlinear effects, like different responses at different levels, or
different responses to a step up and a step down? Are there portions of the data
that appear to be “messy” or carry no information. Use this insight to select
portions of the data for estimation and validation purposes.

Do physical levels play a role in your model? If not, detrend the data by
removing their mean values. The models will then describe how changes in the
input give changes in output, but not explain the actual levels of the signals.
This is the normal situation.

The default situation, with good data, is that you detrend by removing means,
and then select the first half or so of the data record for estimation purposes,
and use the remaining data for validation. This is what happens when you
apply Quickstart under the pop-up menu Preprocess in the main ident
window.

Step 2 Getting a Feel for the Difficulties
Apply Quickstart under pop-up menu Estimate in the main ident window.
This will compute and display the spectral analysis estimate and the
correlation analysis estimate, as well as a fourth order ARX model with a delay
2

estimated from the correlation analysis and a default order state-space model
computed by n4sid. This gives three plots. Look at the agreement between the

• Spectral Analysis estimate and the ARX and state-space models’ frequency
functions

• Correlation Analysis estimate and the ARX and state-space models’
transient responses

• Measured Validation Data output and the ARX and state-space models’
simulated outputs

If these agreements are reasonable, the problem is not so difficult, and a
relatively simple linear model will do a good job. Some fine tuning of model
orders, and noise models have to be made and you can proceed to Step 4.
Otherwise go to Step 3.

Step 3 Examining the Difficulties
There may be several reasons why the comparisons in Step 2 did not look good.
This section discusses the most common ones, and how they can be handled:

Model Unstable
The ARX or state-space model may turn out to be unstable, but could still be
useful for control purposes. Change to a 5- or 10-step ahead prediction instead
of simulation in the Model Output View.

Feedback in Data
If there is feedback from the output to the input, due to some regulator, then
the spectral and correlations analysis estimates are not reliable. Discrepancies
between these estimates and the ARX and state-space models can therefore be
disregarded in this case. In the Model Residuals View of the parametric
models, feedback in data can also be visible as correlation between residuals
and input for negative lags.

Noise Model
If the state-space model is clearly better than the ARX model at reproducing
the measured output, this is an indication that the disturbances have a
substantial influence, and it will be necessary to model them carefully.
1-13

1 The System Identification Problem

1-1
Model Order
If a fourth order model does not give a good Model Output plot, try eighth
order. If the fit clearly improves, it follows that higher order models will be
required, but that linear models could be sufficient.

Additional Inputs
If the Model Output fit has not significantly improved by the tests so far,
think over the physics of the application. Are there more signals that have
been, or could be, measured that might influence the output? If so, include
these among the inputs and try again a fourth order ARX model from all the
inputs. (Note that the inputs need not at all be control signals, anything
measurable, including disturbances, should be treated as inputs).

Nonlinear Effects
If the fit between measured and model output is still bad, consider the physics
of the application. Are there nonlinear effects in the system? In that case, form
the nonlinearities from the measured data. This could be as simple as forming
the product of voltage and current measurements, if you realize that it is the
electrical power that is the driving stimulus in, say, a heating process, and
temperature is the output. This is of course application dependent. It does not
take very much work, however, to form a number of additional inputs by
reasonable nonlinear transformations of the measured ones, and just test if
inclusion of them improves the fit.

Still Problems?
If none of these tests leads to a model that is able to reproduce the Validation
Data reasonably well, the conclusion might be that a sufficiently good model
cannot be produced from the data. There may be many reasons for this. The
most important one is that the data simply do not contain sufficient
information, e.g., due to bad signal to noise ratios, large and nonstationary
disturbances, varying system properties, etc. The reason may also be that the
system has some quite complicated nonlinearities, which cannot be realized on
physical grounds. In such cases, nonlinear, black box models could be a
solution. Among the most used models of this character are the Artificial
Neural Networks (ANN).

Otherwise, use the insights of which inputs to use and which model orders to
expect and proceed to Step 4.
4

Step 4 Fine Tuning Orders and Noise Structures
For real data there is no such thing as a “correct model structure.” However,
different structures can give quite different model quality. The only way to find
this out is to try out a number of different structures and compare the
properties of the obtained models. There are a few things to look for in these
comparisons:

Fit Between Simulated and Measured Output
Keep the Model Output View open and look at the fit between the model’s
simulated output and the measured one for the Validation Data. Formally, you
could pick that model, for which this number is the lowest. In practice, it is
better to be more pragmatic, and also take into account the model complexity,
and whether the important features of the output response are captured.

Residual Analysis Test
You should require of a good model, that the cross correlation function between
residuals and input does not go significantly outside the confidence region. A
clear peak at lag k shows that the effect from input u(t-k) on y(t) is not properly
described. A rule of thumb is that a slowly varying cross correlation function
outside the confidence region is an indication of too few poles, while sharper
peaks indicate too few zeros or wrong delays.

Pole Zero Cancellations
If the pole-zero plot (including confidence intervals) indicates pole-zero
cancellations in the dynamics, this suggests that lower order models can be
used. In particular, if it turns out that the orders of ARX models have to be
increased to get a good fit, but that pole-zero cancellations are indicated, then
the extra poles are just introduced to describe the noise. Then try ARMAX, OE,
or BJ model structures with an A or F polynomial of an order equal to that of
the number of noncanceled poles.

What Model Structures Should be Tested?
Well, you can spend any amount of time to check out a very large number of
structures. It often takes just a few seconds to compute and evaluate a model
in a certain structure, so that you should have a generous attitude to the
testing. However, experience shows that when the basic properties of the
system’s behavior have been picked up, it is not much use to fine tune orders
in absurdum just to press the fit by fractions of percents.
1-15

1 The System Identification Problem

1-1
Many ARX models: There is a very cheap way of testing many ARX structures
simultaneously. Enter in the Orders text field many combinations of orders,
using the colon (“:”) notation. When you select Estimate, models for all
combinations (easily several hundreds) are computed and their (prediction
error) fit to Validation Data is shown in a special plot. By clicking in this plot
the best models with any chosen number of parameters will be inserted into the
Model Board, and evaluated as desired.

Many State-space models: A similar feature is also available for black-box
state-space models, estimated using n4sid. When a good order has been found,
try the PEM estimation method, which often improves on the accuracy.

ARMAX, OE, and BJ models: Once you have a feel for suitable delays and
dynamics orders, if is often useful to try out ARMAX, OE, and/or BJ with these
orders and test some different orders for the noise transfer functions (C and D).
Especially for poorly damped systems, the OE structure is suitable.

There is a quite extensive literature on order and structure selection, and
anyone who would like to know more should consult the references.

Multivariable Systems
Systems with many input signals and/or many output signals are called
multivariable. Such systems are often more challenging to model. In particular
systems with several outputs could be difficult. A basic reason for the
difficulties is that the couplings between several inputs and outputs lead to
more complex models. The structures involved are richer and more parameters
will be required to obtain a good fit.

Available Models
The System Identification Toolbox as well as the GUI handles general, linear
multivariable models. All earlier mentioned models are supported in the single
output, multiple input case. For multiple outputs ARX models and state-space
models are covered. Multi-output ARMAX and OE models are covered via
state-space representations: ARMAX corresponds to estimating the K-matrix,
while OE corresponds to fixing K to zero. (These are pop-up options in the GUI
model order editor.)

Generally speaking, it is preferable to work with state-space models in the
multivariable case, since the model structure complexity is easier to deal with.
It is essentially just a matter of choosing the model order.
6

Working with Subsets of the Input Output Channels
In the process of identifying good models of a system, it is often useful to select
subsets of the input and output channels. Partial models of the system’s
behavior will then be constructed. It might not, for example, be clear if all
measured inputs have a significant influence on the outputs. That is most
easily tested by removing an input channel from the data, building a model for
how the output(s) depends on the remaining input channels, and checking if
there is a significant deterioration in the model output’s fit to the measured
one. See also the discussion under Step 3 above.

Generally speaking, the fit gets better when more inputs are included and
worse when more outputs are included. To understand the latter fact, you
should realize that a model that has to explain the behavior of several outputs
has a tougher job than one that just must account for a single output. If you
have difficulties obtaining good models for a multi-output system, it might be
wise to model one output at a time, to find out which are the difficult ones to
handle.

Models that are just to be used for simulations could very well be built up from
single-output models, for one output at a time. However, models for prediction
and control will be able to produce better results if constructed for all outputs
simultaneously. This follows from the fact that knowing the set of all previous
output channels gives a better basis for prediction, than just knowing the past
outputs in one channel.

Some Practical Advice
The GUI is particularly suited for dealing with multivariable systems since it
will do useful bookkeeping for you, handling different channels. You could
follow the steps of this agenda:

• Import data and create a data set with all input and output channels of
interest. Do the necessary preprocessing of this set in terms of detrending,
prefiltering, etc., and then select a Validation Data set with all channels.

• Then select a Working Data set with all channels, and estimate state-space
models of different orders using n4sid for these data. Examine the resulting
model primarily using the Model Output view.

• If it is difficult to get a good fit in all output channels or you would like to
investigate how important the different input channels are, construct new
data sets using subsets of the original input/output channels. Use the pop-up
menu Preprocess > Select Channels for this. Don’t change the Validation
1-17

1 The System Identification Problem

1-1
Data. The GUI will keep track of the input and output channel numbers. It
will “do the right thing” when evaluating the channel-restricted models
using the Validation Data. It might also be appropriate to see if
improvements in the fit are obtained for various model types, built for one
output at a time.

• If you decide for a multi-output model, it is often easiest to use state-space
models. Use n4sid as a primary tool and try out pem when a good order has
been found. Note that n4sid does not provide confidence intervals for the
model views.
8

Reading More About System Identification
Reading More About System Identification
There is substantial literature on System Identification. The following
textbook deals with identification methods from a similar perspective as this
toolbox, and also describes methods for physical modeling.

• Ljung L. and T. Glad. Modeling of Dynamic Systems, Prentice Hall, Englewood
Cliffs, N.J. 1994.

For more details about the algorithms and theories of identification:

• Ljung L.. System Identification - Theory for the User, Prentice Hall, Englewood
Cliffs, N.J. 1987.

• Söderström T. and P. Stoica. System Identification, Prentice Hall International,
London. 1989.

For more about system and signals:

• Oppenheim J. and A.S. Willsky. Signals and Systems, Prentice Hall, Englewood
Cliffs, N.J. 1985.

The following textbook deals with the underlying numerical techniques for
parameter estimation.

• Dennis, J.E. Jr. and R.B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, N.J.
1983.
1-19

1 The System Identification Problem

1-2
0

The Big Picture . 2-2

Handling Data . 2-7

Estimating Models . 2-14

Examining Models . 2-27

Some Further GUI Topics . 2-34
2

The Graphical User
Interface

2 The Graphical User Interface

2-2
1. The Big Picture
The System Identification Toolbox provides a graphical user interface (GUI) .
The GUI covers most of the toolbox’s functions and gives easy access to all
variables that are created during a session. It is started by typing

ident

in the MATLAB command window.

Figure 2-1: The Main ident Information Window

The Model and Data Boards
System Identification is about data and models and creating models from data.
The main information and communication window ident, is therefore
dominated by two tables:

• A table over available data sets, each represented by an icon.

• A table over created models, each represented by an icon.

These tables will be referred to as the “Model Board” and the “Data Board” in
this chapter. You enter data sets into the Data Board by

• Opening earlier saved sessions.

• Importing them from the MATLAB workspace.
• Creating them by detrending, filtering, selecting subsets, etc., of another

data set in the Data Board.

Imports are handled under the pop-up menu Data while creation of new data
sets is handled under the pop-up menu Preprocess. “Handling Data” on page
2-7 deals with this in more detail.

The models are entered into the summary board by

• Opening earlier saved sessions.

• Importing them from the MATLAB workspace.
• Estimating them from data.

Imports are handled under the pop-up menu Models, while all the different
estimation schemes are reached under the pop-up menu Estimate. More about
this in “Estimating Models” on page 2-14.

The Data and Model Boards can be rearranged by dragging and dropping.
More boards open automatically when necessary or when asked for (under
menu Options).

The Working Data
All data sets and models are created from the Working Data set. This is the
data that is given in the center of the ident window. To change the Working
Data set drag and drop any data set from the Data Board on the Working Data
icon.

The Views
Below the Data and Model Boards are buttons for different views. These
control what aspects of the data sets and models you would like to examine, and
are described in more detail in “Handling Data” on page 2-7 and in “Examining
Models” on page 2-27. To select a data set or a model, so that its properties are
displayed, click on its icon. A selected object is marked by a thicker line in the
icon. To deselect, click again. An arbitrary number of data/model objects can be
examined simultaneously. To have more information about an object,
double-click on its icon.
2-3

2 The Graphical User Interface

2-4
The Validation Data
The two model views Model Output and Model Residuals illustrate model
properties when applied to the Validation Data set. This is the set marked in
the box below these two views. To change the Validation Data, drag and drop
any data set from the Data Board on the Validation Data icon.

It is good and common practice in identification to evaluate an estimated
model’s properties using a “fresh” data set, that is, one that was not used for
the estimation. It is thus good advice to let the Validation Data be different
from the Working Data, but they should of course be compatible with these.

The Work Flow
You start by importing data (under pop-up menu Data); you examine the data
set using the Data Views. You probably remove the means from the data and
select subsets of data for estimation and validation purposes using the items in
the pop-up menu Preprocess. You then continue to estimate models, using the
possibilities under the pop-up menu Estimate, perhaps first doing a
quickstart. You examine the obtained models with respect to your favorite
aspects using the different Model Views. The basic idea is that any checked
view shows the properties of all selected models at any time. This function is
“live” so models and views can be checked in and out at will in an online
fashion. You select/deselect a model by clicking on its icon.

Inspired by the information you gain from the plots, you continue to try out
different model structures (model orders) until you find a model you are
satisfied with.

Management Aspects
Diary: It is easy to forget what you have been doing. By double-clicking on a
data/model icon, a complete diary will be given of how this object was created,
along with other key information. At this point you can also add comments and
change the name of the object and its color.

Layout: To have a good overview of the created models and data sets, it is good
practice to try rearranging the icons by dragging and dropping. In this way
models corresponding to a particular data set can be grouped together, etc. You
can also open new boards (Options menu Extra model/data boards) to
further rearrange the icons. These can be dragged across the screen between
different windows. The extra boards are also equipped with notepads for your
comments.

Sessions: The Model and Data Boards with all models and data sets together
with their diaries can be saved (under menu item File) at any point, and
reloaded later. This is the counterpart of save/load workspace in the
command-driven MATLAB. The four most recent sessions are listed under File
for immediate open.

Cleanliness: The boards will hold an arbitrary number of models and data
sets (by creating clones of the board when necessary). It is however advisable
to clear (delete) models and data sets that no longer are of interest. Do that by
dragging the object to the Trash Can. (Double-clicking on the trash can will
open it up, and its contents can be retrieved.)

Window Culture: Dialog and plot windows are best managed by the GUI’s
close function (submenu item under File menu, or select Close, or check/
uncheck the corresponding View box). They may also be”quitted” by the specific
window system’s quit/close function. This does no harm, but “quit” will not be
properly acknowledged by the GUI, and the window will have to be re-created
next time it is to be used.

It is generally not suitable to iconify the windows – the GUI’s handling and
window management system is usually a better alternative.

Workspace Variables
The models and data sets created within the GUI are normally not available in
the MATLAB workspace. Indeed, the workspace is not at all littered with
variables during the sessions with the GUI. The variables can however be
exported at any time to the workspace, by dragging and dropping the object
icon on the To Workspace box. They will then carry the name in the
workspace that marked the object icon at the time of export. You can work with
the variables in the workspace, using any MATLAB commands, and then
perhaps import modified versions back into the GUI. Note that models have a
specific internal structure and should be dealt with using the MATLAB
commands present, th2ff, th2ss, etc. See “Model Conversions” on page 4-5 of
the "Command Reference" chapter.

The GUI’s names of data sets and models are suggested by default procedures.
Normally, you can enter any other name of your choice at the time of creation
of the variable. Names can be changed (after double-clicking on the icon) at any
time. Unlike the workspace situation, two GUI objects can carry the same
name (i.e., the same string in their icons).
2-5

2 The Graphical User Interface

2-6
The GUI produces a handful of global workspace variables for management
purposes. They all start with the prefix XID.

NOTE: Do not clear all or clear global during a GUI session! This would
mean that you lose control over the objects that you have created. The same
disaster occurs if you do clg or quit the main ident window. It is however
safe to clear (without adding all or global) the workspace at any time.

Help Texts
The GUI contains some 100 help texts that are accessible in a nested fashion,
when required. The main ident window contains general help topics under the
Help menu. This is also the case for the various plot windows. In addition,
every dialog box has a Help push button for current help and advice.

2. Handling Data

Data Representation
In the System Identification Toolbox (SITB), signals and observed data are
represented as column vectors, e.g.,

The entry in row number k, i.e., u(k), will then be the signal’s value at sampling
instant number k. It is generally assumed in the toolbox that data are sampled
at equidistant sampling times, and the sampling interval T is supplied as a
specific argument.

We generally denote the input to a system by the letter u and the output by y.
If the system has several input channels, the input data is represented by a
matrix, where the columns are the input signals in the different channels:

The same holds for systems with several output channels.

The observed input-output data record is represented in the SITB by a matrix,
where the first column(s) is the output, followed by the input column(s):

z = [y u];

When you work with the GUI, you only need to think of these representation
issues when you insert the data set into the summary board. The GUI will then
handle the data representation automatically.

u

u 1()
u 2()
…
…

u N()

=

u u1 u2 … um=
2-7

2 The Graphical User Interface

2-8
Getting Data into the GUI
The information about a data set that should be supplied to the GUI is as
follows:

1 The input and output signals

2 The name you give to the data set

3 The starting time

4 The sampling interval

5 Data notes

NOTE: Items 3 and 4 are used only to ensure correct time and frequency scales
when you plot data and model characteristics.

These are notes for your own information and bookkeeping that will follow the
data and all models created from them.

As you select the pop-up menu Data and choose the item Import..., a dialog
box will open, where you can enter the information items 1 - 5, just listed. This
box has six fields for you to fill in:

Figure 2-2: The Dialog for Importing Data into the GUI

Input and Output: Enter the variable names of the input and output
respectively. These should be variables in your MATLAB workspace, so you
may have to load some disk files first.

Actually, you can enter any MATLAB expressions in these fields, and they will
be evaluated to compute the input and the output before inserting the data into
the GUI.

Data name: Enter the name of the data set to be used by the GUI. This name
can be changed later on.

Starting time and Sampling interval: Fill these out for correct time and
frequency scales in the plots.

Note that you can enter any text you want to accompany the data for
bookkeeping purposes.
2-9

2 The Graphical User Interface

2-1
Finally, select Import to insert the data into the GUI. When no more data sets
are to be inserted, select Close to close the dialog box. Reset will empty all the
fields of the box.

Taking a Look at the Data
The first thing to do after having inserted the data set into the Data Board is
to examine it. By checking the Data View item Plot Data, a plot of the input
and output signals will be shown for the data sets that are selected. You select/
deselect the data sets by clicking on them. For multivariable data, the different
combinations of input and output signals are chosen under menu item
Channel in the plot window. Using the zoom function (drawing rectangles with
the left mouse button down) different portions of the data can be examined in
more detail.

To examine the frequency contents of the data, check the Data View item
Data Spectra. The function is analogous to Plot Data, but the signals’ spectra
are shown instead. By default the periodograms of the data are shown, i.e., the
absolute square of the Fourier transforms of the data. The plot can be changed
to any chosen frequency range and a number of different ways of estimating
spectra, by the Options menu item in the spectra window.

The purpose of examining the data in these ways is to find out if there are
portions of the data that are not suitable for identification, if the information
contents of the data is suitable in the interesting frequency regions, and if the
data have to be preprocessed in some way, before using them for estimation.

Preprocessing Data

Detrending
Detrending the data involves removing the mean values or linear trends from
the signals (the means and the linear trends are then computed and removed
from each signal individually). This function is accessed under the pop-up
menu Preprocess, by selecting item Remove Means or Remove Trends.
More advanced detrending, such as removing piecewise linear trends or
seasonal variations cannot be accessed within the GUI. It is generally
recommended that you always remove at least the mean values of the data
before the estimation phase, unless physical insight involving actual signal
levels is built into the models.
0

Selecting Data Ranges
It is often the case that the whole data record is not suitable for identification,
due to various undesired features (missing or “bad” data, outbursts of
disturbances, level changes etc.), so that only portions of the data can be used.
In any case, it is advisable to select one portion of the measured data for
estimation purposes and another portion for validation purposes. The pop-up
menu item Preprocess > Select Range... opens a dialog box, which facilitates
the selection of different data portions, by typing in the ranges, or marking
them by drawing rectangles with the mouse button down.

For multivariable data it is often advantageous to start by working with just
some of the input and output signals. The menu item Preprocess > Select
Channels... allows you to select subsets of the inputs and outputs. This is done
in such a way that the input/output numbering remains consistent when you
evaluate data and model properties, for models covering different subsets of the
data.

Prefiltering
By filtering the input and output signals through a linear filter (the same filter
for all signals) you can focus the model’s fit to the system to specific frequency
ranges. This is done by selecting the pop-up menu item Preprocess > Filter...
in the main window. The dialog is quite analogous to that of selecting data
ranges in the time domain. You mark with a rectangle in the spectral plots the
intended passband or stop band of the filter, you select a button to check if the
filtering has the desired effect, and then you insert the filtered data into the
GUI’s Data Board.

Prefiltering is a good way of removing high frequency noise in the data, and
also a good alternative to detrending (by cutting out low frequencies from the
pass band). Depending on the intended model use, you can also make sure that
the model concentrates on the important frequency ranges. For a model that
will be used for control design, for example, the frequency band around the
intended closed-loop bandwidth is of special importance.

Resampling
If the data turn out to be sampled too fast, they can be decimated, i.e., every
k-th value is picked, after proper prefiltering (antialias filtering). This is
obtained from menu item Preprocess > Resample.
2-11

2 The Graphical User Interface

2-1
You can also resample at a faster sampling rate by interpolation, using the
same command, and giving a resampling factor less than one.

Quickstart
The pop-up menu item Preprocess > Quickstart performs the following
sequence of actions: It opens the Time plot Data view, removes the means from
the signals, and it splits these detrended data into two halves. The first one is
made Working Data and the second one becomes Validation Data. All the three
created data sets are inserted into the Data Board.

Checklist for Data Handling
• Insert data into the GUI’s Data Board.

• Plot the data and examine it carefully.

• Typically detrend the data by removing mean values.

• Possibly prefilter the data to enhance and suppress various frequency bands.

• Select portions of the data for Estimation and for Validation. Drag and drop
these data sets to the corresponding boxes in the GUI.

Simulating Data
The GUI is intended primarily for working with real data sets, and does not
itself provide functions for simulating synthetic data. That has to be done in
command mode, and you can use your favorite procedure in SIMULINK, the
Signal Processing Toolbox, or any other toolbox for simulation and then insert
the simulated data into the GUI as described above.

The System Identification Toolbox also has several commands for simulation.
You should check idinput, idsim, poly2th, modstruc, and ms2th in Chapter 4,
"Command Reference," for details. The following example shows how the
ARMAX model

y (t)-1.5y (t -1)+0.7y(t-2)=u(t -1)+0.5u(t-2)+e (t)-e(t-1)+0.2e (t -2)

is simulated with a binary random input u:

model1 = poly2th([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);
u = idinput(400,’rbs’,[0 0.3]);
e = randn(400,1);
y = idsim([u e],model1);
2

The input, u, and the output, y, can now be imported into the Graphical User
Interface as data, and the various estimation routines can be applied to them.
By also importing the simulation model, model1, into the GUI, its properties
can be compared to those of the different estimated models.

To simulate a continuous-time state-space model:

y=Cx+e

with the same input, and a sampling interval of 0.1 seconds, do the following
in the System Identification Toolbox:

A=[-1 1;-0.5 0]; B=[1; 0.5]; C=[1 0]; D=0; K=[0.5;0.5];
model2=ms2th(modstruc(A,B,C,D,K),'c');
model2=sett(model2,0.1);
y=idsim([u e],model2);

x· Ax Bu Ke+ +=
2-13

2 The Graphical User Interface

2-1
3. Estimating Models

The Basics
Estimating models from data is the central activity in the System
Identification Toolbox. It is also the one that offers the most variety of
possibilities and thus is the most demanding one for the user.

All estimation routines are accessed from the pop-up menu Estimate in the
ident window. The models are always estimated using the data set that is
currently in the Working Data box.

 One can distinguish between two different types of estimation methods:

• Direct estimation of the Impulse or the Frequency Response of the system.
These methods are often also called nonparametric estimation methods, and
do not impose any structure assumptions about the system, other than that
it is linear.

• Parametric methods. A specific model structure is assumed, and the
parameters in this structure are estimated using data. This opens up a large
variety of possibilities, corresponding to different ways of describing the
system. Dominating ways are state-space and several variants of difference
equation descriptions.

Direct Estimation of the Impulse Response
A linear system can be described by the impulse response gt, with the property
that

The name derives from the fact that if the input u(t) is an impulse, i.e., u(t)=1
when t=0 and 0 when t>0 then the output y(t) will be y(t)=gt. For a
multivariable system, the impulse response gk will be a p by m matrix, where
p is the number of outputs and m is the number of inputs. Its i-j element thus
described the behavior of the i-th output after an impulse in the j-th input.

By choosing menu item Estimate > Correlation Model and then selecting
Estimate in the dialog window that opens, impulse response coefficients are
estimated directly from the input/output data using so called correlation

y t() gku t k–()
k 1=

∞

∑=
4

analysis. The actual method is described under the command cra in the
Command Reference chapter. An option that determines the order of a
prewhitening filter can also be set in the dialog window. It is not very sensitive
in most cases, and the default choice is often good enough. To obtain the default
choice without opening the dialog window, you can also just type the letter c in
the ident window. This is the “hotkey” for correlation analysis.

The resulting impulse response estimate is placed in the Model Board, under
the default name cra_d. (The name can be changed by double-clicking on the
model icon and then typing in the desired name in the dialog box that opens.)

The best way to examine the result is to select the Model View Transient
Response. This gives a graph of the estimated response. This view offers a
choice between displaying the Impulse or the Step response. For a
multivariable system, the different channels, i.e., the responses from a certain
input to a certain output, are selected under menu item Channel.

The number of lags for which the impulse response is estimated, i.e., the length
of the estimated response, is determined as one of the options in the Transient
Response View.

Direct Estimation of the Frequency Response
The frequency response of a linear system is the Fourier transform of its
impulse response. This description of the system gives considerable
engineering insight into its properties. The relation between input and output
is often written

y (t)=G (z)u(t)+v(t)

where G is the transfer function and v is the additive disturbance. The function

as a function of (angular) frequency ω is then the frequency response or
frequency function. T is the sampling interval. If you need more details on the
different interpretations of the frequency response, consult See “The System
Identification Problem” on page 3-8. in the Tutorial or any textbook on linear
systems.

The system’s frequency response is directly estimated using Spectral Analysis
by the menu item Estimate > Spectral Model, and then selecting the
Estimate button in the dialog box that opens. The result is placed on the Model

G eiωT()
2-15

2 The Graphical User Interface

2-1
Board under the default name spa_d. The best way to examine it is to plot it
using the Model View Frequency Response. This view offers a number of
different options on how to graph the curves. The frequencies for which to
estimate the response can also be selected as an option under the Options
menu in this View window.

The Spectral Analysis command also estimates the spectrum of the additive
disturbance v(t) in the system description. This estimated disturbance
spectrum is examined under the Model View item Noise Spectrum.

The Spectral Analysis estimate is stored in the SITB’s freqfunc format. If you
need to further work with the estimates, you can export the model to the
MATLAB workspace and retrieve the responses by the command getff. See
freqfunc and getff in Chapter 4, "Command Reference," for more
information. (A model is exported by dragging and dropping it over the To
Workspace icon.)

Two options that affect the spectral analysis estimate can be set in the dialog
box. The most important choice is a number, M, (the size of the lag window)
that affects the frequency resolution of the estimates. Essentially, the
frequency resolution is about 2 /M radians/(sampling interval). The choice of
M is a trade-off between frequency resolution and variance (fluctuations). A
large value of M gives good resolution but fluctuating and less reliable
estimates. The default choice of M is good for systems that do not have very
sharp resonances and may have to be adjusted for more resonant systems.

The options also offer a choice between the Blackman-Tukey windowing
method spa (which is default) and a method based on smoothing direct Fourier
transforms, etfe. etfe has an advantage for highly resonant systems, in that
it is more efficient for large values of M. It however has the drawbacks that it
requires linearly spaced frequency values, does not estimate the disturbance
spectrum, and does not provide confidence intervals. The actual methods are
described in more detail in Chapter 4, "Command Reference," under spa and
etfe. To obtain the spectral analysis model for the current settings of the
options, you can just type the hotkey s in the ident window.

π

6

Estimation of Parametric Models
The SITB supports a wide range of model structures for linear systems. They
are all accessed by the menu item Estimate > Parametric Models... in the
ident window. This opens up a dialog box Parametric Models, which
contains the basic dialog for all parametric estimation as shown on the
following page

Figure 2-3: The Dialog Box for Estimating Parametric Models

The basic function of this box is as follows:

As you select Estimate, a model is estimated from the Working Data. The
structure of this model is defined by the pop-up menu Structure together with
the edit box Orders. It is given a name, which is written in the edit box Name.

The GUI will always suggest a default model name in the Name box, but you
can change it to any string before selecting the Estimate button. (If you intend
to export the model later, avoid spaces in the name.)
2-17

2 The Graphical User Interface

2-1
The interpretation of the model structure information (typically integers) in
the Order box, depends on the selected Structure in the pop-up menu. This
covers, typically, six choices:

• ARX models

• ARMAX model

• Output-Error (OE) models

• Box-Jenkins (BJ) models

• State-space models

• Model structure defined by Initial Model (User defined structures)

These are dealt with one by one shortly.

You can fill out the Order box yourself at any time, but for assistance you can
select Order Editor... This will open up another dialog box, depending on the
chosen Structure, in which the desired model order and structure information
can be entered in a simpler fashion.

You can also enter a name of a MATLAB workspace variable in the order edit
box. This variable should then have a value that is consistent with the
necessary orders for the chosen structure.

NOTE: For the state-space structure and the ARX structure, several orders
and combination of orders can be entered. Then all corresponding models will
be compared and displayed in a special dialog window for you to select
suitable ones. This could be a useful tool to select good model orders. This
option is described in more detail later in this section. When it is available, a
button Order selection is visible.

Estimation Method
A common and general method of estimating the parameters is the prediction
error approach, where simply the parameters of the model are chosen so that
the difference between the model’s (predicted) output and the measured output
is minimized. This method is available for all model structures. Except for the
ARX case, the estimation involves an iterative, numerical search for the best
fit.
8

To obtain information from and interact with this search, select Iteration
control... This also gives access to a number of options that govern the search
process. (See auxvar in the Chapter 4, "Command Reference,".)

For some model structures (the ARX model, and black-box state-space models)
methods based on correlation are also available: Instrumental Variable (IV)
and Sub-space (N4SID) methods. The choice between methods is made in the
Parametric Models dialog box.

Resulting Models
The estimated model is inserted into the GUI’s Model Board. You can then
examine its various properties and compare them with other models’ properties
using the Model View plots. More about that in “Examining Models” on page
2-27.

To take a look at the model itself, double-click on the model’s icon (middle/right
mouse button or alt- double-click). The Data/Model Info window that then
opens gives you information about how the model was estimated. You can then
also select Present button, which will list the model, and its parameters with
estimated standard deviations in the MATLAB command window.

If you need to work further with the model, you can export it by dragging and
dropping it over the To Workspace icon, and then apply any MATLAB and
toolbox commands to it. (See, in particular, the commands th2ss, th2tf,
th2par, and thd2thc in Chapter 4, "Command Reference,".)

How to Know Which Structure and Method to Use
There is no simple way to find out “the best model structure”; in fact, for real
data, there is no such thing as a “best” structure. Some routes to find good and
acceptable model are described in “A Startup Identification Procedure” on page
1-12 in the introductory chapter. It is best to be generous at this point. It often
takes just a few seconds to estimate a model, and by the different validation
tools described in the next section, you can quickly find out if the new model is
any better than the ones you had before. There is often a significant amount of
work behind the data collection, and spending a few extra minutes trying out
several different structures is usually worth while.
2-19

2 The Graphical User Interface

2-2
ARX Models

The Structure
The most used model structure is the simple linear difference equation

which relates the current output y(t) to a finite number of past outputs y(t-k)
and inputs u(t-k).

The structure is thus entirely defined by the three integers na, nb, and nk. na
is equal to the number of poles and nb–1 is the number of zeros, while nk is the
pure time-delay (the dead-time) in the system. For a system under
sampled-data control, typically nk is equal to 1 if there is no dead-time.

For multi-input systems nb and nk are row vectors, where the i-th element
gives the order/delay associated with the i-th input.

Entering the Order Parameters
The orders na, nb, and nk can either be directly entered into the edit box
Orders in the Parametric Models window, or selected using the pop-up
menus in the Order Editor.

Estimating Many Models Simultaneously
By entering any or all of the structure parameters as vectors, using MATLAB’s
colon notation, like na=1:10, etc., you define many different structures that
correspond to all combinations of orders. When selecting Estimate, models
corresponding to all of these structures are computed. A special plot window
will then open that shows the fit of these models to Validation Data. By clicking
in this plot, you can then enter any models of your choice into the Model Board.

Multi-input models: For multi-input models you can of course enter each of
the input orders and delays as a vector. The number of models resulting from
all combinations of orders and delays can however be very large. As an
alternative, you may enter one vector (like nb=1:10) for all inputs and one
vector for all delays. Then only such models are computed that have the same
orders and delays from all inputs.

y t() a1y t 1–() … anay t na–()+ + + b1u t nk–() … bnbu t nk– nb– 1+()+ +=
0

Estimation Methods
There are two methods to estimate the coefficients a and b in the ARX model
structure:
Least Squares: Minimizes the sum of squares of the right-hand side minus
the left-hand side of the expression above, with respect to a and b. This is
obtained by selecting ARX as the Method.

Instrumental Variables: Determines a and b so that the error between the
right- and left- hand sides becomes uncorrelated with certain linear
combinations of the inputs. This is obtained by selecting IV in the Method box.

The methods are described in more detail in Chapter 4, "Command Reference,"
under arx and iv4.

Multi-Output Models
For a multi-output ARX structure with NY outputs and NU inputs, the
difference equation above is still valid. The only change is that the coefficients
a are NY by NY matrices and the coefficients b are NY by NU matrices.

The orders [NA NB NK] define the model structure as follows:

NA: an NY by NY matrix whose i-j entry is the order of the polynomial (in the
delay operator) that relates the j-th output to the i-th output

NB: an NY by NU matrix whose i-j entry is the order of the polynomial that
relates the j-th input to the i-th output

NK: an NY by NU matrix whose i-j entry is the delay from the j-th input to the
i-th output

The Order Editor dialog box allows the choices

 NA = na∗ones(NY,NY)
 NB = nb∗ones(NY,NU)
 NK = nk∗ones(NY,NU)

 where na, nb, and nk are chosen by the pop-up menus.

For tailor-made order choices, construct a matrix [NA NB NK] in the MATLAB
command window and enter the name of this matrix in the Order edit box in
the Parametric Models window.

Note that the possibility to estimate many models simultaneously is not
available for multi-output ARX models.

See “Defining Model Structures” on page 3-29 for more information on
multi-output ARX models.
2-21

2 The Graphical User Interface

2-2
ARMAX, Output-Error and Box-Jenkins Models
There are several elaborations of the basic ARX model, where different noise
models are introduced. These include well known model types, such as
ARMAX, Output-Error, and Box-Jenkins.

The General Structure
A general input-output linear model for a single-output system with input u
and output y can be written:

Here ui denotes input #i, and A, Bi, C, D, and Fi, are polynomials in the shift
operator (z or q). (Don’t get intimidated by this: It is just a compact way of
writing difference equations; see below.)

The general structure is defined by giving the time-delays nk and the orders of
these polynomials (i.e., the number of poles and zeros of the dynamic model
from u to y, as well as of the noise model from e to y).

The Special Cases
Most often the choices are confined to one of the following special cases:

ARX: A(q) y(t) = B(q) u(t-nk) + e(t)

ARMAX: A(q) y(t) = B(q) u(t-nk) + C(q) e(t)

OE: y(t) = [B(q)/F(q)] u(t-nk) + e(t) (Output-Error)

BJ: y(t) = [B(q)/F(q)] u(t-nk) + [C(q)/D(q)] e(t) (Box-Jenkins)

The “shift operator polynomials” are just compact ways of writing difference
equations. For example the ARMAX model in longhand would be:

y(t)+a1(t-1)+. ..+anay (t-na)=b1u(t-nk)+. ..bnbu (t -nk-nb+1)+e(t)
+c1e(t -1)
+...+ence (t -nc)

Note that A(q) corresponds to poles that are common between the dynamic
model and the noise model (useful if noise enters the system “close to” the
input). Likewise F(q) determines the poles that are unique for the dynamics
from input # i, and D(q) the poles that are unique for the noise.

A q()y t() Bi q() Fi q()]⁄ ui t nk1–() C q() D q()]⁄ e t()[+[
i 1=

nu

∑=
2

The motivation for introducing all these model variants is to provide for
flexibility in the noise description and to allow for common or different poles
(dynamics) for the different inputs.

Entering the Model Structure
Use the Structure pop-up menu in the Parametric Models dialog to choose
between the ARX, ARMAX, Output-Error, and Box-Jenkins structures. Note
that if the Working Data set has several outputs, only the first choice is
available. For time series (data with no input signal) only AR and ARMA are
available among these choices. These are the time series counterparts of ARX
and ARMAX.

The orders of the polynomials are selected by the pop-up menus in the Order
Editor dialog window, or by directly entering them in the edit box Orders in
the Parametric Models window. When the order editor is open, the default
orders, entered as you change the model structure, are based on previously
used orders.

Estimation Method
The coefficients of the polynomials are estimated using a prediction error/
Maximum Likelihood method, by minimizing the size of the error term “e” in
the expression above. Several options govern the minimization procedure.
These are accessed by activating Iteration Control in the Parametric
Models window, and selecting Option.

The algorithms are further described in Chapter 4, "Command Reference,"
under armax, auxvar, bj, oe, and pem. See also “Parametric Model Estimation”
on page 3-22 and “Defining Model Structures” on page 3-29.

NOTE: These model structures are available only for the scalar output case.
For multi-output models, the state-space structures offer the same flexibility.
Also note that it is not possible to estimate many different structures
simultaneously for the input-output models.
2-23

2 The Graphical User Interface

2-2
State-Space Models

The Model Structure
The basic state-space model in innovations form can be written

 x (t+1) = A x(t) + B u (t) + K e(t)

 y(t) = C x(t) + D u (t) + e(t)

The SITB supports two kinds of parametrizations of state-space models:
black-box, free parametrizations, and parametrizations tailor-made to the
application. The latter is discussed below under the heading “User Defined
Model Structures.” First we will discuss the black-box case.

Entering Black-Box State-Space Model Structures
The most important structure index is the model order, i.e., the dimension of
the state vector x.

Use the pop-up menu in the Order Editor to choose the model order, or enter
it directly into the Orders edit box in the Parametric Models window. Using
the other pop-up menus in the Order Editor, you can further affect the chosen
model structure:

• Fixing K to zero gives an Output-Error method, i.e., the difference between
the model’s simulated output and the measured one is minimized. Formally,
this corresponds to an assumption that the output disturbance is white
noise.

• Fixing D to zero means that there is a delay of (at least) one sample from the
input to the output. For physical systems that are driven by piece-wise
constant inputs, this is a natural assumption.

• Fixing the initial value x(0) to zero means that the initial state is not
estimated. Otherwise this initial state is estimated from the data. (Note that
the estimated value of x(0) is something that relates to the Working Data,
and is not necessarily a good value of x(0) for the Validation Data.)

Estimating Many Models Simultaneously
By entering a vector for the model order, using MATLAB’s colon notation, (such
as “1:10”) all indicated orders will be computed using a preliminary method.
You can then enter models of different orders into the Model Board by clicking
in a special graph that contains information about the models.
4

Estimation Methods
There are two basic methods for the estimation:

PEM: Is a standard prediction error/maximum likelihood method, based on
iterative minimization of a criterion. The iterations are started up at
parameter values that are computed from n4sid. The parametrization of the
matrices A, B, C, D, and K follows a default canonical form. The search for
minimum is controlled by a number of options. These are accessed from the
Option button in the Iteration Control window.

N4SID: Is a subspace-based method that does not use iterative search. The
quality of the resulting estimates may significantly depend on an auxiliary
order (like a prediction horizon). This auxiliary order can be given within
parenthesis after the order in the edit box Orders (like “4 (9)”). If the auxiliary
order is not given, a default value is used.

If the auxiliary order is given as a vector (like “4 (5:17)”), models for all these
auxiliary orders are computed and evaluated using the Working Data set. The
model that gives the best fit is chosen. A figure is shown that illustrates the fit
as a function of auxiliary order. (The fit is a simulation error fit if K=0 is
chosen, otherwise a one-step ahead prediction error fit.)

See n4sid and pem in Chapter 4, "Command Reference," for more information.

User Defined Model Structures

State-Space Structures
The SITB supports user-defined linear state-space models of arbitrary
structure. Using the command ms2th, known and unknown parameters in the
A, B, C, D, K, and X0 matrices can be easily defined both for discrete- and
continuous-time models. The command mf2th allows you to use a completely
arbitrary structure, defined by an M-file. fixpar and unfixpar can be used to
manipulate structures. See Chapter 4, "Command Reference," and “Defining
Model Structures” on page 3-29

To use these structures in conjunction with the GUI, just define the
appropriate structure in the MATLAB command window. Then use the
Structure pop-up menu to select By Initial Model and enter the variable
name of the structure in the edit box Initial Model in the Parametric
Models window and select Estimate.
2-25

2 The Graphical User Interface

2-2
Any Model Structure
Arbitrary model structures can be defined using several commands in the
System Identification Toolbox:

• poly2th: Creates Input-output structures for single-output models

• ms2th: Creates Linear State-space models with arbitrary, free parameters

• mf2th: Creates completely arbitrary parametrizations of linear systems

• arx2th: Creates multivariable ARX structures

• fixpar/unfixpar: Modifies structures by fixing or unfixing parameters

In addition, all estimation commands create model structures in terms of the
resulting models.

Enter the name of any model structure in the box Orders (or Initial model)
in the window Parametric Models and then select Estimate. Then the
parameters of the model structure are adjusted to the chosen Working Data
set. The method is a standard prediction error/maximum likelihood approach
that iteratively searches for the minimum of a criterion. Options that govern
this search are accessed by the Option button in the Iteration Control
window.

The name of the initial model must be a variable either in the workspace or in
the Model Board. In the latter case you can just drag and drop it over the
Orders/Initial model edit box.
6

4. Examining Models
Having estimated a model is just a first step. It must now be examined,
compared with other models, and tested with new data sets. This is primarily
done using the six Model View functions, at the bottom of the main ident
window:

• Frequency response

• Transient response

• Zeros and poles

• Noise spectrum

• Model output

• Model residuals

In addition, you can double-click on the model’s icon to get Text Information
about the model. Finally, you can export the model to the MATLAB workspace
and use any commands for further analysis and model use.

Views and Models
The basic idea is that if a certain View window is open (checked), then all
models in the Model Summary Board that are selected will be represented in
the window. The curves in the View window can be clicked in and out by
selecting and deselecting the models in an online fashion. You select and
deselect a model by clicking on its icon. An selected model is marked with a
thicker line in its icon.

On color screens, the curves are color coded along with the model icons in the
Model Board. Before printing a plot it might be a good idea to separate the line
styles (menu item under Style). This could also be helpful on black and white
screens.

Note that models that are obtained by spectral analysis only can be
represented as frequency response and noise spectra, and that models
estimated by correlation analysis only can be represented as transient
response.
2-27

2 The Graphical User Interface

2-2
The Plot Windows
The six views all give similar plot windows, with several common features.
They have a common menu bar, which covers some basic functions.

First of all, note that there is a zoom function in the plot window. By dragging
with the left mouse button down, you can draw rectangles, which will be
enlarged when the mouse button is released. By double-clicking, the original
axis scales are restored. For plots with two axes, the x-axes scales are locked to
each other. A single click on the left mouse button zooms in by a factor of two,
while the middle button zooms out. The zoom function can be deactivated if
desired. Just select the menu item Zoom under Style.

Second, by pointing to any curve in the plot, and pressing the right mouse
button, the curve will be identified with model name and present coordinates.

The common menu bar covers the following functions:

File
File allows you to copy the current figure to another, standard MATLAB figure
window. This might be useful, e.g., when you intend to print a customized plot.
Other File items cover printing the current plot and closing the plot window.

Options
Options first of all covers actions for setting the axes scaling. This menu item
also gives a number of choices that are specific for the plot window in question,
like a choice between step response or impulse response in the Transient
response window.

A most important option is the possibility to show confidence intervals. Each
model property has some uncertainty. This can also be estimated from data. By
checking Show confidence intervals, a confidence region around the
nominal curve (model property) will be marked (by dash-dotted lines). The level
of confidence can also be set under this menu item.

NOTE: Confidence intervals are supported for most models and properties,
except models estimated using n4sid and etfe, and the k-step ahead
prediction-property.
8

Style
The style menu gives access to various ways of affecting the plot. You can add
gridlines, turn the zoom on and off, and change the linestyles. The menu also
covers a number of other options, like choice of units and scale for the axis.

Channel
For multivariate systems, you can choose which input-output channel to
examine. The current choice is marked in the figure title.

Help
The Help menu has a number of items, which explain the plot and its options.

Frequency Response and Disturbance Spectra
All linear models that are estimated can be written in the form

y (t)=G (z)u(t)+v(t)

where G(z) is the (discrete-time) transfer function of the system and v(t) is an
additive disturbance. The frequency response or frequency function of the
system is the complex-valued function G(eiωT) viewed as a function of angular
frequency ω.

This function is often graphed as a Bode diagram, i.e., the logarithm of the
amplitude (the absolute value) G(eiωT) as well as the phase arg (the argument)
G(eiωT) are plotted against the logarithm of frequency ω in two separate plots.
These plots are obtained by checking the Model View Frequency Response
in the main ident window.

The estimated spectrum of the disturbance v is plotted as a power spectrum by
choosing the Model View Noise Spectrum.

If the data is a time series y (with no input u), then the spectrum of y is plotted
under Noise Spectrum, and no frequency functions are given.

Transient Response
Good and simple insight into a model’s dynamic properties is obtained by
looking at its step response or impulse response. This is the output of the model
when the input is a step or an impulse. These responses are plotted when the
Model View Transient Response is checked.
2-29

2 The Graphical User Interface

2-3
It is quite informative to compare the transient response of a parametric
model, with the one that was estimated using correlation analysis. If there is
good agreement between the two, you can be quite confident that some
essentially correct features have been picked up. It is useful to check the
confidence intervals around the responses to see what “good agreement” could
mean quantitatively.

Many models provide a description of the additive disturbance v(t):

v(t)=H(z)e (t)

Here H(z) is a transfer function that describes how the disturbance v(t) can be
thought of as generated by sending white noise e(t) through it. To display the
properties of H, you can choose channels (in the Channel menu) that have
noise components as inputs.

Poles and Zeros
The poles of a system are the roots of the denominator of the transfer function
G(z), while the zeros are the roots of the numerator. In particular the poles
have a direct influence on the dynamic properties of the system.

The poles and zeros of G (and H) are plotted by choosing the Model View
Poles and Zeros.

It is useful to turn on the confidence intervals in this case. They will clearly
reveal which poles and zeros could cancel (their confidence regions overlap).
That is an indication that a lower order dynamic model could be used.

For multivariable systems it is the poles and zeros of the individual input/
output channels that are displayed. To obtain the so called transmission zeros,
you will have to export the model, extract a state-space description by th2ss,
and then apply the command tzero from the Control System Toolbox.

Compare Measured and Model Output
A very good way of obtaining insight into the quality of a model is to simulate
it with the input from a fresh data set, and compare the simulated output with
the measured one. This gives a good feel for which properties of the system
have been picked up by the model, and which haven’t.

This test is obtained by checking the Model View Model Output. Then the
data set currently in the Validation Data box will be used for the comparison.
0

The fit will also be displayed. This is computed as the root of the mean square
value of the difference between measured and simulated output.

If the model is unstable, or has integration or very slow time constants, the
levels of the simulated and the measured output may drift apart, even for a
model that is quite good (at least for control purposes). It is then a good idea to
evaluate the model’s predicted output rather than the simulated one. With a
prediction horizon of k, the k-step ahead predicted output is then obtained as
follows:

The predicted value y(t) is computed from all available inputs (used
according to the model) and all available outputs up to time t-k, .
The simulation case, where no past outputs at all are used, thus formally
corresponds to k=∞. To check if the model has picked up interesting dynamic
properties, it is wise to let the predicted time horizon (kT, T being the sampling
interval) be larger than the important time constants.

Note here that different models use the information in past output data in their
predictors in different ways. This depends on the noise model. For example, so
called Output-Error models (obtained by fixing K to zero for state-space models
and setting na=nc=nd=0 for input output models, see the previous section) do
not use past outputs at all. The simulated and the predicted outputs, for any
value of k, thus coincide.

Residual Analysis
In a model

the noise source e(t) represents that part of the output that the model could not
reproduce. It gives the “left-overs” or, in Latin, the residuals. For a good model,
the residuals should be independent of the input. Otherwise, there would be
more in the output that originates from the input and that the model has not
picked up.

To test this independence, the cross-correlation function between input and
residuals is computed by checking the Model View Model Residuals. It is
wise to also display the confidence region for this function. For an ideal model
the correlation function should lie entirely between the confidence lines for
positive lags. If, for example, there is a peak outside the confidence region for
lag k, this means that there is something in the output y(t) that originates from
u(t-k) and that has not been properly described by the model. The test is carried

u s() s t≤()
y s() s t k–≤()

y t() G z()u t() H z()e t()+=
2-31

2 The Graphical User Interface

2-3
out using the Validation Data. If these were not used to estimate the model, the
test is quite tough. See also “Model Structure Selection and Validation” on page
3-49.

For a model also to give a correct description of the noise properties (i.e., the
transfer function H), the residuals should be mutually independent. This test
is also carried out by the view Model Residuals, by displaying the
auto-correlation function of the residuals (excluding lag zero, for which this
function by definition is one). For an ideal model, the correlation function
should be entirely inside the confidence region.

Text Information
By double-clicking (middle/right mouse button or alt-double-click) on the model
icon, a Data/model Info dialog box opens, which contains some basic
information about the model. It also gives a diary of how the model was created,
along with the notes that originally were associated with the estimation data
set. At this point you can do a number of things:

Present
Selecting the Present button displays details of the model in the MATLAB
command window. The model’s parameters along with estimated standard
deviations are displayed, as well as some other notes.

Modify
You can simply type in any text you want anywhere in the Diary and Notes
editable text field of the dialog box. You can also change the name of the model
just by editing the text field with the model name. The color, which the model
is associated with in all plots, can also be edited. Enter RGB-values or a color
name (like 'y') in the corresponding box.

Further Analysis in the MATLAB Workspace
Any model and data object can be exported to the MATLAB workspace by
dragging and dropping its icon over the To Workspace box in the ident
window.
2

Once you have exported the model to the workspace, there are lots of
commands by which you can further transform it, examine it, and convert it to
other formats for use in other toolboxes. Some examples of such commands are

Also, if you need to prepare specialized plots that are not covered by the Views,
all the SITB commands for computing and extracting simulations, frequency
functions, zeros and poles, etc., are available. See Chapter 3, "Tutorial," and
Chapter 4, "Command Reference,".

thd2thc Transform to continuous time.

th2ss Convert to state-space representation.

th2tf Convert to transfer function form.

th2poly Convert to polynomial input/output form.
2-33

2 The Graphical User Interface

2-3
5. Some Further GUI Topics
This section discusses a number of different topics.

Mouse Buttons and Hotkeys
The GUI uses three mouse buttons. If you have fewer buttons on your mouse,
the actions associated with the middle and right mouse buttons are obtained
by shift-click, alt-click or control-click, depending on the computer.

The Main ident Window
In the main ident window the mouse buttons are used to drag and drop, to
select/deselect models and data sets, and to double-click to get text information
about the object. You can use the left mouse button for all of this. A certain
speed-up is obtained if you use the left button for dragging and dropping, the
right one for selecting models and data sets, and the middle one for
double-clicking. On a slow machine a double-click from the left button might
not be recognized.

The ident window also has a number of hotkeys. By pressing a keyboard letter
when it is the current window, some functions can be quickly activated. These
are

• s: Computes Spectral Analysis Model using the current options settings.
(These can be changed in the dialog window that opens when you choose
Spectral Model in the Estimate pop-up menu.)

• c: Computes Correlation Analysis Model using the current options
settings. (These can be changed in the dialog window that opens when you
choose Correlation Model in the Estimate pop-up menu.)

• q: Computes the models associated with the Quickstart.

• d: Opens a dialog window for importing Data that are in the SITB data
format.

Plot Windows
In the various plot windows the action of the mouse buttons depends on
whether the zoom is activated or not:

Zoom Active: Then the left and middle mouse buttons are associated with the
zoom functions as in the standard MATLAB zoom. Left button zooms in and the
middle one zooms out. In addition, you can draw rectangles with the left
4

button, to define the area to be zoomed. Double-clicking restores the original
plot. The right mouse button is associated with special GUI actions that depend
on the window. In the View plots, the right mouse button is used to identify
the curves. Point and click on a curve, and a box will display the name of the
model/data set that the curve is associated with, and also the current
coordinate values for the curve. In the Model Selection plots the right mouse
button is used to inspect and select the various models. In the Prefilter and
Data Range plots, rectangles are drawn with this mouse button down, to
define the selected range.

Zoom not active: The special GUI functions just mentioned are obtained by
any mouse button.

The zoom is activated and deactivated under the menu item Style. The default
setting differs between the plots. Don’t activate the zoom from the command
line! That will destroy the special GUI functions. (If you happen to do so
anyway, “quit” the window and open it again.)

Troubleshooting in Plots
The function Auto-range, which is found under the menu item Options, sets
automatic scales to the plots. It is also a good function to invoke when you think
that you have lost control over the curves in the plot. (This may happen, for
example, if you have zoom in a portion of a plot and then change the data of the
plot).

If the view plots don’t respond the way you expect them to, you can always
“quit” the window and open it again. By quit here we mean using the
underlying window system’s own quitting mechanism, which is called different
things in the different platforms. This action will not be acknowledged by the
corresponding check box in the ident window, so you will have to first uncheck,
and then check it. The normal way to close a window is to use the Close
function under the menu item File, or to uncheck the corresponding check box.

 Layout Questions and idprefs.mat
The GUI comes with a number of preset defaults. These include the window
sizes and positions, the colors of the different models, and the default options
in the different View windows.

The window sizes and positions, as well as the options in the plot windows, can
of course be changed during the session in the standard way. If you want the
2-35

2 The Graphical User Interface

2-3
GUI to start with your current window layout and current plot options, select
menu item

Options > Save preferences

in the main ident window. This saves the information in a file idprefs.mat.
This file also stores information about the four most recent sessions with
ident. This allows the session File menu to be correctly initialized. The session
information is automatically stored upon exit. The layout and preference
information is only saved when the indicated option is selected.

The file idprefs.mat is created the first time you open the GUI. It is by default
stored in the same directory as your startup.m file. If this default does not
work, a warning is issued. This can be ignored, but then session and preference
information cannot be stored.

To change or select a directory for idprefs.mat, use the command midprefs.
See Chapter 4, "Command Reference," for details.

To change model colors and default options to your own customized choice,
make a copy of the M-file idlayout.m to your own directory (which should be
before the basic ident directory in the MATLABPATH), and edit it according to its
instructions.

Customized Plots
If you need to prepare hardcopies of your plots with specialized texts, titles and
so on, make a copy of the figure first, using Copy Figure under the File menu
item. This produces a copy of the current figure in a standard MATLAB figure
format.

For plots that are not covered by the View windows, (like, e.g., Nyquist plots),
you have to export the model to the MATLAB workspace and construct the plots
there.

Import from and Export to Workspace
As you export a model or a data set to the MATLAB workspace by dropping its
icon over the To Workspace icon, it will become a workspace variable with the
same name as in ident, say mymodel. At the same time another workspace
variable will be created with the name mymodel_info. This contains all diary
and note information. This will be quite useful if you want to manipulate the
6

model using MATLAB commands and then import it back into ident. The use is
illustrated by the following example:

Export model with name mymodel to workspace. Execute the following at the
MATLAB command line:

mymodelc=thd2thc(mymodel);
% converting the model to continuous time

mymodelc_info=str2mat(mymodel_info,...
'mymodelc=thd2thc(mymodel)');
% adding the info of how the new variable was created

Now select pop-up menu Model>Import, enter the variable name mymodelc,
and select Import.

This will enter the continuous-time model into ident along with the relevant
information.

What Cannot be Done Using the GUI
The GUI covers primarily everything you would like to do to examine data,
estimate models and evaluate and compare models. It does not cover

• Generation (simulation) of data sets

• Model creation (other than by estimation)

• Model manipulation and conversions

• Recursive (on-line) estimation algorithms

Check Chapter 3, "Tutorial," as well as the headings Simulation and
Prediction, Model Structure Creation, Manipulating Model
Structures, Model Conversions, and Recursive Parameter Estimation
in the beginning of Chapter 4, "Command Reference," to see what M-files are
available in the toolbox for these functions.

Note that at any point you can export a data set or a model to the MATLAB
workspace (by dragging and dropping its icon on the To Workspace icon).
There you can modify and manipulate it any way you want and then import it
back into ident. You can, for example, construct a continuous-time model from
an estimated discrete-time one (using thd2thc) and then use the model views
to compare the two.
2-37

2 The Graphical User Interface

2-3
8

The Toolbox Commands . 3-3

An Introductory Example to Command Mode 3-5

The System Identification Problem . 3-8

Nonparametric Model Estimation . 3-19

Parametric Model Estimation . 3-22

Defining Model Structures . 3-29

Examining Models . 3-40

Model Structure Selection and Validation 3-49

Dealing with Data . 3-58

Recursive Parameter Estimation . 3-61

Some Special Topics . 3-68
3

Tutorial

3 Tutorial

3-2
This chapter has two purposes. It describes the commands of the System
Identification Toolbox, their syntax and use. If you use the graphical user
interface (GUI), you will not have to bother about these aspects. The chapter
also describes the underlying methods and algorithms used. The commands
that are not reached from the GUI, i.e., the recursive algorithms and more
advanced model structure definitions, are also treated here.

1. The Toolbox Commands
It may be useful to recognize several layers of the System Identification
Toolbox. Initially concentrate on the first layer of basic tools, which contains
the commands from the System Identification Toolbox that any user must
master. You can proceed to the next levels whenever an interest or the need
from the applications warrants it. The layers are described in the following
paragraphs:

Layer 1: Basic Tools. The first layer contains the basic tools for correlation and
spectral analysis, and the estimation of so-called ARX models using the
least-squares method. It also contains the basic tools for examining the
obtained models. The commands are:

ar, arx, bodeplot, compare, cra, dtrend, ffplot
idsim, present, resid, spa, th2arx, th2ff, th2zp, zpplot

The corresponding background is given in the following sections: 3,4,5,6,7 and
8 of this chapter.

Layer 2: Model Structure Selection. The second layer of the toolbox contains
some useful techniques to select orders and delays, and to estimate more
general input-output model structures. The commands are:

armax, arxstruc, bj, etfe, idfilt, iv4, n4sid
oe, poly2th, selstruc, th2poly

Note that the commands arx and iv4 also apply to multi-input, multi-output
systems. The corresponding background is given in the sections 3, 5, 6 ,8 and 9
of this chapter.

Layer 3: More Methods To Examine Models and Multi-Input Systems .
This third layer contains transformations between continuous and discrete
time, and functions for estimating completely general multi-input model
structures. The commands are:

pe, pem, predict, th2ss, th2tf, thc2thd, thd2thc

The corresponding background is given in section 7 of this chapter.
3-3

3 Tutorial

3-4
Layer 4: Recursive Identification. Recursive (adaptive, online) methods of
parameter estimation are covered by the commands:

rarmax, rarx, rbj, roe, rpem, rplr

The corresponding background is given “Recursive Parameter Estimation” on
page 3-61.

Layer 5: State-Space Modeling. To build models in state-space form (both
continuous and discrete time), and to handle more advanced multi-output
structures, there are the commands:

canstart, fixpar, mf2th, modstruc, ms2th, unfixpar

The corresponding theory is covered in sections 3, 5, 6, and 8 of this chapter.

(See the beginning of the Chapter 4, "Command Reference," for a complete list
of available functions.)

2. An Introductory Example to Command Mode
A demonstration M-file called iddemo.m provides several examples of what
might be typical sessions with the System Identification Toolbox. To start the
demo, execute iddemo from inside MATLAB.

Before giving a formal treatment of the capabilities and possibilities of the
toolbox, this example is designed to get you using the software quickly. This
example is essentially the same as demo #2 in iddemo. You may want to invoke
MATLAB at this time, execute iddemo1, and follow along.

Data have been collected from a laboratory scale process. (Feedback’s Process
Trainer PT326; see page 440 in Ljung, 1987 and “Reading More About System
Identification” on page 1-18 for references.) The process operates much like a
common hand-held hair dryer. Air is blown through a tube after being heated
at the inlet to the tube. The input to the process is the power applied to a mesh
of resistor wires that constitutes the heating device. The output of the process
is the air temperature at the outlet measured in volts by a thermocouple
sensor.

One thousand input-output data points were collected from the process as the
input was changed in a random fashion between two levels. The sampling
interval is 80 ms. The data were loaded into MATLAB in ASCII form and are
now stored as the vectors y2 (output) and u2 (input) in the file dryer2.mat.

First load the data:

load dryer2

This example selects the first 300 data points for building a model. For
convenience, the input-output vectors are merged into a matrix:

z2 = [y2(1:300) u2(1:300)];

Take a look at the data,

idplot(z2)

The toolbox makes frequent use of default arguments. Default values are used
when trailing arguments are omitted. In the case above, by default, all data
points are graphed and the sampling interval is one time unit.
3-5

3 Tutorial

3-6
You can select the values between sample numbers 200 and 300 for a close-up,
and at the same time obtain correct time scales, with

idplot(z2,200:300,0.08)

Remove the constant levels and make the data zero mean with

z2 = dtrend(z2);

Now, fit to the data a model of the form:

where T is the sampling interval (here 0.08 seconds). This model, known as an
ARX model, tries to explain or compute the value of the output at time t, given
previous values of y and u. Later on, especially in Section 8, are discussions of
how to decide upon suitable model orders (structures).

The best values of the coefficients and can be computed with

th = arx(z2,[2 2 3]);

The numbers in the second argument tell arx to find a model (2.1) with two
a-parameters, two b-parameters, and three delays. The result is stored in the
matrix th in a somewhat coded form. To specify the actual sampling interval,
enter

th = sett(th,0.08);

There are several ways to display and illustrate the computed model. With

present(th)

the coefficient values of (2.1) and their estimated standard deviations are
presented on the screen.

Next, you might ask how to evaluate how well the model fits the data. A simple
test is to run a simulation whereby real input data is fed into the model, and
compare the simulated output with the actual measured output. For this, select
a portion of the data that was not used to build the model, for example, from
sample 700 to 900:

u = dtrend(u2(700:900));
y = dtrend(y2(700:900));

y t() a1y t T–() a2y t 2T–()+ + b1u t 3T–() b2u t 4T–()+= (2.1)

a1 a2 b1, , b2

ysim = idsim(u,th);
plot([y(100:200) ysim(100:200)])

Note that the function compare does this sequence of commands more
efficiently.

You see that the model is quite capable of describing the system, even for data
that were not used in calculating the fit.

To compute and graph the poles and zeros of the model, use

zpth = th2zp(th);
zpplot(zpth)

If you want to know the frequency response, you can compute the frequency
function of the model and present it as a Bode plot by entering

gth = th2ff(th);
bodeplot(gth)

Compare this transfer function with a transfer function obtained from a
nonparametric, spectral analysis method. Such an estimate is obtained directly
from the data

gs = spa(z2);
gs = sett(gs,0.08);

The sampling interval, 0.08, is set by the second command in order to obtain
correct frequency scales. The function spa also allows you to select window
sizes, frequency ranges, etc. All these have here been given default values.

You can compare the estimate of the transfer function obtained by spectral
analysis and the one obtained from the model (2.1) with

bodeplot([gs gth])

The agreement is quite good.

Finally, plot the step response of the model. The model comes with an estimate
of its own uncertainty. Ten different step responses are computed and graphed.
They correspond to “possible” models, drawn from the distribution of the true
system (according to our model):

step = ones(30,1);
idsimsd(step,th)
3-7

3 Tutorial

3-8
3. The System Identification Problem
This section discusses different basic ways to describe linear dynamic systems
and also the most important methods for estimating such models.

Impulse Responses, Frequency Functions, and
Spectra

The basic input-output configuration is depicted in the figure above. Assuming
unit sampling interval, there is an input signal

u(t) ; t=1,2, ,N

and an output signal

y(t) ; t=1,2, , .N

Assuming the signals are related by a linear system, the relationship can be
written

where q is the shift operator and is short for

u

e

y

y t() G q()u t() v t()+= (3.1)

G q()u t()

G q()u t() g k()u t k–()
k 1=

∞

∑= (3.2)

and

G q() g k()q k–
;

k 1=

∞

∑= q
1–
u t() u t 1–()= (3.3)

The numbers are called the impulse response of the system. Clearly,
is the output of the system at time k if the input is a single (im)pulse at

time zero. The function is called the transfer function of the system. This
function evaluated on the unit circle gives the frequency function

In (3.1) is an additional, unmeasurable disturbance (noise). Its properties
can be expressed in terms of its (auto) spectrum

which is defined by

where is the covariance function of :

and E denotes mathematical expectation. Alternatively, the disturbance
can be described as filtered white noise:

where is white noise with variance and

Equations (3.1) and (3.8) together give a time domain description of the system:

g k(){ }
g k()

G q()
q(e

i ω)=

G e
i ω() (3.4)

v t()

Φv ω() (3.5)

Φv ω() Rv τ()e
iwt–

τ ∞–=

∞

∑= (3.6)

Rv τ() v t()

Rv τ() Ev t()v t τ–()= (3.7)

v t()

v t() H q()e t()= (3.8)

e t() λ

 (3.9)Φv ω() λ H e
i ω()

2
=

y t() G q()u t() H q()e t()+= (3.10)
3-9

3 Tutorial

3-1
while (3.4) and (3.5) constitute a frequency domain description:

The impulse response (3.3) and the frequency domain description (3.11) are
called nonparametric model descriptions since they are not defined in terms of
a finite number of parameters. The basic description (3.10) also applies to the
multivariable case; i.e., to systems with several (say nu) input signals and
several (say ny) output signals. In that case is an ny by nu matrix while

and are ny by ny matrices.

Polynomial Representation of Transfer Functions
Rather than specifying the functions G and H in (3.10) in terms of functions of
the frequency variable , you can describe them as rational functions of
and specify the numerator and denominator coefficients in some way.

A commonly used parametric model is the ARX model that corresponds to

where B and A are polynomials in the delay operator :

Here, the numbers na and nb are the orders of the respective polynomials. The
number nk is the number of delays from input to output. The model is usually
written

G e
i ω(); Φv ω() (3.11)

G q()
H q() Φv ω()

ω q
1–

G q() q
nk–

=
B q()
A q()
-----------; H q() 1

A q()
-----------= (3.12)

q
1–

A q() 1 a1q
1– …… anaq

na–
+ + +=

B q() b1 b2q
1– …… bnbq

nb– 1+
+ + +=

(3.14)

(3.13)

A q()y t() B q()u t nk–() e t()+= (3.15)
0

or explicitly

Note that (3.15) -(3.16) apply also to the multivariable case, where and
the coefficients become ny by ny matrices, and the coefficients
become ny by nu matrices.

Another very common, and more general, model structure is the ARMAX
structure

Here, and are as in (3.13)-(3.14), while

An Output-Error (OE) structure is obtained as

with

The so-called Box-Jenkins (BJ) model structure is given by

with

y t() a1y t 1–() …… anay t na–()+ + + =

b1u t nk–() b2u t nk– 1–() …… bnbu t nk– nb– 1+() e t()+ + + +

(3.16)

A q()
ai B q() bi

A q()y t() B q()u t nk–() C q()e t()+= (3.17)

A q() B q()

C q() 1 c1q
1– … cncq

nc–
+ + += (3.18)

y t() B q()
F q()
-----------u t nk–() e t()+= (3.19)

F q() 1 f1q
1– … fnfq

nf–
+ + += (3.20)

y t() B q()
F q()
-----------u t nk–() C q()

D q()
------------e t()+= (3.21)

D q() 1 d1q
1– … dndq

nd–
+ + += (3.22)
3-11

3 Tutorial

3-1
All these models are special cases of the general parametric model structure:

The variance of the white noise is assumed to be .

Within the structure of (3.23), virtually all of the usual linear black-box model
structures are obtained as special cases. The ARX structure is obviously
obtained for . The ARMAX structure corresponds to

. The ARARX structure (or the “generalized least-squares model”)
is obtained for , while the ARARMAX structure (or “extended
matrix model”) corresponds to . The Output-Error model is obtained
with , while the Box-Jenkins model corresponds to .
(See Section 4.2 in Ljung (1987) for a detailed discussion.)

The same type of models can be defined for systems with an arbitrary number
of inputs. They have the form

A q()y t() B q()
F q()
-----------u t nk–() C q()

D q()
------------e t()+= (3.23)

e t(){ } λ

nc nd nf 0= = =
nf nd 0= =

nc nf 0= =
nf 0=

na nc nd 0= = = na 0=

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–() ...+

Bnu q()
Fnu q()

·

unu t nknu–() C q()
D q()
------------e t()++=
2

State-Space Representation of Transfer Functions
A common way of describing linear systems is to use the state-space form:

Here the relationship between the input and the output is defined via
the nx-dimensional state vector . In transfer function form (3.24)
corresponds to (3.1) with

Here is the nx by nx identity matrix. Clearly (3.24) can be viewed as one
way of parametrizing the transfer function: Via (3.25) becomes a function
of the elements of the matrices A, B, C, and D.

To further describe the character of the noise term in (3.24) a more flexible
innovations form of the state-space model can be used:

This is equivalent to (3.10) with given by (3.25) and by

Here ny is the dimension of and .

It is often possible to set up a system description directly in the innovations
form (3.26). In other cases, it might be preferable to describe first the nature of
disturbances that act on the system. That leads to a stochastic state-space
model:

x t 1+() Ax t() Bu t()+=

y t() Cx t() Du t() v t()+ +=

(3.24a)

(3.24b)

u t() y t()
x t()

G q() C qInx A–() 1–
B D+= (3.25)

I nx
G q()

v t()

x t 1+() Ax t() Bu t() Ke t()+ +=

y t() Cx t() Du t() e t()+ += (3.26b)

(3.26a)

G q() H q()

H q() C qInx A–() 1–
K Iny+= (3.27)

y t() e t()

x t 1+() Ax t() Bu t() w t()+ +=

y t() Cx t() Du t() e t()+ +=

(3.28a)

(3.28b)
3-13

3 Tutorial

3-1
where and are stochastic processes with certain covariance
properties. In stationarity and from an input-output view, (3.28) is equivalent
to (3.26) if the matrix K is chosen as the steady-state Kalman gain. How to
compute K from (3.28) is described in the Control System Toolbox.

Continuous-Time State-Space Models
It is often easier to describe a system from physical modeling in terms of a
continuous-time model. The reason is that most physical laws are expressed in
continuous time as differential equations. Therefore, physical modeling
typically leads to state-space descriptions like

Here, means the time derivative of . If the input is piece-wise constant over
time intervals , then the relationship between
and can be exactly expressed by (3.24) by taking

and associate y(t) with y[t], etc.

If you start with a continuous-time innovations form

the discrete-time counterpart is given by (3.26) where still the relationships
(3.30) hold. The exact connection between and K is somewhat more
complicated, though. An ad hoc solution is to use

in analogy with G and B. This is a good approximation for short sampling
intervals T.

w t() e t()

(3.29a)

(3.29b)

x· t() Fx t() Gu t()+=

y t() Hx t() Du t() v t()+ +=

x· x
kT t k 1+()T<≤ u k[] u kT()=

y k[] y kT()=

A e
FT

= B e
Fτ

τ 0=

T

∫=; Gdτ C H=; (3.30)

x· t() Fx= t() Gu+ t() K̃+ e t()

y t() Hx= t() Du+ t() e+ t()

(3.31a)

(3.31b)

K̃

K e
Fτ

τ 0=

T

∫= K̃dτ; (3.32)
4

Estimating Impulse Responses
Consider the description (3.1). Suppose that the input is white noise; i.e.,
its covariance function is

Then, the cross covariance function between the input and the output is

where g(τ) is the impulse response of the system. In this case, it can easily be
estimated as

based on the observed input-output data.

If the input is not white, a whitening filter L(q) can be determined for it, so
that the filtered sequence

is approximately white. By filtering the output sequence through the same
filter and computing (3.33) based on the filtered data, a natural estimate of the
impulse response coefficients g(k) is obtained. This procedure is known as
correlation analysis.

u t()

Ru τ() Eu= t τ+()u t() λ if τ 0=

0 else

=

Ryu τ() Ey t τ+()u t() λg τ()= =

ĝ τ() 1
λN
-------= y

t 1=

N

∑ t τ+()u t() (3.33)

uF t() L= q()u t() (3.34)
3-15

3 Tutorial

3-16
Estimating Spectra and Frequency Functions
This section describes methods that estimate the frequency functions and
spectra (3.11) directly. The cross-covariance function between y(t) and
u(t) was defined above. Its Fourier transform, the cross spectrum, is
defined analogously to (3.6). Provided that the input is independent of ,
the relationship (3.1) implies the following relationships between the spectra:

By estimating the various spectra involved, the frequency function and the
disturbance spectrum can be estimated as follows:

Form estimates of the covariance functions (as defined in (3.7)) , ,
and , using

and analog expressions for the others. Then, form estimates of the
corresponding spectra

and analogously for and . Here is the so-called lag window and
M is the width of the lag window. The estimates are then formed as

This procedure is known as spectral analysis. (See Chapter 6 in Ljung (1987).)

Ryu τ()
Φyu ω()

u t() v t()

Φy ω() G e
i ω()

2
Φu ω() Φv ω()+=

Φyu ω() G e
i ω()Φu ω()=

R
ˆ

y τ() R
ˆ

yu τ()
R̂u τ()

R
ˆ

yu τ() 1
N
---- y t τ+()u t()

t 1=

N

∑= (3.35)

Φ
ˆ

y ω() R
ˆ

y

τ M–=

M

∑= τ()WM τ()e i ωτ–
(3.36)

Φu Φyu WM τ()

G
ˆ

N e
i ω() Φ

ˆ
yu ω()

Φ
ˆ

u ω()
-------------------;= Φ

ˆ
v ω() Φ

ˆ
y ω() Φ

ˆ
yu ω()

2

Φ
ˆ

u ω()
------------------------–= (3.37)

Estimating Parametric Models
Given a description (3.10) and having observed the input-output data u, y, the
(prediction) errors in (3.10) can be computed as:

These errors are, for given data y and u, functions of G and H. These in turn
are parametrized by the polynomials in (3.15)-(3.23) or by entries in the
state-space matrices defined in (3.29)–(3.32). The most common parametric
identification method is to determine estimates of G and H by minimizing

that is

This is called a prediction error method. For Gaussian disturbances it coincides
with the maximum likelihood method. (See Chapter 7 in Ljung (1987).)

A somewhat different philosophy can be applied to the ARX model (3.15). By
forming filtered versions of the input

and by multiplying (3.15) with , , 2, , na and ,
, 2, , nb and summing over t, the noise in (3.15) can be correlated out

and solved for the dynamics. This gives the instrumental variable method, and
 are called the instruments. (See Section 7.6 in Ljung (1987).)

e t()

e t() H
1–

q() y t() G q()u t()–[]= (3.38)

VN G H,() e
2

t()
t 1=

N

∑= (3.39)

G
ˆ

N H
ˆ

N,[] argmin e
2

t()
t 1=

N

∑= (3.40)

N q()s t() M q()u t()= (3.41)

s t k–() k 1= … u t nk– 1 k–+()
k 1= …

s t()
3-17

3 Tutorial

3-1
Subspace Methods for Estimating State-Space
Models
The state-space matrices A, B, C, D, and K in (3.26) can be estimated directly,
without first specifying any particular parametrization by efficient subspace
methods. The idea behind this can be explained as follows: If the sequence of
state vectors x(t) were known, together with y(t) and u(t), eq (3.26b) would be a
linear regression, and C and D could be estimated by the least squares method.
Then e(t) could be determined, and treated as a known signal in (3.26a), which
then would be another linear regression model for A, B and K. (One could also
treat (3.24) as a linear regression for A, B, C, and D with y(t) and x(t+1) as
simultaneous outputs, and find the joint process and measurement noises as
the residuals from this regression. The Kalman gain K could then be computed
from the Riccati equation.) Thus, once the states are known, the estimation of
the state-space matrices is easy.

How to find the states x(t)? Appendix 4.A of Ljung(1987) shows that all states
in representations like (3.26) can be formed as linear combinations of the
k-step ahead predicted outputs (k=1,2,...,n). It is thus a matter of finding these
predictors, and then selecting a basis among them. The subspace methods form
an efficient and numerically reliable way of determining the predictors by
projections directly on the observed data sequences. For more details, see the
references under n4sid in Chapter 4, "Command Reference" .
8

4. Nonparametric Model Estimation
This and the following sections give an introduction to the basic functions in
the System Identification Toolbox. Not all of the options available when using
the functions are described here; see the Command Reference chapter and the
online Help facility.

Data Representation
The observed output and input signals, and , are represented in the
System Identification Toolbox as column vectors y and u. Row k corresponds to
sample number k. For multivariable systems, each input (output) component
is represented as a column vector, so that u becomes an N by nu matrix (N =
number of sampled observations, nu = number of input signals). The
output-input data is collectively represented as a matrix whose first column(s)
is the output and next column(s) is the input:

z = [y u]

The data can be graphed by the command idplot:

idplot(z)

This gives plots of all combinations of inputs and outputs for visual inspection.

Some of the functions in the System Identification Toolbox apply only to single
output data () and some only to single-input-single-output data
(,). Chapter 4, "Command Reference" gives details about this.

y t() u t()

ny 1=
ny 1= nu 1=
3-19

3 Tutorial

3-2
Correlation Analysis
The correlation analysis procedure described in “The System Identification
Problem” in Chapter 3 is implemented in the function cra:

ir = cra(z)

This function returns the estimated impulse response in the vector ir. It also
optionally plots the estimated covariance functions for y and u, so that the
success of the whitening filter (3.34) can be checked. From the estimated
impulse response it is easy to form the step response:

ir = cra(z)
sr = cumsum(ir)
plot(sr)

Spectral Analysis
The function spa performs spectral analysis according to the procedure in
(3.35)–(3.37).

[G,PHIV] = spa(z)

Here z contains the output-input data as above. G and PHIV are matrices that
contain the estimated frequency function and the estimated disturbance
spectrum in (3.37). They are coded into a special format, the freqfunc
format, which allows you to plot them using the function bodeplot or ffplot:

[G,PHIV] = spa(z)
bodeplot(G)
bodeplot(PHIV)

bodeplot gives logarithmic amplitude and frequency scales (in rad/sec) and
linear phase scale, while ffplot gives linear frequency scales (in Hz). The
details of the freqfunc format are given in Chapter 4, "Command Reference"
and by typing help freqfunc. To obtain correct frequency scales you can
operate with the command sett on G or give the sampling interval as an
optional argument to spa.

By omitting the argument PHIV, only the transfer function estimate G is
computed:

G = spa(z)

GN

Φv
0

When PHIV is included, the estimated standard deviations of G and PHIV are
also returned by spa and included in the freqfunc format.

If z = y is a time series, spa returns an estimate of the spectrum of that signal:

PHIY = spa(y)
ffplot(PHIY)

In the computations (3.35)-(3.37), spa uses a Hamming window for with
a default length M equal to the minimum of 30 and a tenth of the number of
data points. This window size M can be changed to an arbitrary number by

[G,PHIV] = spa(z,M)

The rule is that as M increases, the estimated frequency functions show sharper
details, but are also more affected by random disturbances. A typical sequence
of commands that test different window sizes is

g10 = spa(z,10)
g25 = spa(z,25)
g50 = spa(z,50)
bodeplot([g10 g25 g50])

An empirical transfer function estimate is obtained as the ratio of the output
and input Fourier transforms with

G = etfe(z)

This can also be interpreted as the spectral analysis estimate for a window size
that is equal to the data length. For a single signal etfe gives the periodogram
as a spectral estimate. The function also allows some smoothing of the crude
estimate; it can be a good alternative for signals and systems with sharp
resonances. See Chapter 4, "Command Reference" for more information.

W τ()
3-21

3 Tutorial

3-2
5. Parametric Model Estimation
The System Identification Toolbox contains several functions for parametric
model estimation. They all share the same command structure

th = function([y u],ths)

Input variables y and u are column vectors that contain the output and input
data sequences, while the matrix ths specifies the particular structure of the
model to be estimated. The resulting estimated model is contained in th. It is
coded into the theta format. This is the basic format for representing models in
the System Identification Toolbox. It collects information about the model
structure and the orders, delays, parameters, and estimated covariances of
estimated parameters into a matrix. The details of this representation are
found in Chapter 4, "Command Reference" or by typing help theta. The theta
format can be translated to other useful model representations. To just display
the model information, use the command present:

th = function(z,ths)
present(th)

The following sections assume that you have formed an array z that consists of
the output y and the input u:

z = [y u]

ARX Models
To estimate the parameters and of the ARX model (3.15), use the function
arx:

th = arx(z,[na nb nk])

Here na, nb, and nk are the corresponding orders and delays in (3.16) that
define the exact model structure. The function arx implements the
least-squares estimation method, using the MATLAB “/” operator for
overdetermined linear equations.

An alternative is to use the Instrumental Variable (IV) method described in
connection with (3.41). This is obtained with

th = iv4(z,[na nb nk])

ai bi
2

which gives an automatic (and approximately optimal) choice of the filters N
and M in (3.41). (See the procedure (15.21)-(15.26) in Ljung (1987).)

Both arx and iv4 are applicable to arbitrary multivariable systems. If you have
ny outputs and nu inputs, the orders are defined accordingly: na is an
ny by ny matrix whose i -j entry gives the order of the polynomial that relates
past values of to the current value of (i.e., past values of up to

are used when predicting . Similarly the i -j entries of the
ny by nu matrices nu and nk, respectively, give the order and delay from input
number j when predicting output number i. (See “Defining Model Structures”
on page 3-29 and Chapter 4, "Command Reference" for exact details.)

AR Models
For a single signal the counterpart of the ARX model is the AR model:

The arx command also covers this special case

th = arx(y,na)

but for scalar signals more options are offered by the command

th = ar(y,na)

which has an option that allows you to choose the algorithm from a group of
several popular techniques for computing the least-squares AR model. Among
these are Burg’s method, a geometric lattice method, the Yule-Walker
approach, and a modified covariance method. (See Chapter 4, "Command
Reference" for details.) The counterpart of the iv4 command is

th = ivar(y,na)

which uses an instrumental variable technique to compute the AR part of a
time series.

General Polynomial Black-Box Models
Based on the prediction error method (3.40), you can construct models of
basically any structure. For the general model (3.23), there is the function

th = pem(z,nn)

yj yi yj
yj t na i j,()–() yi t)()

y t()

A q()y t() e t()= (5.1)
3-23

3 Tutorial

3-2
where nn gives all the orders and delays

nn = [na nb nc nd nf nk]

The pem command covers all cases of black-box linear system models. More
efficient routines are available, however, for the common special cases

th = armax(z,[na nb nc nk])
th = oe(z,[nb nf nk])
th = bj(z,[nb nc nd nf nk])

These handle the model structures (3.17), (3.19) and (3.21), respectively.

All the routines also cover single-output, multi-input systems of the type

where nb, nf, and nk are row vectors of the same lengths as the number of input
channels containing each of the orders and delays

nb = [nb1 ... nbnu];
nf = [nf1 ... nfnu];
nk = [nk1 ... nknu];

These parameter estimation routines require an iterative search for the
minimum of the function (3.39). This search uses a special start-up procedure
based on least squares and instrumental variables (the details are given as
equation (10.75) in Ljung (1987)). From the initial estimate, a Gauss-Newton
minimization procedure is carried out until the norm of the Gauss-Newton
direction is less than a certain tolerance. See Ljung (1987), Section 11.2 or
Dennis and Schnabel(1983) for details. See also the entry on optional variables
associated with the search at the end of this section.

The routines pem, armax, oe, and bj can also be started at any initial value thi
specified in the theta format by replacing nn by thi. For example

th = pem(z,thi)

While the search is typically initialized using the built-in start-up procedure
giving just orders and delays (as described above), the ability to force a specific
initial condition is useful in several contexts. Some examples are mentioned in
“Some Special Topics” on page 3-68.

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–() …

Bnu q()
Fnu q()
-----------------unu t nknu–() C q()

D q()
------------e t()+ + += (5.2)
4

If a last argument ’trace’ is added, as in

th = armax(z,nn,’trace’)

these routines give status reports to the screen during the minimization,
containing current and previous estimates, the associated loss functions, and
the Gauss-Newton update vector and its norm. The estimates are then
represented by a column vector, listing the parameters in alphabetical order.

The number then flickering in the upper left corner shows how many times the
suggested update direction has been bisected during the search. It is a healthy
sign if this number is small.

These routines return the estimated covariance matrix of the estimated
parameter vector as part of th. This reflects the reliability of the estimates. The
covariance matrix estimate is computed under the assumption that it is
possible to obtain a “true” description in the given structure.

State-Space Models

Black-box, discrete-time, parametrizations. Suppose first that there is no
particular knowledge about the internal structure of the discrete-time
state-space model (3.16). Any linear model of a given order is sought. Then
there are essentially two different ways to estimate state-space models, like
(3.26). The simplest one is to use n4sid:

th = n4sid(z,order);

which creates a model in state-space form (coded as usual in the theta format)
in a realization that is automatically chosen to be reasonably well conditioned.
The basic idea behind this subspace algorithm was described in “The System
Identification Problem” on page 3-8.

The other alternative is to use a prediction error method, minimizing the
criterion (5.3) below. Initializing the search at the n4sid model is then a good
idea. This is obtained by

thi = canstart(z,order,nu)
th = pem(z,thi)
3-25

3 Tutorial

3-2
Arbitrarily parameterized models in discrete and continuous time. For
state-space models of given structure, most of the effort involved relates to
defining and manipulating the structure. This is discussed in “Defining Model
Structures” on page 3-29. Once the structure is defined in the theta format as
ths, you can estimate its parameters with

th = pem(z,ths)

When the systems are multi-output, the following criterion is used for the
minimization:

which is the maximum likelihood criterion for Gaussian noise with unknown
covariance matrix.

The numerical minimization of the prediction error criterion (3.39) or (5.3) can
be a difficult problem for general model parametrizations. The criterion, as a
function of the free parameters, can define a complicated surface with many
local minima, narrow valleys and so on. This may require substantial
interaction from the user, in providing reasonable initial parameter values,
and also by freezing certain parameter values while allowing others to be free.
Note that pem easily allows the freezing of any parameters to their nominal
values. The functions fixpar and unfixpar are also useful. A procedure that is
often used for state-space models is to allow the noise parameter in the K
matrix free, only when a reasonable model of the dynamic part has been
obtained. See also “Some Special Topics” on page 3-68.

Optional Variables
The functions pem, armax, oe, and bj can accept three additional input options
that affect the minimization, as well as one extra output argument. For
example,

[th, iter_info] = bj(z,nn,maxiter,tol,lim)

The format is the same for the other functions. If these variables are not given,
default values are assigned to them.

det e t()eT
t()

t 1=

N

∑min (5.3)
6

maxiter: This variable determines the maximum number of iterations
performed in the search for the minimum. The default value is 10. Setting the
value of maxiter to zero results in the return of the estimate from the start-up
procedure.

tol: The iterations are continued until the norm of the Gauss-Newton update
vector is less than tol. The default value is 0.01. The iterations also terminate
when maxiter is reached or when no decrease in the criterion can be found along
the search direction after it has been bisected 10 times. (After the 10 first
bisections, the search direction is changed to the gradient one, and 10 new
bisections are tried.)

The parameters associated with the noise dynamics, (C and D), are often more
difficult to estimate than the dynamics parameters, A, B, and F. Major
contributions to the norm of the update direction then come from the entries
corresponding to the noise parameters. The Gauss-Newton vector can be
monitored to see if it is reasonable to increase tol on this ground.

lim: The quadratic criterion (3.39) gives a considerable relative weight to large
prediction errors. You may want to limit their influence, using robust
estimation techniques. In the estimation functions ar, bj, max, oe, and pem, a
prediction error that is larger than lim* (estimated standard deviation of e)
carries a linear, rather than a quadratic, weight.

The default value of lim is 1.6. lim=0 disables the robust estimation and
applies a purely quadratic criterion. The standard deviation is estimated
robustly as the median of the absolute deviations from the median, divided by
0.7. (See eq (15.9)-(15.10) in Ljung (1987).)

Note that the loss function displayed by present(th) is quadratic and that the
data-dependent delimiter is computed only once, before the minimization
starts.

iter_info: This a a row vector with three entries that give information about
the iteration process. The first entry is the number of used iterations. The
second one is the improvement of the fit over the last iteration, and the third
variable is the norm of the Gauss-Newton search vector. If the number of used
iterations is less than maxiter, at the same time as this norm is larger then
tol, it means that the iterations have been aborted because no better fit could
be obtained along the indicated search direction.
3-27

3 Tutorial

3-2
For the spectral analysis estimate, you can compute the frequency functions at
arbitrary frequencies. If the frequencies are specified in a row vector w, then

[G,PHIV] = spa(z,M,w)

results in G and PHIV being computed at these frequencies. This computation is
somewhat slower, however, than using the default frequencies.

You can generate logarithmically spaced frequencies using the MATLAB
logspace function. For example

w = logspace(–3,pi,128)

The optional trailing arguments can be omitted, in which case default values
are used. Entering them as empty matrices, [], also causes functions to rely
upon defaults.
8

6. Defining Model Structures
Since the System Identification Toolbox handles a wide variety of different
model structures, it is important that these can be defined in a flexible way. In
the previous section you saw how model structures that are special cases of the
general model (3.23) can be defined by specifying the orders and delays in the
various estimation routines arx, iv4, oe, bj, armax, and pem. This section
describes how model structures and models can be directly defined. For
black-box models (3.23) this may be required, for example, when creating a
model for simulation. Commands for creating state-space model structures are
discussed in this section.

The general way of representing models and model structures in the System
Identification Toolbox is the theta format. This section introduces the
commands (apart from the parametric estimation functions themselves) that
create models in the theta format.

Polynomial Black-Box Models
The general input-output form (3.23):

is defined by the five polynomials A(q), B(q), C(q), D(q), and F(q). These are
represented in the standard MATLAB format for polynomials. Polynomial
coefficients are stored as row vectors ordered by descending powers. For
example, the polynomial

is represented as

A = [1 a1 a2 ... an]

Delays in the system are indicated by leading zeros in the polynomial. For
example, the ARX model

A q()y t() B q()
F q()
-----------u t nk–() C q()

D q()
------------e t()+= (6.1)

A q() 1 a1q
1–

a2q
2– … anq

n–
+ + + +=

B q()

y t() 1.5y t 1–()– 0.7y t 2–()+ 2.5u t 2–() 0.9u t 3–()+= (6.2)
3-29

3 Tutorial

3-3
is represented by the polynomials

A = [1 –1.5 0.7]
B = [0 0 2.5 0.9]

The theta format representation of (6.1) is now created by the command

th = poly2th(A,B,C,D,F,lam,T)

lam is here the variance of the white noise source and T is the sampling
interval. Trailing arguments can be omitted for default values. The system
(6.2) can for example be represented by

th = poly2th([1 –1.5 0.7],[0 0 0.5 0.7])

In the multi-input case (5.2) B and F are matrices, whose row number k
corresponds to the k-th input. The command poly2th can also be used to define
time-continuous systems. See the Command Reference chapter for details.

Multivariable ARX Models
A multivariable ARX model is given by

Here A(q) is an ny by ny matrix whose entries are polynomials in the delay
operator q-1. You can represent it as

 as well as the matrix

e t()

A q()y t() B q()u t() e t()+= (6.3)

A q() Iny A1q
1– … Anaq

na–
+ + += (6.4)

a11(q) . . .

a21(q)

any1(q)

. .
 .

a12(q)

a22(q)

any2(q)

. .
 .

a1ny(q)

a2ny(q)

anyny(q)

. .
 .

. . .
. . .

. .
 .

A(q) =
0

where the entries are polynomials in the delay operator :

This polynomial describes how old values of output number j affect output
number k. Here is the Kronecker-delta; it equals 1 when , otherwise,
it is 0. Similarly is an ny by nu matrix

or

with

The delay from input number j to output number k is . To link with the
structure definition in terms of [na nb nk] in the arx and iv4 commands, note
that na is a matrix whose kj-element is , while the kj-elements of nb and nk
are and respectively.

The theta format representation of the model (6.3) can be created by

 th = arx2th(A,B,ny,nu)

where ny and nu are the number of outputs and inputs, respectively, and A and
B are matrices that define the matrix polynomials (6.4) and (6.7):

A = [eye(ny) A1 A2 .. Ana]
B = [B0 B1 .. Bnb]

akj q
1–

akj q() δkj akj
1

q
1– … akj

nakjq
nakj–

+ + += (6.6)

δkj k j=
B q()

B q() B0 B1q
1– …Bnbq

nb–
+ += (6.7)

b11(q) . . .

b21(q)

bny1(q)

. .
 .

b12(q)

b22(q)

bny2(q)

. .
 .

b1nu(q)

b2nu(q)

bnynu(q)

. .
 .

. . .

. . .
. .

 .

B(q) =

bkjq b
1

kjq
nkkj–= bkj

nb–
q

nkij– nbi j– 1+
+

nkkj

nakj
nbkj nkkj
3-31

3 Tutorial

3-3
Consider the following system with two outputs and three inputs:

This system is defined and simulated for a certain input u, and then estimated
in the correct ARX structure by the following string of commands:

A0 = eye(2);
A1 = [–1.5 0.4; –0.2 0];
A2 = [0.7 0 ; 0.01 –0.7];
B0 = [0 0.4 0;1 0 0];
B1 = [0 –0.1 0;0 0 3];
B2 = [0 0.15 0;0 0 4];
B3 = [0 0 0;0 0 0];
B4 = [0.2 0 0;0 2 0];
B5 = [0.3 0 0;0 0 0];
A = [A0 A1 A2];
B = [B0 B1 B2 B3 B4 B5];
th0 = arx2th(A,B,2,3);
e = randn(200,2);
u = [idinput(200),idinput(200),idinput(200)];
y = idsim([u e],th0);
na = [2 1;2 1];
nb = [2 3 0;1 1 2];
nk = [4 0 0;0 4 1];
the = arx([y u],[na nb nk]);
[Ae, Be] = th2arx(the);

You can use the two commands fixpar and unfixpar to manipulate ARX
structures, so that certain parameters in the structure are fixed to certain
known values and not estimated. See Chapter 4, "Command Reference"for
more information.

y1 t() 1.5y1 t 1–()– 0.4y2 t 1–() 0.7y1 t 2–()+ + 0.2u1 t 4–() +=

0.3u1 t 5–() 0.4u2 t() 0.1u2 t 1–()– 0.15u2 t 2–() e1 t()+ + +

2u2 t 4–() 3u3 t 1–() 4u3 t 2–() e2 t()+ + +

y2 t() 0.2()y1 t 1–()– 0.7y2 t 2–()– 0.01y1 t 2–() u1 t() +=+
2

State-Space Models with Free Parameters
The basic state-space models are the following ones: (See also “The System
Identification Problem” on page 3-8.)

Discrete-Time Innovations Form

Here T is the sampling interval, is the input at time instant and
is the output at time . (See Ljung (1987) page 87.)

System Dynamics Expressed in Continuous Time

(See Ljung (1987) page 82.) It is often easier to define a parametrized
state-space model in continuous time because physical laws are most often
described in terms of differential equations. The matrices F, G, H, and D
contain elements with physical significance (for example, material constants).
The numerical values of these may or may not be known. To estimate unknown
parameters based on sampled data (assuming T is the sampling interval) first
transform (6.9) to (6.8) using the formulas (3.30). The value of the Kalman-gain
matrix K in (6.8) or in (6.9) depends on the assumed character of the additive
noises and in (3.28), and its continuous-time counterpart. Disregard
that link and view K in (6.8) (or in (6.9)) as the basic tool to model the noise
properties. This gives the directly parametrized innovations form. (See Ljung
(1987) page 88.) If the internal noise structure is important, you could use
user-defined structures as in Example 6.4.

The System Identification Toolbox allows you to define arbitrary
parameterizations of the matrices in (6.8) or (6.9). When defining the structure,
the known elements in the matrices are entered with their numerical values,

x kT T+() Ax kT() Bu kT() Ke kT()+ +=

y kT() Cx kT() Du kT() e kT()+ +=

x 0() x0=

(6.8a)

(6.8b)

(6.8c)

u kT() kT y kT()
kT

x· t() Fx t() Gu t() K̃w t()+ +=

y t() Hx t() Du t() w t()+ +=

x 0() x0=

(6.9a)

(6.9b)

(6.9c)

K
~

w t() e t()
K
~

3-33

3 Tutorial

3-3
while the unknown elements are entered as NaN. Use the commands modstruc
and ms2th.

The Black-Box, Discrete-Time Case
For a discrete-time model, like (6.8) without any particular internal structure,
it is easier and more natural to use canstart or n4sid to estimate the model,
without any prior specification of the parametrization.

Example 6.1: A Discrete-Time Structure. Consider the discrete-time model

with five unknown parameters , i=1, ...,3. This structure is defined in the
theta format by

A = [1 NaN; 0 1];
B = [NaN;NaN];
C = [1 0];
D = 0;
K = [NaN;NaN];
x0 = [0;0];
ms1 = modstruc(A,B,C,D,K,x0);
th1 = ms2th(ms1,'d')

The definition thus follows in two steps. First the actual structure (known and
unknown parameter values) is coded in the matrix ms1 and then a theta format
matrix is created by ms2th. The argument 'd' denotes that the structure is a
discrete-time structure. Other optional arguments allow definition of guessed
values of the unknown parameters, as well as specification of the covariance
matrix of and of the sampling interval T. You can also specify unknown
elements in the initial value vector .

x t 1+() 1 θ1

0 1
x t()

θ2

θ3

u t()
θ4

θ5

e t()+ +=

y t() 1 0 x t() e t()+=

x 0() 0

0
=

θi

e t()
x 0()
4

For models that are parametrized as canonical forms, use canform instead of
modstruc to define the model structure.

Example 6.2: A Continuous-Time Model Structure. Consider the following
model structure

This corresponds to an electrical motor, where is the angular
position of the motor shaft and is the angular velocity. The
parameter is the inverse time constant of the motor and is the
static gain from the input to the angular velocity. (See page 84 in Ljung (1987).)
The motor is at rest at time 0 but at an unknown angular position. Suppose
that is around -1 and is around 0.25. If you also know that the variance
of the errors in the position measurement is 0.01 and in the angular velocity
measurements is 0.1, you can then define a theta structure using

F = [0 1; 0 NaN]
G = [0 ;NaN]
H = eye(2)
D = zeros(2,1)
K = zeros(2,2)
x0 = [NaN;0]
ms2 = modstruc(F,G,H,D,K,x0);
thguess=[–1, 0.25, 0]
noisevar = [0.01 0; 0 0.1]
th2 = ms2th(ms2,'c',thguess,noisevar)

The structure th2 can now be used to estimate the unknown parameters
from observed data z = [y1 y2 u] by

model = pem(z,th2)

x· t() 0 1

0 θ1

x t() 0

θ2

u t()+=

y t() 1 0

0 1
x t() e t()+=

x 0() θ3

0
=

y1 t() x1 t()=
y2 t() x2 t()=

θ1– θ2 θ1⁄–

θ1 θ2

θi
3-35

3 Tutorial

3-3
The iterative search for minimum is then initialized at thguess. The structure
can also be used to simulate the system above with sampling interval T=0.1 for
input u and noise realization e:

e=randn(300,2)
u=idinput(300);
th2 = sett(th2,0.1) % setting the sampling interval
y = idsim([u e],th2)

The nominal parameter values thguess are then used, and the noise sequence
is scaled according to the matrix noisevar.

When estimating models, you can try a number of “neighboring” structures,
like “what happens if I fix this parameter to a certain value” or “what happens
if I let loose these parameters.” Rather than going through the whole procedure
in redefining the structure, you can use the commands fixpar and unfixpar.
For example, to free the parameter x2(0) (perhaps the motor wasn’t at rest
after all) you can use

th = unfixpar(th2,'x0',[2,1])

To manipulate initial conditions, the function thinit is also useful.

State-Space Models with Coupled Parameters
In some situations you may want the unknown parameters in the matrices in
(6.8) or (6.9) to be linked to each other. Then the NaN feature is not sufficient to
describe these links. Instead you need to write an M-file that describes the
structure. The format is

[A,B,C,D,K,x0] = mymfile(par,T,aux);

where mymfile is the user-defined name for the M-file, par contains the
parameters, T is the sampling interval, and aux contains auxiliary variables.
The latter variables are used to house options, so that some different cases can
be tried out without having to edit the M-file. The matrices A, B, C, D, K, and x0
refer to the discrete-time description (6.8). If the underlying parameterization
is in continuous time, as in (6.9), it is desirable to write the M-file so that a
negative value of T inhibits the sampling. This means that A, B, C and D should
be returned as the matrices in (6.9) when mymfile is called with a negative T.
To obtain the same structure as in the Example 6.2 , you can do the following:
6

function [A,B,C,D,K,x0] = mymfile(par,T,aux)
F = [0 1; 0 par(1)];
G = [0;par(2)];
C = eye(2);
D = zeros(2,2);
K = zeros(2,1);
x0 =[par(3);0];
if T>0, [A,B] = c2d(F,G,T); else A=F; B=G; end

Here c2d is the sampling function from the Control System Toolbox, which
consequently is required to run this example.

Once the M-file has been written, the corresponding theta structure is defined
by the command mf2th (M-file to theta):

th = mf2th('mymfile','c',par,aux);

where par contains the nominal (initial) values of the corresponding entries in
the structure. 'c' signals that the underlying parametrization is continuous
time, and that the M-file is equipped with sampling inhibition (for). aux
contains the values of the auxiliary parameters.

From here on, estimate models and evaluate results as for any other model
structure. Note, though that the features fixpar and unfixpar are not
available for these general structures. Some further examples of user-defined
model structures are given below.

State-Space Structures: Initial Values and Numerical
Derivatives
It is sometimes difficult to find good initial parameter values at which to start
the numerical search for a minimum of (3.38). It is always best to use physical
insight, whenever possible, to suggest such values with thguess. For random
initialization, the command thinit is a useful alternative and complement to
thguess. Since there is always a risk that the numerical minimization may get
stuck in a local minimum, it is advisable to try several different initialization
values for .

In the search for the minimum, the gradient of the prediction errors is
computed by numerical differentiation. The step-size is determined by the
M-file nuderst. In its default version the step-size is simply times the
absolute value of the parameter in question (or the number if this is

T 0<

θ

e t()

10 4–

10 7–
3-37

3 Tutorial

3-3
larger). When the model structure contains parameters with different orders of
magnitude, try to scale the variables so that the parameters are all roughly the
same magnitude. In any case, you may need to edit the M-file nuderst to
address the problem of suitable step sizes for numerical differentiation.

Some Examples of User-Defined Model Structures
With user-defined structures, you have complete freedom in the choice of
models of linear systems. This section gives two examples of such structures.

Example 6.3: Heat Diffusion. Consider a system driven by the heat-diffusion
equation (see also Example 4.3 in Ljung (1987)).

This is a metal rod with heat-diffusion coefficient which is insulated at the
near end and heated by the power u (W) at the far end. The output of the
system is the temperature at the near end. This system is described by a partial
differential equation in time and space. Replacing the space-second derivative
by a corresponding difference approximation gives a time-continuous
state-space model (6.9), where the dimension of x depends on the step-size in
space used in the approximation. This is described by the following M-file:

function [A,B,C,D,K,x0] = heatd(pars,T,aux)
N = aux(1); % Number of points in the

% space–discretization
L = aux(2); % Length of the rod
temp = aux(3); % Assuming uniform initial

 % temperature of the rod
deltaL = L/N; % Space interval
kappa = pars(1); % The heat–diffusion coefficient
K = pars(2); % Heat transfer coefficient at

% far end of rod
F=zeros(N,N);
for kk=2:N–1
F(kk,kk–1)=1;
F(kk,kk)=–2;
F(kk,kk+1)=1;
end
F(1,1)=–1; F(1,2)=1; % Near end of rod
 % insulated
F(N,N–1)=1; F(N,N)=–1;
F=F∗kappa/deltaL/deltaL;

κ

8

G=zeros(N,1);
G(N,1)=K/deltaL;
C=zeros(1,N);
C(1,1)=1;
D=0;
K=zeros(N,1);
x0=temp∗ones(N,1);
if T>0 [A,B]=c2d(F,G,T);else A=F;B=G;end

You can then get started with the theta format with

th = mf2th('heatd','c',[0.27 1],[10,1,22],[],10)

for a 10th order approximation of a heat rod one meter in length, with an initial
temperature of 22 degrees and a sampling interval of 10 seconds. The initial
estimate of the heat conductivity is 0.27, and of the heat transfer coefficient is
1. The covariance matrix of the prediction errors is given a default value.

Example 6.4: Parametrized Noise Models. Consider a discrete-time model

x (t+1)=Ax(t)+Bu(t)+w (t)

y (t)=Cx (t)+e (t)

where w and e are independent white noises with covariance matrices R1 and
R2, respectively. Suppose that you know the variance of the measurement
noise R2, and that only the first component of is nonzero. This can be
handled by the following M-file:

function [A,B,C,D,K,x0] = mynoise(par,T,aux)
R2 = aux(1); % The assumed known measurement
 % noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C=[par(3) par(4)];
D=0;
R1= [par(5) 0;0 0];
K = A∗dlqe(A,eye(2),C,R1,R2); % from the
 % Control System Toolbox
x0=[0;0];

w t()
3-39

3 Tutorial

3-4
7. Examining Models
Once you have estimated a model, you need to investigate its properties. You
have to simulate it, test its predictions, and compute its poles and zeros and so
on. You thus have to transform the model from the theta format to other ways
of representing and presenting it.

Theta Format: th
The basic format for representing models in the System Identification Toolbox
is called the theta format. It stores all relevant information about the model
structure used, including the values of the estimated parameters, the
estimated covariances of the parameters, and the estimated innovations
variance and so on. It also contains some information about how and when the
model was created. The details of the representation can be found in the
Chapter 4, "Command Reference" or by typing help theta (for state-space
based structures type help thss). The representation should, however, be
thought of as an internal one; unless you are an advanced user, you do not need
to worry about the details. “Defining Model Structures” on page 3-29 describes
how to create models in the theta format using several different commands.

The information in the theta format is displayed by the present command:

present(th)

This spells out the information in th. Depending on the character of the
underlying model structure, the information is given in terms of the
polynomials in (6.1), in terms of the matrices in (6.8) or (6.9), or in terms of the
ARX polynomials in (6.3). Estimated standard deviations for the parameters
are always supplied. For multivariable ARX models and for state-space
matrices, the standard deviations are given as imaginary numbers added to the
parameters. For the polynomials they are given as a second row. For example,
the following printout from present

The polynomial coefficients and their standard deviations are
B =
0.0000 0.0000 1.7345
0.0000 0.0000 0.0563

A =
1.0000 –1.5312 0.6983
0.0000 0.0214 0.0022
0

is interpreted as and the standard deviation
of “1” is zero (naturally enough , since it is not estimated). The standard
deviation of is 0.0214. Note that leading zeros in the B polynomial indicate
the delay, as defined in “Defining Model Structures” on page 3-29.

The actual parameters can be extracted from the theta format by

[par,P] = th2par(th)

Here par is a row vector containing the parameters, and P is the estimated
covariance matrix of the parameters. The parameters are listed in
“alphabetical order.” See “Some Special Topics” on page 3-68. For the
polynomial model (6.1) the coefficients of the A, B, C, D, and F polynomials are
given in the order of increasing powers of . (See for example (6.2).) Note that
leading 0’s of B and the leading 1 in the other polynomials are omitted since
they do not correspond to estimated parameters. For the state-space model
(6.8) the parameters are given in the order obtained as the matrix A is first
searched for estimated parameters row by row, then B and then C, etc. The
same is true for the continuous model (6.9). For user-defined structures, the
ordering in par is the same as defined in the corresponding M-file. For
multivariable ARX models, the ordering of parameters is somewhat tricky and
it is safer use th2arx. (See “The ARX Format: arx” on page 3-45.)

The sampling interval can be extracted from the theta format by

T = gett(th)

A negative T means that th represents a time-continuous system. Then system
abs(T) indicates the sampling interval for the data for which the model was
estimated. It is also the sampling interval that applies when th is used for
simulation or prediction.

Frequency Function Format: ff
The frequency function and the disturbance spectrum corresponding to a model
th in the theta format is computed by

[G,PHIV] = th2ff(th)

This gives G and in (3.11) along with their estimated standard deviations,
which are translated from the covariance matrix of the estimated parameters.
If th corresponds to a time-continuous model, the frequency functions are
computed accordingly.

A q() 1 1.5312q
1–

– 0.6983q
2–

+=

a1

q
1–

Φ̂v
3-41

3 Tutorial

3-4
The resulting matrices G and PHIV are given in the freqfunc format. This format
stores the frequency functions and spectra (3.11) and their standard deviations
as column vectors. The first row is reserved for administrative information,
giving details about input and output numbers. The frequency values can be
chosen arbitrarily, but default to 128 values equally spaced between 0
(excluded) and the Nyquist frequency. For time-continuous models, the default
frequency range extends to a decade over the Nyquist frequency for the
sampled data upon which the model is based. Typing help freqfunc describes
the details of the format, which, however, is not important for basic use of the
toolbox.

The function th2ff has options that allow the selection of specific input-output
pairs, and the computation of frequency functions and spectra at arbitrary
frequencies.

If th corresponds to a model of a time series, its spectrum is obtained as

PHIY = th2ff(th)

Models in the freqfunc format are also obtained by the nonparametric
estimation routines spa and etfe, as described in “Nonparametric Model
Estimation” on page 3-19.

Three functions offer graphic display of the frequency functions and spectra:
bodeplot, ffplot, and nyqplot.

bodeplot(G)

plots the Bode diagram of G (logarithmic scales and frequencies in rad/sec). If G
is a spectrum, only an amplitude plot is given. Several curves in the same
diagram are obtained with

bodeplot([G1 G2 ... Gn])

If information about standard deviations is included in G, confidence intervals
corresponding to sd standard deviations are graphed with

bodeplot(G,sd)

The command ffplot has the same syntax as bodeplot but works with linear
frequency scales and Hertz as the unit. The command nyqplot also has the
same syntax, but produces Nyquist plots; i.e., graphs of the frequency function
in the complex plane.

For the creation of own frequency plots, the command getff extracts the
relevant portions of the freqfunc format. (See Chapter 4, "Command
Reference"for more information.)
2

Zero-Pole Format: zp
The command th2zp computes the zeros, poles, and static gains of the system
associated with th:

[zepo,K] = th2zp(th)

The matrix zepo now contains information about the zeros and the poles of the
model, along with their estimated standard deviations. It also contains (in the
first row) administrative information about input and output numbers, which
is used for plotting. Similarly, K contains the static gains and their standard
deviations. The best way of using the information in zepo is to graph the zeros
and poles by

zpplot(zepo)

Confidence regions (lines and ellipsoids) corresponding to sd standard
deviations are illustrated by

zpplot(zepo,sd)

Comparisons between several models are obtained by

zp1 = th2zp(th1)
zp2 = th2zp(th2)
zpplot(zpform(zp1,zp2))

zpplot has several options that determine how information about different
models and different input-output pairs is depicted. It also keeps track of
whether the underlying model is in discrete or continuous time and draws the
complex plane accordingly. The command th2zp also allows the selection of
specific input-output subsystems in the case of multivariable models.

The function getzp allows you to extract the zeros and the poles explicitly from
the zero-pole format.

State-Space Format: ss
The command

[A,B,C,D,K,X0] = th2ss(th)

computes the matrices of a state-space representation of th. The
representation is in discrete time as (6.8) or in continuous time as (6.9)
depending on the status of th. If the underlying model structure is a
3-43

3 Tutorial

3-4
state-space one, the matrices A, B, etc. are given in the same basis as originally
defined. If the underlying model is defined in terms of input-output
polynomials, the state-space representation is in observer canonical form. The
state-space matrices can be used for further analysis and design in the Control
System Toolbox and the Signal Processing Toolbox.

The command th2ss can also compute the standard deviations of the elements
in state-space matrices.

Transfer Function Format: tf
The transfer functions associated with the model th are computed by

[NUM,DEN] = th2tf(th)

NUM and DEN are given in the same format that is used in the Control System
Toolbox and the System Processing Toolbox. The common denominator DEN as
a row matrix and the k-th row of NUM gives the numerator polynomial
associated with output number k. If the model th has several inputs, specify
the input number as an argument. The polynomials are represented as row
vectors in descending powers of s (in continuous time) or z or q (in discrete
time). It thus differs from the polynomial format. (See below.) For example, the
continuous-time system

is represented as

NUM = [0 0 1] (or just 1)
DEN = [1 2 0]

while the discrete-time system

is represented as

NUM = 1
DEN = [1 –1.5 0.7 0]

1
s s 2+()

q
3–

1 1.5q
1–

– 0.7q
2–

+
--- 1

q
3

1.5q
2

– 0.7q+
--= (7.1)
4

Polynomial Format: poly
In the polynomial format, the polynomials A, B, C, D, and F in (3.23) are given
as follows: Polynomial coefficients are stored in row vectors, ordered by
ascending powers in the delay operator , , 1, , always starting with

. This means that (7.1) is represented by

B = [0 0 0 1]
A = [1 –1.5 0.7]

Delays are thus denoted by leading zeros in B. Note the difference with the
transfer function representation, in that leading zeros must be explicitly given.
Only when the lengths of A and B are the same do the formats coincide. See also
Section 6. The polynomials corresponding to th are extracted by

[A,B,C,D,F] = th2poly(th)

This is consequently the “inverse” of poly2th described in “Defining Model
Structures” on page 3-29.

Continuous-time systems can also be represented in the polynomial format.
Then the polynomials are given as row vectors in descending powers of the
Laplace variable s just as in the transfer function case.

The ARX Format: arx
To obtain an ARX description from a model th that corresponds to such a
description (i.e., it has originally been generated by arx, iv4, or arx2th), use

[A,B] = th2arx(th)

The matrices A and B then contain the ARX polynomials as described in Section
6. th2arx is thus an inverse of arx2th.

q k– k 0= …
k 0=
3-45

3 Tutorial

3-4
Transformations Between Discrete and Continuous
Models

Continuous-Time Models
A model in the theta format can be internally represented as a continuous-time
model. This occurs if the structure was originally defined as a state-space
structure with ms2th or mf2th using the argument 'c'. (See “Defining Model
Structures” on page 3-29 and the Chapter 4, "Command Reference".) The model
then remains a continuous-time one during the estimation phases with pem
even though the estimation is performed using sampled data. A
continuous-time model of the type (6.1) in polynomial form also results when
poly2th is used with a negative value of the sampling interval. This structure
cannot, however, be used for further estimation. Finally, continuous-time
models are obtained by the command thd2thc. (See below.)

Continuous-time models are indicated by a negative sampling interval. A quick
check can thus be given by

 gett(th)<0

All the model transformations th2ff, th2zp, th2ss, th2tf, and th2poly result
in the corresponding characteristics in continuous time for models th that are
indicated as continuous. For simulation and prediction, however, the model is
first transformed to discrete time.

The absolute value of the sampling interval of a continuous-time model is the
sampling interval of the data for which the model was estimated. It is also used
to select suitable default frequency intervals in th2ff (the default being from
zero up to 10 * π/ |T| rad/sec). The absolute value of T also applies when the
model is used for simulation and prediction.

Discrete-Time Models
These models are obtained from the estimation functions ar, armax, arx, bj,
ivar, iv4, n4sid, and oe. They are also obtained from pem when applied to (6.1)
and to state-space structures generated by ms2th and mf2th with the argument
'd'. Discrete-time models also result from poly2th with positive or default
values of the sampling interval. Finally discrete-time models are obtained with
the command thc2thd. (See below.)
6

The sampling interval T is obtained by T = gett(th). It indicates the sampling
interval of the model as well as of the data to which the model was adjusted. It
is also used for appropriate frequency scales in the freqfunc format.

Transformations
Transformations between continuous-time and discrete-time model
representations are achieved by thc2thd and thd2thc. The corresponding
uncertainty measure (the estimated covariance matrix of the internal
parameters) is also transformed in most cases. The syntax is

thc = thd2thc(thd)
thd = thc2thd(thc,T)

If the discrete-time model has some pure time delays () the default
command removes them before forming the continuous-time model. They
should then be appended as an extra dead time. This is done automatically by
th2ff. thd2thc offers as an option to approximate the dead time by a finite
dimensional system. Note that the noise properties are translated by the
somewhat questionable formula (3.32). The covariance matrix is translated by
Gauss’ approximation formula using numerical derivatives. The M-file
nuderst is then invoked. You may want to edit it for applications where the
parameters have very different orders of magnitude. See the comments in
“Defining Model Structures” on page 3-29.

Here is an example which compares the Bode plots of an estimated model and
its continuous-time counterpart:

th = armax(z,[2 3 1 2]);
gd = th2ff(th);
thc = thd2thc(th);
gc = th2ff(thc);
bodeplot([gd gc])

Simulation and Prediction
Any model, when given in the theta format, can be simulated with

y = idsim([u e],th)

where u and e are column vectors (or matrices) containing the input and noise
sequences. The output is returned in a column vector y of the same length.
Notice that th contains information about the noise variance so e should be a

nk 1>
3-47

3 Tutorial

3-4
zero-mean, unit-variance sequence. If e is omitted, a noise-free simulation is
obtained. Here is a typical string of commands:

A = [1 –1.5 0.7];
B = [0 1 0.5];
th0 = poly2th(A,B,[1 –1 0.2]);
u = idinput(400,’rbs’,[0 0.3]);
e = randn(400,1);
y = idsim([u e],th0);
plot(y)

The “inverse model” (3.38), which computes the prediction errors from given
input-output data, is simulated with

e = pe([y u],th)

To compute the k-step ahead prediction of the output signal based on a model
th, the procedure is as follows:

yhat = predict([y u],th,k)

The predicted value is computed using the information in up to
time and information in up to time . The actual way that
the information in past outputs is used depends on the noise model in th. For
example, an output error model maintains that there is no
information in past outputs, therefore, predictions and simulations coincide.

predict can evaluate how well a time series model is capable of predicting
future values of the data. Here is an example, where y is the original series of,
say, monthly sales figures. A model is estimated based on the first half, and
then its ability to predict half a year ahead is checked out on the second half of
the observations:

idplot(y)
y1 = y(1:48), y2 = y(49:96)
th = ar(y1,4)
yhat = predict(y2,th4,6)
plot([y2 yhat])

The command compare is useful for any comparisons involving idsim and
predict.

ŷ t t k–() u s()
s t= y s() s t k–=

A C D 1= = =
8

8. Model Structure Selection and Validation
After you have been analyzing data for some time, you typically end up with a
large collection of models with different orders and structures. You need to
decide which one is best, and if the best description is an adequate model for
your purposes. These are the problems of model validation.

Model validation is the heart of the identification problem, but there is no
absolute procedure for approaching it. It is wise to be equipped with a variety
of different tools with which to evaluate model qualities. This section describes
the techniques you can use to evaluate model qualities using the System
Identification Toolbox.

Comparing Different Structures
It is natural to compare the results obtained from model structures with
different orders. For state-space models this is easily obtained by using a vector
argument for the order in n4sid:

th = n4sid(z,1:10)

This invokes a plot from which a “best” order is chosen.

For models of ARX type, various orders and delay can be efficiently studied
with the command arxstruc. Collect in a matrix NN all of the ARX structures
you want to investigate, so that each row of NN is of the type

[na nb nk]

With

V = arxstruc(ze,zv,NN)

an ARX model is fitted to the data set ze for each of the structures in NN. Next,
for each of these models, the sum of squared prediction errors is computed, as
they are applied to the data set zv. The resulting loss functions are stored in V
together with the corresponding structures.

To select the structure that has the smallest loss function for the validation set
zv, use

nn = selstruc(V,0)
3-49

3 Tutorial

3-5
Such a procedure is known as cross validation and is a good way to approach
the model selection problem.

It is usually a good idea to visually inspect how the fit changes with the number
of estimated parameters. A graph of the fit versus the number of parameters is
obtained with

nn = selstruc(V)

This routine prompts you to choose the number of parameters to estimate,
based upon visual inspection of the graph, and then it selects the structure
with the best fit for that number of parameters.

The command struc helps generate typical structure matrices NN for
single-input systems. A typical sequence of commands is

V = arxstruc(ze,zv,struc(2,2,1:10));
nn = selstruc(V,0);
nk = nn(3);
V = arxstruc(ze,zv,struc(1:5,1:5,nk–1:nk+1));
nn = selstruc(V)

where you first establish a suitable value of the delay nk by testing second
order models with delays between one and ten. The best fit selects the delay,
and then all combinations of ARX models with up to five a and b parameters
are tested with delays around the chosen value (a total of 75 models).

If the model is validated on the same data set from which it was estimated; i.e.,
if ze = zv, the fit always improves as the model structure increases. You need
to compensate for this automatic decrease of the loss functions. There are
several approaches for this. Probably the best known technique is Akaike’s
Final Prediction Error (FPE) criterion and his closely related Information
Theoretic Criterion (AIC). Both simulate the cross validation situation, where
the model is tested on another data set.

The FPE is formed as

FPE 1 n+ N⁄
1 n– N⁄
--------------------= * V
0

where n is the total number of estimated parameters and N is the length of the
data record. V is the loss function (quadratic fit) for the structure in question.
The AIC is formed as

(See Section 16.4 in Ljung (1987).)

According to Akaike’s theory, in a collection of different models, choose the one
with the smallest FPE (or AIC). The FPE values are displayed by the present
command and are also given as the entry (2,1) of the th matrix. The structure
that minimizes the AIC is obtained with

nn = selstruc(V,'AIC')

where V was generated by arxstruc.

A related criterion is Rissanen’s minimum description length (MDL) approach,
which selects the structure that allows the shortest over-all description of the
observed data. This is obtained with

nn = selstruc(V,'MDL')

If substantial noise is present, the ARX models may need to be of high order to
describe simultaneously the noise characteristics and the system dynamics.
(For ARX models the noise model 1/A(q) is directly coupled to the dynamics
model B(q)/A(q).) An alternative is to compute the dynamics model only, using
an IV technique, and to compute the fit between the model’s simulated output
and the output in the validation data set zv. This is accomplished with

V = ivstruc(ze,zv,NN)

The information in V can then be handled as described above. In this case, V
also contains the condition number of the matrix from which the IV estimates
are solved. Poor conditioning of this matrix indicates unnecessarily high model
orders. (See page 415 in Ljung, 1987).

Checking Pole-Zero Cancellations
A near pole-zero cancellation in the dynamics model is an indication that the
model order may be too high. To judge if a “near” cancellation is a real
cancellation, take the uncertainties in the pole- and zero-locations into

AIC log 1 2n+ N⁄()* V[]≈
3-51

3 Tutorial

3-5
consideration. The function th2zp computes confidence regions for the poles
and zeros, which are graphed by

zpplot(th2zp(th),1)

where the 1 indicates how many standard-deviations wide the confidence
interval is. If the confidence regions overlap, try lower model orders.

This check is especially useful when the models have been generated by arx. As
mentioned under “Comparing Different Structures,” the orders can be pushed
up due to the requirement that 1/A(q) describe the noise characteristics.
Checking cancellations in B(q)/A(q) then gives a good indication of which orders
to chose from model structures like armax, oe, and bj.

Residual Analysis
The residuals associated with the data and a given model, as in (3.38), are
ideally white and independent of the input for the model to correctly describe
the system. The function

e = resid(z,th)

computes the residuals e and performs whiteness and independence analyses.
The auto correlation function of e and the cross correlation function between e
and u are computed and displayed for up to lag 25. Also displayed are 99%
confidence intervals for these variables, assuming that e is indeed white and
independent of u.

The rule is that if the correlation functions go significantly outside these
confidence intervals, do not accept the corresponding model as a good
description of the system. Some qualifications of this statement are necessary:

• Model structures like the OE structure (3.19) and methods like the IV
method (3.41) focus on the dynamics G and less about the noise properties H.
If you are interested primarily in G, focus on the independence of e and u
rather than the whiteness of e.

• Correlation between e and u for negative lags, or current affecting
future , is an indication of output feedback. This is not a reason to reject
the model. Correlation at negative lags is of interest, since certain methods
do not work well when feedback is present in the input-output data, (see

e t()
u t()
2

“Dealing with Data” on page 3-58), but concentrate on the positive lags in the
cross-correlation plot for model validation purposes.

• When using the ARX model (3.15), the least-squares procedure
automatically makes the correlation between and zero for

, , , for the data used for the estimation.

As part of the validation process, you can graph the residuals using

 plot(e)

for a simple visual inspection of irregularities and outliers. (See also “Dealing
with Data” on page 3-58.)

Noise-Free Simulations
To check whether a model is capable of reproducing the observed output when
driven by the actual input, you can run a simulation:

yh = idsim(u,th)
plot([y yh])

The same result is obtained by

compare([y,u],th)

It is a much tougher and revealing test to perform this simulation, as well as
the residual tests, on a fresh data set [y u] that was not used for the estimation
of the model th. This is called cross validation. (Note that ivstruc forms the
squared difference of y and yh for IV-computed models th.)

Assessing the Model Uncertainty
The estimated model is always uncertain, due to disturbances in the observed
data, and due to the lack of an absolutely correct model structure. The
variability of the model that is due to the random disturbances in the output is
estimated by most of the estimation procedures, and it can be displayed and
illuminated in a number of ways. This variability answers the question of how
different can the model be if I repeat the identification procedure, using the
same model structure, but with a different data set that uses the same input
sequence. It does not account for systematic errors due to an inadequate choice
of model structure. There is no guarantee that the “true system” lies in the
confidence interval.

e t() u t k–()
k nk= nk 1+ …nk nb 1–+
3-53

3 Tutorial

3-5
The uncertainty in the frequency response is calculated with

[g,phiv] = th2ff(th)

and can subsequently be graphed with bodeplot. The uncertainty in the time
response is displayed by

idsimsd(u,th)

Ten possible models are drawn from the asymptotic distribution of the model
th. The response of each of them to the input u is graphed on the same diagram.

The uncertainty of these responses concerns the external, input-output
properties of the model. It reflects the effects of inadequate excitation and the
presence of disturbances.

You can also directly get the standard deviation of the simulated result by

[ysim,ysimsd] = idsim(u,th)

The uncertainty in internal representations is manifested in the covariance
matrix of the estimated parameters,

present(th)

and in the standard deviations of the pole- and zero-locations, which are
computed with

zepo = th2zp(th)

and displayed using zpplot. Large uncertainties in these representations are
caused by excessively high model orders, inadequate excitation, or bad
signal-to-noise ratios.

Comparing Different Models
It is a good idea to display the model properties in terms of quantities that have
more physical meaning than the parameters themselves. Bode plots, zero-pole
plots, and model simulations all give a sense of the properties of the system
that have been picked up by the model.

If several models of different characters give very similar Bode plots in the
frequency range of interest, you can be fairly confident that these must reflect
features of the true, unknown system. You can then choose the simplest model
among these.
4

A typical identification session includes estimation in several different
structures, and comparisons of the model properties. Here is an example:

a1 = arx(z,[1 1]);
[gs,nss] = spa(z);
[ga1,nsa1] = th2ff(a1);
bodeplot([gs ga1])
bodeplot([nss nsa1])
zpa1 = th2zp(a1);
am2 = armax(z,[2 2 2 1]);
[gam2,nsam2] = th2ff(am2);
bodeplot([gs gam2])
zpam2 = th2zp(am2);
zpplot(zpform(zpa1,zpam2))

Conditioning of the Prediction Error Gradient
When the model orders in (3.23) are overestimated, so that a pole-zero
cancellation can take place in the model, the prediction error gradient
theoretically becomes rank deficient. The matrix that is inverted when
estimating the covariance matrix becomes singular, and the Gauss-Newton
search direction becomes ambiguous.

Due to the high numeric precision in MATLAB, you are unlikely to encounter
messages about singular and rank deficient matrices. Instead, overestimated
model orders usually show up as large estimated parameter variances and
large norms of the Gauss-Newton vector (although only minor decreases in the
criterion value result). Consequently, these are good indicators that you have
gone too far in increasing the model orders. See also “Some Special Topics” on
page 3-68.

Selecting Model Structures for Multivariable
Systems
Multivariable systems are often more difficult to model. Some basic aspects
and advice were given in “The Basic Steps of System Identification” on page
1-10. The graphical user interface (GUI) offers particularly useful support for
the multivariable case. In this section we give some more technical comments
about the identification of multivariable systems.
3-55

3 Tutorial

3-5
The basic comments given so far in this section also apply to such systems.
There are, however, a large number of possible structures for systems with
several outputs, and systematic tests of the many possibilities are impractical.
This problem is a difficult one, and for a more comprehensive treatment, refer
to Appendix 4.A of Ljung (1987).

First of all, physical insight is more important than anything else. Whenever
there is prior knowledge sufficient to form physically parametrized state-space
models, you should test that. Even lacking more precise knowledge, some
physical insight might help you to come up with first suggestions of orders and
delays.

For multi-output black-box models, it is easiest to first try state-space models
using n4sid for the model estimation.

Multivariable ARX models are also easy to deal with. When building such
models, a simple start-up procedure is to try arx with a structure that is filled
with parameters. Then consider those estimates that are of the same
magnitude as their standard deviations, and try orders and delays that
automatically set them to zero. Note that for arx each row is estimated
independently of the others. Changing orders and delays associated with
output number i (i.e. the i-th row of na, nb, and nk) does not change the
parameter estimates associated with the other rows. When a reasonable
structure has been found, try iv4 with it and evaluate the models in the usual
ways.

If the signal to noise level is not good, and it is important to have models that
describe the noise characteristics, try state-space models. (These are
equivalent to multivariable ARMAX models.) Again, it is easier to estimate
state-space models directly without specifying the particular structure. This is
done using n4sid.

An alternative is to apply the prediction error method using canonical
state-space forms. These are obtained by the command canstart. This defines
a canonical form structure from the pseudo-observability indices. These indices
form a vector with the same number of entries as the number of outputs.
Loosely speaking, index number k describes how many delayed values of yk
affect the current value of yk. The sum of the indices is equal to the order of the
6

system. The number of possible pseudo-observability indices for a system of
order n with p outputs is

It is, however, reassuring to know that almost every system of order n can be
described in a structure corresponding to any set of pseudo-observability
indices whose sum is n. You can estimate the order of the system (or, rather,
try several different orders) and pick any set of pseudo-observability indices
corresponding to that order. A default choice of indices can be made by
canstart if only the order is specified. Only if the minimization in pem shows
signs of poor conditioning of the involved matrices do you need to try other
indices.

Note that the canonical form parametrizations cannot handle input delays. To
deal with specific delays from the input(s), shift the input sequences
accordingly.

Also note that with fixpar any canonical form parameterization can be
transformed to a corresponding output-error structure, by fixing the matrix K
to zero.

n
p

3-57

3 Tutorial

3-5
9. Dealing with Data
Extracting information from data is not an entirely straightforward task. In
addition to the decisions required for model structure selection and validation,
the data may need to be handled carefully. This section gives some advice on
handling several common situations.

Offset Levels
When the data have been collected from a physical plant, they are typically
measured in physical units. The levels in these raw inputs and outputs may not
match in any consistent way. This will force the models to waste some
parameters correcting the levels.

Offsets are easily dealt with; always subtract the mean levels from the input
and output sequences before the estimation. It is best if the mean levels
correspond to a physical equilibrium, but if such values are not known, use the
sample means:

z = dtrend(z);

Section 14.6 in Ljung (1987) discusses this in more detail. With the dtrend
command, you can also remove piece-wise linear trends.

Outliers
Real data are also subject to possible bad disturbances; an unusually large
disturbance, a temporary sensor or transmitter failure, etc. It is important that
such outliers are not allowed to affect the models too strongly.

The robustification of the error criterion (described under lim in “Optional
Variables” on page 3-26) helps here, but it is always good practice to examine
the residuals for unusually large values, and to go back and critically evaluate
the original data responsible for the large values. If the raw data are obviously
in error, they can be smoothed, and the estimation procedure repeated.

Filtering Data
Depending upon the application, interest in the model can be focused on
specific frequency bands. Filtering the data before the estimation, through
filters that enhance these bands, improves the fit in the interesting regions.
This is used in the System Identification Toolbox function idfilt. For
8

example, to enhance the data in the frequency band between 0.02 * π and
0.1 * π, execute

zf = idfilt(z,5,[0.02 0.1]);

This computes and uses a fifth order Butterworth bandpass filter with
passband between the indicated frequencies. Chapter 13 in Ljung (1987)
discusses the role of filtering in more detail.

The SITB contains other useful commands for related problems. For example,
if you want to lower the sampling rate by a factor of 5, use

z5 = idresamp(z,5);

Feedback in Data
If the system was operating in closed loop (feedback from the past outputs to
the current input) when the data were collected, some care has to be exercised.

Basically, all the prediction error methods work equally well for closed-loop
data. Note, however, that the Output-Error model (3.19) and the Box-Jenkins
model (3.21) are normally capable of giving a correct description of the
dynamics G, even if H (which equals 1 for the output error model) does not
allow a correct description of the noise properties. This is no longer true for
closed-loop data. You then need to model the noise properties carefully.

The spectral analysis method and the instrumental variable techniques (with
default instruments) give unreliable results when applied to closed-loop data.
These techniques should be avoided when feedback is present.

To detect if feedback is present, use the basic method of applying cra to
estimate the impulse response. Significant values of the impulse response at
negative lags is a clear indication of feedback. When a parametric model has
been estimated and the resid command is applied, a graph of the correlation
between residuals and inputs is given. Significant correlation at negative lags
again indicates output feedback in the generation of the input. Testing for
feedback is, therefore, a natural part of model validation.

Delays
The selection of the delay nk in the model structure is a very important step in
obtaining good identification results. You can get an idea about the delays in
the system by the impulse response estimate from cra.
3-59

3 Tutorial

3-6
Incorrect delays are also visible in parametric models. Underestimated delays
(nk too small) show up as small values of leading estimates, compared to
their standard deviations. Overestimated delays (nk too large) are usually
visible as a significant correlation between the residuals and the input at the
lags corresponding to the missing terms.

A good procedure is to start by using arxstruc to test all feasible delays
together with a second-order model. Use the delay that gives the best fit for
further modeling. When you have found an otherwise satisfactory structure,
vary nk around the nominal value within the structure, and evaluate the
results.

bk

bk
0

10. Recursive Parameter Estimation
In many cases it may be necessary to estimate a model on line at the same time
as the input-output data is received. You may need the model to make some
decision on line, as in adaptive control, adaptive filtering, or adaptive
prediction. It may be necessary to investigate possible time variation in the
system’s (or signal’s) properties during the collection of data. Terms like
recursive identification, adaptive parameter estimation, sequential estimation,
and online algorithms are used for such algorithms. Chapter 11 in Ljung (1987)
deals with such algorithms in some detail.

The Basic Algorithm
A typical recursive identification algorithm is

Here is the parameter estimate at time t, and is the observed output
at time t. Moreover, is a prediction of the value based on observations
up to time and also based on the current model (and possibly also earlier
ones) at time . The gain determines in what way the current
prediction error affects the update of the parameter estimate. It is
typically chosen as

where is (an approximation of) the gradient with respect to of .
The latter symbol is the prediction of according the model described by .
Note that model structures like AR and ARX that correspond to linear
regressions can be written as

where the regression vector contains old values of observed inputs and
outputs, and represents the true description of the system. Moreover,

 is the noise source (the innovations). Compare with (3.15). The natural
prediction is and its gradient with respect to becomes
exactly .

θˆ t() θˆ t 1–() K t() y t() ŷ t()–()+= (10.1)

θ
ˆ

t() y t()
ŷ t() y t()

t 1–
t 1– K t()

y t() ŷ t()–

K t() Q t()ψ t()= (10.2)

ψ t() θ ŷ t θ()
y t() θ

y t() ψT
t()θ0 t() e t()+= (10.3)

ψ t()
θ0 t()

e t()
ŷ t() ψT

t()θ t 1–()= θ
ψ t()
3-61

3 Tutorial

3-6
For models that cannot be written as linear regressions, you cannot recursively
compute the exact prediction and its gradient for the current estimate .
Then approximations and must be used instead. Section 11.4 in
Ljung (1987) describes suitable ways of computing such approximations for
general model structures.

The matrix that affects both the adaptation gain and the direction in
which the updates are made, can be chosen in several different ways. This is
discussed in the following section.

Choosing an Adaptation Mechanism and Gain
The most logical approach to the adaptation problem is to assume a certain
model for how the “true” parameters change. A typical choice is to describe
these parameters as a random walk:

Here is assumed to be white Gaussian noise with covariance matrix

θˆ t 1–()
ŷ t() ψ t()

Q t()

θ0

θ0 t() θ0 t 1–() w t()+= (10.4)

w t()

Ew t()wT
t() R1= (10.5)
2

Suppose that the underlying description of the observations is a linear
regression (10.3). An optimal choice of in (10.1)-(10.2) can then be
computed from the Kalman filter, and the complete algorithm becomes

Here is the variance of the innovations in (10.3): (a scalar).
The algorithm (10.6) will be called the Kalman Filter (KF) Approach to
adaptation, with drift matrix . See eq (11.66)-(11.67) in Ljung (1987). The
algorithm is entirely specified by , , , , and the sequence of data

, , , 2,…. Even though the algorithm was motivated for a linear
regression model structure, it can also be applied in the general case where

 is computed in a different way from (10.6b).

Another approach is to discount old measurements exponentially, so that an
observation that is samples old carries a weight that is of the weight of
the most recent observation. This means that the following function is
minimized rather than (3.39):

at time t. Here is clearly is a positive number ≤ 1. The measurements that
are older than carry a weight in (10.7) that is less than about 0.3.
Think of as the memory horizon of the approach. Typical values
of are in the range 0.97– 0.995.

Q t()

θ̂ t() θ̂ t 1–() K t() y t() ŷ t()–()+=

ŷ t() ψT
t()θ̂ t 1–()=

K t() Q t()ψ t()=

Q t() P t 1–()

R2 ψ t()T
P t 1–()ψ t()+

---=

P t() P t 1–() R1
P t 1–()ψ t()ψ t()T

P t 1–()

R2 ψ t()T
P t 1–()ψ t()+

---–+=

(10.6a)

(10.6b)

(10.6c)

(10.6d)

(10.6e)

R2 e t() R2 Ee
2

t()=

R1
R1 R2 P 0() θ 0()

y t() ψ t() t 1=

ŷ t()

τ λτ

λt k–
e

2
k()

k 1=

t

∑ (10.7

λ
τ 1 1 λ–()⁄=

τ 1 1 λ–()⁄=
λ

3-63

3 Tutorial

3-6
The criterion (10.7) can be minimized exactly in the linear regression case
giving the algorithm (10.6abc) with the following choice of :

This algorithm will be called the Forgetting Factor (FF) Approach to
adaptation, with the forgetting factor . See eq (11.63) in Ljung (1987). The
algorithm is also known as RLS, recursive least squares in the linear regression
case. Note that in this approach gives the same algorithm as

 in the Kalman filter approach.

A third approach is to allow the matrix to be a multiple of the identity
matrix:

It can also be normalized with respect to the size of :

See eqs (11.45) and (11.46), respectively in Ljung (1987). These choices of
move the updates of in (10.1) in the negative gradient direction (with respect
to) of the criterion (3.39). Therefore, (10.9) will be called the Unnormalized
Gradient (UG) Approach and (10.10) the Normalized Gradient (NG) Approach
to adaptation, with gain . The gradient methods are also known as LMS, least
mean squares in the linear regression case.

Q t()

Q t() P t() P t 1–()

λ ψ t()T
P t 1–()ψ t()+

--= =

P t() P t 1–() P t 1–()ψ t()ψ t()T
P t 1–()

λ ψ t()T
P t 1–()ψ t()+

---–

 = λ⁄

(10.8a)

(10.8b)

λ

λ 1=
R1 0 R2, 1= =

Q t()

Q t() ϒI= (10.9)

ψ

Q t() ϒ

ψ t() 2
----------------I= (10.10)

Q t()
θ̂

θ

ϒ

4

Available Algorithms
The System Identification Toolbox provides the following functions that
implement all common recursive identification algorithms for model structures
in the family (6.1): rarmax, rarx, rbj, rpem, rplr, and roe. They all share the
following basic syntax:

[thm,yh] = rfcn(z,nn,adm,adg)

Here z contains the output-input data as usual. nn specifies the model
structure, exactly as for the corresponding offline algorithm. The arguments
adm and adg select the adaptation mechanism and adaptation gain listed above.

 adm = 'ff'; adg = lam

gives the forgetting factor algorithm (10.8), with forgetting factor lam.

adm = 'ug'; adg = gam

gives the unnormalized gradient approach (10.9) with gain gam. Similarly,

adm = 'ng'; adg = gam

gives the normalized gain approach (10.10). To obtain the Kalman filter
approach (10.6) with drift matrix R1 enter

adm = 'kf'; adg = R1

The value of is always 1. Note that the estimates in (10.6) are not affected
if all the matrices and are scaled by the same number. You can
therefore always scale the original problem so that becomes 1.

The output argument thm is a matrix that contains the current models at the
different samples. Row k of thm contains the model parameters, in alphabetical
order at sample time k, corresponding to row k in the data matrix z. The
ordering of the parameters is the same as th2par would give when applied to
the theta format of a corresponding offline model.

The output argument yh is a column vector that contains, in row k, the
predicted value of , based on past observations and current model. The
vector yh thus contains the adaptive predictions of the outputs, and is useful
also for noise cancelling and other adaptive filtering applications.

The functions also have optional input arguments that allow the specification
of , and . Optional output arguments include the last value of
the matrix P and of the vector .

R2 θ̂
R1 R2, P 0()

R2

y k()

θ 0() P 0(), ψ 0()
ψ

3-65

3 Tutorial

3-6
Now, rarx is a recursive variant of arx; similarly rarmax is the recursive
counterpart of armax and so on. Note, though that rarx does not handle
multi-output systems, and rpem does not handle state-space structures.

The function rplr is a variant of rpem, and uses a different approximation of
the gradient . It is known as the recursive pseudo-linear regression approach,
and contains some well known special cases. See equation (11.57) in Ljung
(1987). When applied to the output error model (nn=[0 nb 0 0 nf nk]) it
results in methods known as HARF ('ff'–case) and SHARF ('ng'–case). The
common extended least squares (ELS) method is an rplr algorithm for the
ARMAX model (nn=[na nb nc 0 0 nk]).

The following example shows a second order output error model, which is built
recursively and its time varying parameter estimates plotted as functions of
time:

thm = roe(z,[2 2 1],'ff',0.98);
plot(thm)

A second order ARMAX model is recursively estimated by the ELS method,
using Kalman filter adaptation. The resulting static gains of the estimated
models are then plotted as a function of time:

[N,dum]=size(z);
thm = rplr(z,[2 2 2 0 0 1],'kf',0.01∗eye(6));
nums = sum(thm(:,3:4)')';
dens = ones(N,1)+sum(thm(:,1:2)')';
stg = nums./dens;
plot(stg)

So far, the examples of applications where a batch of data is examined cover
studies of the variability of the system. The algorithms are, however, also
prepared for true online applications, where the computed model is used for
some online decision. This is accomplished by storing the update information
in and information about past data in (and)
and using that information as initial data for the next time step. The following
example shows the recursive least-squares algorithm being used on line (just
to plot one current parameter estimate):

%Initialization, first i/o pair y,u (scalars)
[th,yh,P,phi] = rarx([y u],[2 2 1],'ff',0.98);
axis([1 50 –2 2])
plot(1,th(1),'∗'),hold

ψ

θ t 1–() P t 1–(), φ t 1–() ψ t 1–()
6

%The online loop:
for k = 2:50
% At time k receive y,u
[th,yh,P,phi] = ...
rarx([y u],[2 2 1],'ff',0.98,th',P,phi);
plot(k,th(1),'∗')
end

Executing iddemo 6 illustrates the recursive algorithms.

Segmentation of Data
Sometimes the system or signal exhibits abrupt changes during the time when
the data is collected. It may be important in certain applications to find the
time instants when the changes occur and to develop models for the different
segments during which the system does not change. This is the segmentation
problem. Fault detection in systems and detection of trend breaks in time
series can serve as two examples of typical problems.

The System Identification Toolbox offers the function segment to deal with the
segmentation problem. The basic syntax is

thm = segment(z,nn)

with a format like rarx or rarmax. The matrix thm contains the piecewise
constant models in the same format as for the algorithms described earlier in
this section.

The algorithm that is implemented in segment is based on a model description
like (10.4), where the change term is zero most of the time, but now and
then it abruptly changes the system parameters . Several Kalman filters
that estimate these parameters are run in parallel, each of them corresponding
to a particular assumption about when the system actually changed. The
relative reliability of these assumed system behaviors is constantly judged, and
unlikely hypotheses are replaced by new ones. Optional arguments allow the
specification of the measurement noise variance in (10.3), of the probability
of a jump, of the number of parallel models in use, and also of the guaranteed
lifespan of each hypothesis. See iddemo 7 in Chapter 4, "Command Reference"
also.

w t()
θ0 t()

R2
3-67

3 Tutorial

3-6
11. Some Special Topics
This section describes a number of miscellaneous topics. Most of the
information here is also covered in other parts of the manual, but since
manuals seldom are read from the beginning, you can also check if a particular
topic is brought up here.

Time Series Modeling
When there is no input present, the general model (6.1) reduces to the ARMA
model structure:

With you have an AR model structure.

Basically all commands still apply to these time series models, but with natural
modifications. They are listed as follows:

th = poly2th(A,[],C,1,[],lam)
y = idsim(e,th)

Spectral analysis (etfe and spa) and the th2ff function now return the
spectral estimate of y as their first output arguments:

PHIY = th2ff(th)
PHIY = spa(y)
PERIOD = etfe(y)

Note that etfe gives the periodogram estimate of the spectrum.

armax and arx work the same way, but need no specification of nb and nk:

th = arx(y,na)
th = armax(y,[na nc])

Note that arx also handles multivariate signals. State-space models of time
series can be built simply by specifying B = [], D = [] in modstruc, mf2th, and
ms2th. resid works the same way for time series models, but does not provide
any input-residual correlation plots:

e = resid(y,th)

A q()y t() C q()e t()= (11.1)

C q() 1=
8

In addition there are two commands that are specifically constructed for
building scalar AR models of time series. One is

th = ar(y,na)

which has an option that allows you to choose the algorithm from a group of
several popular techniques for computing the least-squares AR model. Among
these are Burg’s method, a geometric lattice method, the Yule-Walker
approach, and a modified covariance method. See Chapter 4, "Command
Reference" for details. The other command is

th = ivar(y,na)

which uses an instrumental variables technique to compute the AR part of a
time series.

Finally, when no input is present, the functions bj, iv, iv4, and oe are not
defined.

Here is an example where you can simulate a time series, compare spectral
estimates and covariance function estimates, and also the predictions of the
model.

ts0 = poly2th([1 –1.5 0.7],[]);
 % The true spectrum:
spe0 = th2ff(ts0);
ir = idsim([1;zeros(24,1)],ts0);
 % The true covariance function:
Ry0 = conv(ir,ir(25:–1:1));
e = randn(200,1);
y = idsim(e,ts0);
plot(y)
per = etfe(y);
speh = spa(y);
ffplot([per,speh,spe0])
 % A second order AR model:
ts2 = ar(y,2);
sp2 = th2ff(ts2);
ffplot([speh,sp2,spe0,3])
 % The covariance function estimates:
Ryh = covf(y,24);
ir2 = idsim([1;zeros(24,1)],ts2);
Ry2 = conv(ir2,ir2(25:–1:1));
3-69

3 Tutorial

3-7
plot([–24:24]∗ones(1,3),[Ryh,Ry2,Ry0])
 % The prediction ability of the model:
compare(y,th2,5)

The Sampling Interval
The System Identification Toolbox assumes a normalized sampling interval of

, unless you specify otherwise. This means that the frequency unit
becomes “radians per sampling interval,” and that all the transformations
between continuous- and discrete-time models give numerical parameter
values corresponding to the unit “... per sampling interval” rather than “... per
second.” To obtain correct physical units in these cases, the sampling interval
must be specified accordingly.

All models in the theta format contain the sampling interval T as the (1,2)
element. It can be read by

T = gett(th)

 and it is changed by

thnew = sett(thold,T)

Note that the value of T is just changed; no transformation of parameters is
carried out by sett.

A negative value of T indicates that the corresponding model is given in
continuous time. The absolute value of T denotes, in that case, the sampling
interval of the data, for which this model was estimated. This is also the
sampling interval used when the model is used for simulation or prediction. All
other transformations (to the frequency function, to poles and zeros, to transfer
functions and to state-space matrices) will be in terms of the continuous-time
model. In the case of th2ff, abs(T) is used for the default choice of frequency
range.

You can specify the sampling interval as an optional argument in all the
functions that create theta structures. It is generally the last argument. Note
that in ms2th and mf2th, it is the sampling interval of the data that you need
to specify, even if the model itself in parametrized in continuous time. If the
initial structure in pem, armax, bj, and oe is given by a matrix th in the theta
format, the default value of T is the one given by th. An explicitly given
sampling interval (as an argument to pem, for example) overrides the default
value in th.

T 1=
0

The sampling interval T is also used by etfe, spa, and th2ff to determine
default frequency ranges. For discrete-time systems, this default is [1:128]/
128*pi/T and for continuous-time systems, it is

logspace(log10(pi/abs(T)/100),log10(10*pi/abs(T)),128).

Discrete-time default frequency ranges can be changed by sett, like in

g = spa(z);
g = sett(g,T);

Out of Memory
If you run out of memory on computers with memory limitations, clear
unnecessary variables and use the pack function. When you are using the
iterative procedures armax, bj, oe, and pem, it is a good idea to use pack to
clean up after the start-up estimation procedure using, for example

th = armax(z,nn,0);
pack
th = armax(z,th);

All the relevant System Identification Toolbox functions have an optional
variable MAXSIZE that controls the memory/speed trade-off and is set
automatically, based upon the best values for the machine you are using. The
routines do not allow any matrix of size larger than MAXSIZE to form. Instead
they go into for-loops to handle the situation.

The default value of MAXSIZE is set in the M-file idmsize. Theoretically,
MAXSIZE is 8188 on the smaller machines, but since many matrices may form,
it best to set the default value for these machines to MAXSIZE = 4096.

If you have memory problems, you can use the argument MAXSIZE, or edit
idmsize, with values lower than the default.

If you have a large amount of input-output data, so that the memory delimiter
gives you a slower response, use a portion of the data to calculate a good initial
condition for the minimization, for example

th = armax(z(1:500,:),[na nb nc],10,0.1);
th = armax(z,th);
3-71

3 Tutorial

3-7
On a small machine, if you have collected more than 8188 data points so that
you cannot form z=[y u], no memory help is offered. You then have to build
separate models for separate parts of the data and reconcile the models.

Memory-Speed Trade-Offs
On machines with no formal memory limitations, it is still of interest to
monitor the sizes of the matrices that are formed. The typical situation is when
an overdetermined set of linear equations is solved for the least-squares
solution. The solution time depends, of course, on the dimensions of the
corresponding matrix. The number of rows corresponds to the number of
observed data, while the number of columns corresponds to the number of
estimated parameters. The argument MAXSIZE used with all the relevant
M-files, guarantees that no matrix with more than MAXSIZE elements is formed.
Larger data sets and/or higher order models are handled by for-loops. For-loops
give linear increase in time when the data record is increased, plus some
overhead (and somewhat worse numerical properties).

If you regularly work with large data sets and/or high order models, it is
advisable to tailor the memory and speed trade-off to your machine by choosing
the default value of MAXSIZE in the M-file idmsize carefully. Note that this
value is allowed to depend on the number of rows and columns of the matrices
formed.

Regularization
The Gauss-Newton direction is usually defined as

where is the gradient matrix of the predictions with respect to the
parameters, and e is the vector of residuals.

When the inverted matrix is ill-conditioned, you can add a small fraction of the
identity matrix to it. This is called regularization. See Ljung (1987), Section
10.2.

The routines in the System Identification Toolbox compute the Gauss-Newton
direction with

g=psi\e

gn Ψ′Ψ() 1–
= * * Ψ′*e

Ψ N n×
N 1×
2

which uses the MATLAB mechanism for dealing with underdetermined,
overdetermined systems of equations. An advanced version of regularization is
thus automatically included.

Because of the high precision of MATLAB, regularization is not invoked easily.
You may see some very large norm of gn–vector values before you see the
MATLAB message that the matrix is rank deficient.

A large value for the gn–vector suggests that you decrease the model orders.
However, if you are interested in how the regularization works, you can
decrease the value of the machine epsilon. For example, set

eps = 0.000001

and run the identification again.

Local Minima
The iterative search procedures in pem, armax, oe, and bj lead to theta values
corresponding to a local minimum of the criterion function (3.39). Nothing
guarantees that this local minimum is also a global minimum. The start-up
procedure for black-box models in these routines is, however, reasonably
efficient in giving initial estimates that lead to the global minimum.

If there is an indication that a minimum is not as good as you expected, try
starting the minimization at several different initial conditions, to see if a
smaller value of the loss function can be found.

Initial Parameter Values
When only orders and delays are specified, the functions armax, bj, oe, and pem
use a start-up procedure to produce initial values. The start-up procedure goes
through two to four least squares and instrumental variables steps. It is
reasonably efficient in that it usually saves several iterations in the
minimization phase. Sometimes it may, however, pay to use other initial
conditions. For example, you can use an iv4 estimate computed earlier as an
initial condition for estimating an output-error model of the same structure:

th1 = iv4(z,[na nb nk]);
[a,b] = th2poly(th1);
th2 = poly2th(1,b,1,1,a);
th3 = oe(z,th2);
3-73

3 Tutorial

3-7
Another example is when you want to try a model with one more delay (for
example, three instead of two) because the leading b-coefficient is quite small:

th1 = armax(z,[3 3 2 2]);
[a,b,c] = th2poly(th1);
b(3) = 0;
th2 = poly2th(a,b,c);
th3 = armax(z,th2);

If you decrease the number of delays, remember that poly2th strips away
leading zeros. Suppose you go from three to two delays in the above example:

th1 = armax(z,[3 3 2 3]);
[a,b,c] = th2poly(th1);
b(3) = 0.00001;
th2 = poly2th(a,b,c);
th3 = armax(z,th2);

Note that when constructing home-made initial conditions, the conditions
must correspond to a stable predictor (C and F being Hurwitz polynomials),
and that they should not contain any exact pole-zero cancellations.

For state-space and multi-output models, you must provide the initial
parameter values either when defining the structure in ms2th or mf2th, or with
the special initialization function thinit. The basic approach is to use physical
insight to choose initial values of the parameters with physical significance,
and try some different (randomized) initial values for the others. For models
parametrized in canonical state-space form, use canstart to get started.

Linear Regression Models
A linear regression model is of the type

where and are measured variables and represents noise. Such
models are very useful in most applications. They allow, for example, the
inclusion of nonlinear effects in a simple way. The System Identification
Toolbox function arx allows an arbitrary number of inputs. You can therefore
handle arbitrary linear regression models with arx. For example, if you want
to build a model of the type

y t() θTϕ t() e t()+= (11.2)

y t() ϕ t() e t()
4

call

z = [y ones(u) u u.^2 u.^3];
th = arx(z,[0 1 1 1 1 0 0 0 0])

This is formally a model with one output and four inputs, but all the model
testing in terms of compare, idsim, and resid operate in the natural way for
the model (11.2), once the data matrix z is defined as above.

Note that when pem is applied to linear regression structures, by default a
robustified quadratic criterion is used. The search for a minimum of the
criterion function is carried out by iterative search. Normally, use this
robustified criterion. If you insist on a quadratic criterion, then set the
argument lim in pem to zero. Then pem also converges in one step.

Spectrum Normalization and the Sampling Interval
In the function spa the spectrum estimate is normalized with the sampling
interval T as

where

(See also (3.3)). The normalization in etfe is consistent with (11.4). This
normalization means that the unit of is “power per radians/time unit”
and that the frequency scale is “radians/time unit.” You then have

y t() b0 b1u t() b2u
2

t() b3u
3

t()+ + += (11.3)

Φy ω() T R
ˆ

y

k M–=

M

∑= kT()e i ωT–
WM k() (11.4)

R
ˆ

y kT() 1
N
---- y lT kT–()y lT()

l 1=

N

∑=

Φy ω()

Ey
2

t() 1
2π
------ Φy w() wd

π T⁄–

π T⁄

∫= (11.5)
3-75

3 Tutorial

3-7
In MATLAB language, therefore, you have where

sp = spa(y); sp = sett(sp,T);
[om,PHIY] = getff(sp);
S1 = sum(PHIY)/length(PHIY)/T;
S2 = sum(y.^2)/length(y);

Note that PHIY contains between and with a frequency
step of π / T / (length(PHIY)). The sum S1 is, therefore, the rectangular
approximation of the integral in (11.5). The spectrum normalization differs
from the one used by spectrum in the Signal Processing Toolbox, and the above
example shows the nature of the difference.

The normalization with T in (11.4) also gives consistent results when time
series are decimated. If the energy above the Nyquist frequency is removed
before decimation (as is done in idresamp), the spectral estimates coincide;
otherwise you see folding effects.

Try the following sequence of commands:

th0 = poly2th(1,[],[1 1 1 1]);
 % 4th order MA–process
y = idsim(randn(2000,1),th0);
g1 = spa(y);
g2 = spa(y(1:4:2000));g2 = sett(g2,4);
ffplot([g1 g2]) % Folding effects
g3 = spa(idresamp(y,4)); % Prefilter applied
g3 = sett(g3,4);
ffplot([g1 g3]) % No folding

For a parametric noise (time series) model

the spectrum is computed as

which is consistent with (11.4) and (11.5). Think of as the spectral density
of the white noise source .

When a parametric noise model is transformed between continuous time and
discrete time and/or resampled at another sampling rate, the functions

S1 S2≈

Φy ω() ω 0= ω π T⁄=

y t() H q()e t()= Ee
2

t() λ=

Φy w() λ T H e
iwt()

2
⋅ ⋅= (11.6)

λT
e t()
6

thc2thd and thd2thc in the System Identification Toolbox use formulas that
are formally correct only for piecewise constant inputs. (See (3.32)). This
approximation is good when T is small compared to the bandwidth of the noise.
During these transformations the variance of the innovations is
changed so that the spectral density T . remains constant. This has two
effects:

• The spectrum scalings are consistent, so that the noise spectrum is
essentially invariant (up to the Nyquist frequency) with respect to
resampling.

• Simulations with noise using idsim has a higher noise level when performed
at faster sampling.

This latter effect is well in line with the standard description that the
underlying continuous-time model is subject to continuous-time white noise
disturbances (which have infinite, instantaneous variance), and appropriate
low-pass filtering is applied before sampling the measurements. If this effect is
unwanted in a particular application, scale the noise source appropriately
before applying idsim.

Note the following cautions relating to these transformations of noise models.
Continuous-time noise models must have a white noise component. Otherwise
the underlying state-space model, which is formed and used in thc2thd and
thd2thc, is ill-defined. Warnings about this are issued by poly2th and these
functions. Modify the C-polynomial accordingly. Make the degree of the monic
C-polynomial in continuous time equal to the sum of the degrees of the monic
A- and D-polynomials; i.e., in continuous time

length(C)–1 = (length(A)–1)+(length(D)–1).

Interpretation of the Loss Function
The value of the quadratic loss function is given as element 1,1 in the theta
format, and also displayed by present. For multi-output systems, this is equal
to the determinant of the estimated covariance matrix of the innovations.

For most models the estimated covariance matrix of the innovations is obtained
by forming the corresponding sample mean of the prediction errors, computed
(using pe) from the model with the data for which the model was estimated.

λ e t()
λ

3-77

3 Tutorial

3-7
Note the discrepancy between this value and the values shown during the
minimization procedure (in pem, armax, bj, or oe, since these are the values of
the robustified loss function (see under lim in Section 5).

Be careful when comparing loss function values between different structures
that use very different noise models. An Output-Error model may have a better
input-output fit, even though it displays a higher value of the loss function
than, say, an ARX model.

Note that for ARX models computed using iv4, the covariance matrix of the
innovations is estimated using the provisional noise model that is used to form
the optimal instruments. The loss function therefore differs from what would
be obtained if you computed the prediction errors using the model directly from
the data. It is still the best available estimate of the innovations covariance. In
particular, it is difficult to compare the loss function in an ARX model
estimated using arx and one estimated using iv4.

Enumeration of Estimated Parameters
In some cases the parameters of a model are given just as an ordered list. This
is the case for th2par, and also when online information from the minimization
routines are given. Furthermore, in ms2th, you are asked to give a list of
nominal/initial parameter values. In these cases it is important to know in
what order the parameter are listed. The basic three cases are as follows:

• For the input-output model (3.23) or its multi-input variant (5.2), you have
the following alphabetical ordering

Here superscript refers to the input number.

• For a state-space structure, defined by ms2th, the parameters in pars are
obtained in the following order. The A matrix is first scanned row by row for
free parameters. Then the B matrix is scanned row by row, and so on for the
C, D, K, and X0 matrices. (See ms2th in the Command Reference chapter.)

• For a state-space matrix that is defined by mf2th, the ordering of the
parameters is the same as in the user-written M-file.

b1
nu … bnbnu

nu
c1 … cnc d1 … dnc, , , , , , , , ,

pars a1 … ana b1
1 … b, nb1

1
b1

2 …bnb2
2 …, , , , , , ,[=

f1
1 …fnf1

1 … f, 1
nu … fnfnu

nu], , , ,
8

Multivariate ARX models are internally represented in state-space form. The
parameter ordering follows the one described above. The ordering of the
parameters may, however, not be transparent so it is better to use th2arx and
arx2th instead of th2par and ms2th.

Complex-Valued Data
Some applications of system identification work with complex valued data, and
thus create complex-valued models. Most of the routines in the SITB support
complex data and models. This is true for the estimation routines ar, armax,
arx, bj, covf, ivar, iv4, oe, pem, and spa, but (currently) not for canstart and
n4sid. The transformation routines, like th2ff, th2zp, etc. also work for
complex-valued models, but no pole-zero confidence regions are given. Note
also that the parameter variance-covariance information then refers to the
complex valued parameters, so no separate information about the accuracy of
the real and imaginary parts will be given. Some display functions like compare
and
idplot do not work for the complex case. Use idsim and plot real and
imaginary parts separately.

Strange Results
Strange results can of course be obtained in any number of ways. We only point
out two cautions: It is tempting in identification applications to call the
residuals “eps.” Don’t do that. This changes the machine , which certainly
will give you strange results.

It is also natural to use names like step, phase, etc., for certain variables. Note
though that these variables take precedence over M-files with the same name
so be sure you don’t use variable names that also are names of M-files.

ε

3-79

3 Tutorial

3-8
0

4

Command Reference

4 Command Reference

4-2
This chapter contains detailed descriptions of all of the functions in the System
Identification Toolbox. It begins with a list of functions grouped by subject area
and continues with the entries in alphabetical order. Information is also
available through the online Help facility.

By typing a function name without arguments, you also get immediate syntax
help about its arguments.

For ease of use, most functions have several default arguments. The Synopsis
first lists the function with the necessary input arguments and then with all
the possible input arguments. The functions can be used with any number of
arguments between these extremes. The rule is that missing, trailing
arguments are given default values, as defined in the manual. Default values
are also obtained by entering the arguments as the empty matrix [].

MATLAB does not require that you specify all of the output arguments; those
not specified are not returned. For functions with several output arguments in
the System Identification Toolbox, missing arguments are, as a rule, not
computed, in order to save time.

The Graphical User Interface

ident Open the interface.

midprefs Set directory where to store start-up information.

Simulation and Prediction

idinput Generate input signals.

idsim Simulate a general linear system.

pe Compute prediction errors.

poly2th Create a model structure for input-output models
defined as numerator and denominator polynomials.

predict Compute predictions according to model.

Data Manipulation

dtrend Remove trends from data.

idfilt Filter data.

idresamp Resample data.

Nonparametric Estimation

covf Estimate covariance function.

cra Estimate impulse response and covariance functions
using correlation analysis.

etfe Estimate spectra and transfer functions using direct
Fourier techniques.

spa Estimate spectra and transfer functions using
spectral analysis.

Parameter Estimation

ar Estimate AR model.

armax Estimate ARMAX model.

arx Estimate ARX model using least squares.

bj Estimate Box-Jenkins model.

canstart Estimate multivariate models in canonical
state-space form.

ivar Estimate AR model using instrumental variable
methods.

ivx Estimate ARX model using general instruments.

iv4 Estimate ARX model using four-stage instrumental
variable method.
4-3

4 Command Reference

4-4
oe Estimate Output-Error model.

n4sid Estimate state-space model using subspace method.

pem Estimate general linear model.

Model Structure Creation

arx2th Define (multivariate) ARX structures.

canform Generate canonical forms.

mf2th Create arbitrary linear model structure via an M-file
that you write.

modstruc Define state-space models with known and unknown
parameters.

ms2th Create model structure for linear state-space models
with known and unknown parameters.

poly2th Create a model structure for input-output models
defined as numerator and denominator polynomials.

Manipulating Model Structures

fixpar Fix parameters in structures to given values.

sett Set the sampling interval.

ss2th Transform a state-space model to a parametrized
canonical form.

thinit Select or randomize initial parameter values.

unfixpar Allow certain earlier fixed parameters be estimated.

Parameter Estimation

Model Conversions

idmodred Reduce a model to lower order.

thc2thd Transform from continuous to discrete time.

thd2thc Transform from discrete to continuous time.

th2arx Theta to ARX parameters.

th2ff Theta to frequency functions and spectra.

th2par Theta to estimated parameters and variances.

th2poly Theta to transfer function polynomials.

th2ss Theta to state-space matrices.

th2tf Theta to transfer functions.

th2zp Theta to zeros, poles, and static gains.

Model Presentation

bodeplot Plot Bode diagrams.

ffplot Plot frequency functions and spectra.

idplot Display input-output data.

nyqplot Plot Nyquist diagrams.

present Display model on screen.

zpplot Plot zeros and poles.
4-5

4 Command Reference

4-6
Information Extraction

getff Extract the frequency functions from the freqfunc
format.

gett Extract the sampling interval from the theta format.

getmfth Extract the M-file name that defines the model
structure.

getncap Extract from the theta format the number of data
upon which model is based.

getzp Extract the zeros and poles from the zepo format.

th2par Extract estimated parameters and variances from
the theta format.

Model Validation

compare Compare model’s simulated or predicted output with
actual output.

idsim Simulate a model.

pe Compute prediction errors.

predict Predict future outputs.

resid Compute and test model residuals.

Assessing Model Uncertainty

idsimsd Simulate responses from several possible models.

th2ff Compute frequency function and its standard
deviation.

th2zp Compute zeros, poles, static gains, and their
standard deviations.

Model Structure Selection

arxstruc Compute loss functions for sets of ARX model
structure.

ivstruc Compute loss functions for sets of output error model
structures.

selstruc Select structure.

struc Generate sets of structures.

Recursive Parameter Estimation

rarmax Estimate ARMAX or ARMA models recursively.

rarx Estimate ARX or AR models recursively.

rbj Estimate Box-Jenkins models recursively.

roe Estimate Output-Error models (IIR-filters)
recursively.

rpem Estimate general input-output models using a
recursive prediction error method.

rplr Estimate general input-output models using a
recursive pseudo-linear regression method.

segment Segment data and estimate models for each segment.
4-7

4 Command Reference

4-8

ar
arPurpose Estimate the parameters of an AR model for scalar time series.

Syntax th = ar(y,n)
[th,refl] = ar(y,n,approach,win,maxsize,T)

Description The parameters of the AR model structure

are estimated using variants of the least-squares method.

Column vector y contains the time series data. Scalar n specifies the order of
the model to be estimated (the number of A parameters in the AR model).

Note that the routine is for scalar time series only. For multivariate data use
arx.

The estimate is returned in th and stored in theta format. For the two
lattice-based approaches, 'burg' and 'gl' (see below), variable refl is
returned containing the reflection coefficients in the first row, and the
corresponding loss function values in the second. The first column is the zero-th
order model, so that the (2,1) element of refl is the norm of the time series
itself.

Variable approach allows you to choose an algorithm from a group of several
popular techniques for computing the least-squares AR model. Available
methods are as follows:

approach = 'fb': The forward-backward approach. This is the default
approach. The sum of a least-squares criterion for a forward model and the
analogous criterion for a time-reversed model is minimized.

approach = 'ls': The least-squares approach. The standard sum of squared
forward prediction errors is minimized.

approach = 'yw': The Yule-Walker approach. The Yule-Walker equations,
formed from sample covariances, are solved.

approach = 'burg': Burg’s lattice-based method. The lattice filter equations
are solved, using the harmonic mean of forward and backward squared
prediction errors.

A q()y t() e t()=
4-9

ar
approach = 'gl': A geometric lattice approach. As in Burg’s method, but the
geometric mean is used instead of the harmonic one. .

The computation of the covariance matrix can be suppressed in any of the
above methods by ending the approach argument with 0 (zero), for example,
'burg0'.

Windowing, within the context of AR modeling, is a technique for dealing with
the fact that information about past and future data is lacking. There are a
number of variants available:

window = 'now': No windowing. This is the default value, except when
approach = 'yw'. Only actually measured data are used to form the regression
vectors. The summation in the criteria starts only at time n.

window = 'prw': Pre-windowing. Missing past data are replaced by zeros, so
that the summation in the criteria can be started at time zero.

window = 'pow': Post-windowing. Missing end data are replaced by zeros, so
that the summation can be extended to time N + n. (N being the number of
observations.)

window = 'ppw': Pre- and post-windowing. This is used in the Yule-Walker
approach.

The combinations of approaches and windowing have a variety of names. The
least-squares approach with no windowing is also known as the covariance
method. This is the same method that is used in the arx routine. The MATLAB
default method, forward-backward with no windowing, is often called the
modified covariance method. The Yule-Walker approach, least-squares plus
pre- and post-windowing, is also known as the correlation method.

ar only handles scalar time series. For multivariate series, use arx.

See auxvar for an explanation of the input arguments maxsize and T.
4-10

ar
Examples Compare the spectral estimates of Burg’s method with those found from the
forward-backward nonwindowed method, given a sinusoid in noise signal:

y = sin([1:300]') + 0.5*randn(300,1);
thb = ar(y,4,'burg');
thfb = ar(y,4);
sgb = th2ff(thb);
sfb = th2ff(thfb);
bodeplot([sgb sfb])

See Also auxvar, arx, etfe, ivar, spa, theta

References Marple, Jr., S. L. Digital Spectral Analysis with Applications, Prentice Hall,
Englewood Cliffs, 1987, Chapter 8.
4-11

armax
armaxPurpose Estimate the parameters of an ARMAX or ARMA model.

Syntax th = armax(z,nn)
th = armax(z,nn,’trace’)
[th, iter_info] = armax(z,nn,maxiter,tol,lim,maxsize,T,’trace’)

Description The parameters of the ARMAX model structure

are estimated using a prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors (u is a matrix in the multi-input case). nn can be given either as

nn = [na nb nc nk]

or as

nn = thi

In the former case na, nb, and nc are the orders of the ARMAX model, and nk
is the delay. In the latter case thi is an initial value, given in theta format. See
Section 3 in the Tutorial for an exact definition of the orders.

For multi-input systems, nb and nk are row vectors, such that the k-th entry
corresponds to the order and delay associated with the k-th input.

If z = y and nn = [na nc], armax calculates an ARMA model for y:

th is returned with the resulting parameter estimates, together with estimated
covariances, stored in theta format.

armax does not support multi-output models. Use state-space model for this
case (see canstart, n4sid, and pem)

If a last argument ‘trace’ is supplied, information about the progress of the
iterative search for the model will be furnished to the MATLAB command
window.

The optional auxiliary variables iter_info, lim, maxiter, tol, maxsize, and T
are explained under auxvar.

A q()y t() B q()u t nk–() C q()e t()+=

A q()y t() C q()e t()=
4-12

armax
Algorithm A robustified quadratic prediction error criterion is minimized using an
iterative Gauss-Newton algorithm. The Gauss-Newton vector is bisected up to
10 times until a lower value of the criterion is found. If no such value is found,
a gradient search direction is used instead, and the procedure is repeated. The
iterations are terminated when maxiter is reached, when the Gauss-Newton
vector has a norm less than tol, or when a lower value of the criterion cannot
be found.

The initial conditions for the iterative search, if not specified in nn, are
constructed in a special four-stage LS-IV algorithm.

The cut-off value for the robustification is based on the parameter lim as well
as on the estimated standard deviation of the residuals from the initial
parameter estimate. It is not recalculated during the minimization. The value
returned in element th(1,1) is the nonrobustified, quadratic criterion.

A stability test of the predictor is performed, so as to assure that only models
corresponding to stable predictors are tested. Generally, both and (if
applicable) must have all their zeros inside the unit circle. Note that if an
initial parameter estimate is given in nn, its predictor stability is taken for
granted (not tested).

Information about the minimization is furnished to the screen in case the
argument ‘trace’ is specified.. Current and previous parameter estimates (in
column vector form, listing parameters in alphabetical order) as well as the
values of the criterion function are given. The Gauss-Newton vector and its
norm are also displayed. The number in the upper left corner is the number of
times the search vector has been bisected.

See Also arx, auxvar, bj, oe, pem, theta

References Ljung (1987), equations (10.41), (10.42), (10.46), (10.75)

C q() Fi q()
4-13

arx
arxPurpose Estimate the parameters of an ARX or AR model.

Syntax th = arx(z,nn)
th = arx(z,nn,maxsize,T)

Description The parameters of the ARX model structure

are estimated using the least-squares method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors. nn is given as

nn = [na nb nk]

defining the orders and delay of the ARX model. See Section 6 in the Tutorial
for exact definitions of the orders and delays.

th is returned as the least-squares estimates of the parameters, stored in theta
format.

With z = y and nn = na, an AR model of order na for y is computed:

Models with several inputs

are handled by allowing u to contain each input as a column vector,

 u = [u1 ... unu]

and by allowing nb and nk to be row vectors defining the orders and delays
associated with each input.

Models with several inputs and several outputs are handled by allowing nn to
contain one row for each output number. See “Defining Model Structures” on
page 3-29 for exact definitions.

The optional auxiliary parameters maxsize and T are explained under
auxvar.

A q()y t() B q()u t nk–() e t()+=

A q()y t() e t()=

A q()y t() B1 q()u1 t nk1–() …Bnuunu t nknu–() e t()+ +=
4-14

arx
When the true noise term in the ARX model structure is not white noise
and na is nonzero, the estimate does not give a correct model. It is then better
to use armax, bj, iv4, or oe.

Examples Here is an example that generates and estimates an ARX model:

A = [1 –1.5 0.7]; B = [0 1 0.5];
th0 = poly2th(A,B);
u = idinput(300,'rbs');
y = idsim([u,randn(300,1)],th0);
z = [y,u];
th = arx(z,[2 2 1]);

Algorithm The least-squares estimation problem is an overdetermined set of linear
equations that is solved using the MATLAB \ operator.

The regression matrix is formed so that only measured quantities are used (no
fill-out with zeros). When the regression matrix is larger than maxsize, the
normal equations are formed in a for-loop and subsequently solved.

See Also auxvar, ar, iv, iv4, theta

e t()
4-15

arxstruc
arxstrucPurpose Compute loss functions for a set of different model structures of single-output
ARX type.

Syntax v = arxstruc(ze,zv,NN)
v = arxstruc(ze,zv,NN,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type.
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

Each of ze and zv are matrices containing output-input data [y u]. For
multi-input systems, u has the corresponding number of columns, while for
time series, no u is present. Models for each of the model structures defined by
NN are estimated using the data set ze. The loss functions (normalized sum of
squared prediction errors) are then computed for these models when applied to
the validation data set zv. The data sets, ze and zv, need not be of equal size.
They could, however, be the same sets, in which case the computation is faster.

Note that arxstruc is intended for single-output systems only.

v is returned with the loss functions in its first row. The remaining rows of v
contain the transpose of NN, so that the orders and delays are given just below
the corresponding loss functions. The last column of v contains the number of
data points in ze. The selection of a suitable model structure based on the
information in v is best done using selstruc. See Section 8 in the Tutorial for
advice on model structure selection, cross-validation, and the like.

See auxvar for an explanation of maxsize.

Examples Compare first to fifth order models with one delay using cross-validation on the
second half of the data set, and then select the order that gives the best fit to
the validation data set:

NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200,:),z(201:400,:),NN);
nn = selstruc(V,0);
th = arx(z,nn);

See Also arx, ivstruc, selstruc, struc
4-16

arx2th
arx2thPurpose Construct theta format matrix from ARX polynomials.

Syntax th = arx2th(A,B,ny,nu)
th = arx2th(A,B,ny,nu,lam,T)

Description arx2th creates a matrix containing parameters that describe the general
multi-input, multi-output model structure of ARX type:

Here and are matrices of dimensions ny by ny and ny by nu, respectively
(ny is the number of outputs, i.e., the dimension of the vector and nu is the
number of inputs). “Defining Model Structures” on page 3-29.

The arguments A and B are matrices that contain the A matrices and the B
matrices of the model:

A = [I A1 A2 ... Ana]
B = [B0 B1 ... Bnb]

Note that A always starts with the identity matrix, and that delays in the model
are defined by setting the corresponding leading entries in B to zero. For a
multivariate time series take B = [].

The arguments ny and nu denote the number of outputs and inputs,
respectively.

The optional argument lam sets the covariance matrix of the driving noise
source in the model above. The default value is the identity matrix.

The optional argument T defines the sampling interval (Default 1).

th is returned as a model structure in the theta format. See theta.

The use of arx2th is twofold. You can use it to create models that are simulated
(using idsim) or analyzed (using th2ff, th2zp, etc.). You can also use it to
define initial value models that are further adjusted to data (using pem). The
free parameters in the structure are consistent with the structure of A and B,
i.e., leading zeros in the rows of B are regarded as fixed delays, and trailing
zeros in A and B are regarded as a definition of lower order polynomials. These

y t() A1y t 1–() A2y t 2–() … Anay t na–()+ + + + =

B0u t() B1u t 1–() … Bnbu t nb–() e t()+ + + +

Ak Bk
y t()

e t()
4-17

arx2th
zeros are fixed, while all other parameters are free. The nominal values of these
free parameters are set equal to the values in A and B. The free parameters can
be changed by thinit and the structure can be manipulated by fixpar and
unfixpar.

For a model with one output, arx2th is compatible with poly2th. The internal
representation is however different, and only a model structure that has been
defined by arx2th can be manipulated by fixpar and unfixpar.

Examples Simulate a second order ARX model with one input and two outputs, and then
estimate a model using the simulated data :

A1 = [–1.5 0.1;–0.2 1.5];
A2 = [0.7 –0.3;0.1 0.7];
B1 = [1;–1];
B2 = [0.5;1.2];
th0 = arx2th([eye(2) A1 A2],[[0;0],B1 B2],2,1);
u = idinput(300);
e = randn(300,2);
y = idsim([u e],th0);
th = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

See Also arx, fixpar, poly2th, th2arx, unfixpar
4-18

auxvar
auxvarPurpose Describe auxiliary variables iter_info, lim, maxiter, maxsize, tol, and T.

Syntax help auxvar

Description Most of the functions have an optional argument maxsize that allows a
trade-off between memory usage and speed. Several of the functions allow the
sampling interval T to be specified. The iterative search procedures in armax,
bj, oe, and pem are controlled by the three parameters lim, maxiter, and lim.

maxsize: No matrix formed by the function is allowed to contain more than
maxsize elements. Instead, the algorithms split the calculations into for-loops,
which are slower. The default value of maxsize is set in the M-file idmsize. On
small machines, it is maxsize=4096. The main use of maxsize is to limit
variable sizes when the algorithms run out of memory. See “Some Special
Topics” on page 3-68 for more information.

T: Specifying the sampling interval T gives correct frequency scales on
frequency function plots, and correct time scales when transforming to
continuous time using thd2thc. The default value is T=1.

maxiter: This variable determines the maximum number of iterations
performed during a search for a minimum. The default value is maxiter=10.
maxiter=0 returns the results of the special startup procedure.

tol: The iterations are continued until the norm of the Gauss-Newton update
vector is less than TOL. The iterations also terminate when the algorithm fails
to find a lower value of the criterion and when the maximum number of
iterations are reached. The default value is tol=0.01.

lim: This variable determines how the criterion is modified from quadratic to
one that gives linear weight to large errors. See “Parametric Model Estimation”
on page 3-22 for a more precise definition. The default value of lim is 1.6. lim=0
disables the robustification and leads to a purely quadratic criterion.

Default values of these parameters are obtained either by omitting trailing
arguments or by entering them as the empty matrix [].
4-19

auxvar
iter_info: This output argument from the iterative numerical search
algorithms armax, bj, oe, and pem, supplies information about the iterations. It
is a row vector

iter_info = [last_iteration#, last_fit_improvement,
norm_of_last_search_vector]

containing the indicated information. If the norm of the last search vector is
larger than tol, and the number of the last iteration is less than maxiter, then
the iterations were stopped since no smaller value of the criterion could be
found along the search direction.

See Also armax, bj, oe, pem
4-20

bj
bjPurpose Estimate the parameters of a Box-Jenkins model.

Syntax th = bj(z,nn)
th = bj(z,nn,’trace’)
[th, iter_info]= bj(z,nn,maxiter,tol,lim,maxsize,T,’trace’)

Description The parameters of the Box-Jenkins model structure

are estimated using a prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors. In the multi-input case, u is a matrix containing the different inputs as
columns. nn can be given either as

nn = [nb nc nd nf nk]

or as

nn = thi

In the former case, nb, nc, nd, and nf are the orders of the Box-Jenkins model
and nk is the delay. In the latter case, thi is an initial value, given in theta
format. See“The System Identification Problem” on page 3-8 for exact
definitions of the model orders.

th is returned with the resulting parameter estimates and estimated
covariances, stored in theta format.

The optional variables iter_info, lim, maxiter, maxsize, tol, and T are
explained under auxvar.

For multi-input systems, nb, nf, and nk are row vectors with as many entries
as there are input channels. Entry number i then described the orders and
delays associated with the i-th input.

bj does not support multi-output models. Use state-space model for this case
(see canstart, n4sid, and pem)

y t() B q()
F q()
-----------u t nk–() C q()

D q()
------------e t()+=
4-21

bj
If a last argument ‘trace’ is supplied, information about the progress of the
iterative search for the model will be furnished to the MATLAB command
window.

Examples Here is an example that generates data and stores the results of the startup
procedure separately:

B = [0 1 0.5];
C = [1 –1 0.2];
D = [1 1.5 0.7];
F = [1 –1.5 0.7];
th0 = poly2th(1,B,C,D,F,0.1);
e = randn(200,1);
u = idinput(200);
y = idsim([u e],th0);
z = [y u];
thi = bj(z,[2 2 2 2 1],0);
th = bj(z,thi);
present(th)

Algorithm bj uses essentially the same algorithm as armax with modifications to the
computation of prediction errors and gradients.

See Also armax, auxvar, oe, pem, theta
4-22

bodeplot
bodeplotPurpose Plot frequency functions in Bode diagram form.

Syntax bodeplot(g)
bodeplot([g1 g2 ... gn])
bodeplot(g,sd,C,mode)

Description g contains the frequency data to be graphed. See freqfunc for the format. The
frequency functions do not have to be specified at the same frequencies, but
have to have the same number of values.

If the frequency functions are generated by th2ff or spa, and sd is specified as
a number larger than zero, confidence intervals for the functions are added to
the graph as dash-dotted curves (of the same color as the estimate curve). They
indicate the confidence regions corresponding to sd standard deviations.

On amplitude plots, the logarithm of the absolute value, plus and minus the
standard deviation you indicate, is graphed. The latter value can sometimes be
negative, which results in an error message from the plotting routine. The
resulting plot is still meaningful, however.

By default, amplitude and phase plots are shown simultaneously for each input
(noise spectrum) present in g. For spectra, phase plots are omitted. Pressing
the Return key advances the plot from one input to the next.

To show amplitude plots only, use C = 'A'. For phase plots only, use
C = 'P'. The default is C = 'B' for both plots.

To obtain all plots on the same diagram use mode = 'same'.

Note that if g contains information about several outputs, these plots are
always given separately.

See Also etfe, ffplot, freqfunc, getff, nyqplot, spa, th2ff
4-23

canform
canformPurpose Define multivariable state-space canonical form model structures.

Syntax ms = canform(orders,nu)
ms = canform(orders,nu,dkx)

Description canform is, like modstruc, a function that defines model parameterizations in
state-space form, which are used in ms2th to create model structures in the
theta format. The only use of the resulting matrix ms is as an input to ms2th.

The model considered is in state-space form:

The function applies both to the continuous- and discrete-time cases; which one
is determined only when the structure is formed with ms2th.

orders: The (pseudo-observability) indices orders define which matrix
elements are fixed (to zero or one) and which are left free as parameters.
orders is a row vector with as many entries as there are outputs. Element k of
orders describes how many delayed values of the output are required to
appropriately predict the k-th component of the output. The sum of the order
indices is the order of the system (the dimension of x):

n = sum(orders)

The exact structure is defined in Appendix 4.A of Ljung (1987). Briefly, the A
matrix contains p ∗ n parameters, where p is the number of outputs and n is
the number of states. The C matrix contains only zeros and ones, while the B
matrix is filled with parameters.

nu: The number of inputs.

dkx: The argument dkx determines some additional structure of the matrices
of the state-space model to be estimated. It is a row vector with three entries:

dkx = [d, k, x]

The entries refer to the matrices K, D, and the initial state x(0) of the
state-space model given above.

x· t() A θ()x t() B θ()u t() K θ()e t()+ +=

y t() C θ()x t() D θ()u t() e t()+ +=
4-24

canform
k = 1 indicates that the K-matrix in the model (the Kalman Gain) will be fully
parameterized, while k = 0 means that this matrix will be fixed to zero. This
will give a so-called output error model.

d = 1 indicates that D-matrix in the model (the direct term from input to
output) will be fully parametrized, while d = 0 means that this matrix will be
fixed to zero. This also implies that there will be a delay of (at least) one sample
between the input and the output.

x = 1 indicates that the initial state x(0) will be parameterized, while x = 0
means that the initial state will be fixed to zero.

Default is

dkx = [0, 1, 0]

An alternative to canform is the function canstart. It also provides good initial
estimates for the free parameters.

Examples Write out the state-space matrices for a sixth order system with three outputs
and two inputs with NaN denoting free parameters:

ps = [2 1 3];
ms = canform(ps,2);
th = ms2th(ms,'c',ones(1,18+12+18)∗NaN);
[A,B,C,D,K] = th2ss(th)

See Also canstart, fixpar, modstruc, ms2th, unfixpar

References Ljung (1987), Appendix 4.A.
4-25

canstart
canstartPurpose Define and initialize state-space canonical form model structures.

Syntax th = canstart(z,orders,nu)
th = canstart(z,orders,nu,dkx)

Description orders,nu,dkx: These arguments define the state-space model
parameterization exactly as for the function canform. In the present case
orders can also be taken as a scalar, giving the model order (dimension of state
vector). Then a default choice of parameterization is made.

The output th is a matrix in the theta format. It defines a state-space model
parameterization according to the arguments orders, nu and dkx. The values
of the parameters in th are estimated from the data matrix

z = [y u]

where y is the matrix of output signals, one column for each output, and u is
the matrix of input signals, again one column for each input.

Choosing the order indices for many systems is not critical in the sense that
most n-th order systems can be described by any set of order
(pseudo-observability) indices whose sum is n. See “Model Structure Selection
and Validation” on page 3-49 for more information.

The model th could be further refined by using pem.

Algorithm The state-space model is first estimated using n4sid, and then transformed to
the chosen canonical form using ss2th.

Examples A system with two inputs and two outputs is estimated with a third order
model:

th = canstart(z,3,2);
th = pem(z,th);
resid(z,th);

See Also canform, pem
4-26

compare
comparePurpose Compare measured outputs with model outputs.

Syntax compare(z,th);
[yh,fit] = compare(z,th,k,sampnr,leveladj)

Description z is the output-input data in the usual format

z = [y u]

where y is a matrix whose r-th column is the r-th output signal and
correspondingly for the input u. compare computes the output yh that results
when the model th is simulated with the input u. The result is plotted (yellow/
solid) together with the corresponding measured output y (magenta/dashed).
The mean square fit

fit = norm(yh – y)/sqrt(length(y))

is also computed and displayed. For multi-output systems this is done
separately for each output. Pressing the Return key advances the plots.

The argument k computes the k-step ahead prediction of y according to the
model th instead of the simulated output. In the calculation of , the model
can use outputs up to time : , , (and inputs up to
the current time t). The default value of k is inf, which obtains a pure
simulation from the input only.

The argument sampnr indicates that only the sample numbers in this row
vector are plotted and used for the calculation of the fit. The whole data record
is used for the simulation/prediction, though. If the optional argument
leveladj is set to 'yes', the simulated/predicted output and the measured
output are level adjusted so that they both start at level zero. (This applies also
to the calculation of the fit.) This allows for discounting of drift phenomena in
the data.

Examples Split the data record into two parts. Use the first one for estimating a model
and the second one to check the model’s ability to predict six steps ahead:

ze = z(1:250,:);
zv = z(251:500,:);
th = armax(ze,[2 3 1 0]);
compare(zv,th,6);

See Also idsim, predict

yh t()
t k– y s() s, t k–= t k– 1– …
4-27

covf
covfPurpose Estimate time series covariance functions.

Syntax R = covf(z,M)
R = covf(z,M,maxsize)

Description z is an N by nz matrix and M is the maximum delay -1 for which the covariance
function is estimated.

R is returned as an nz2 x M matrix with entries

where is the j-th column of z and missing values in the sum are replaced by
zero.

The optional argument maxsize controls the memory size as explained under
auxvar.

The easiest way to describe and unpack the result is to use

reshape(R(:,k+1),nz,nz) = E z(t)∗z'(t+k)

Here ' is complex conjugate transpose, which also explains how complex data
are handled. The expectation symbol E corresponds to the sample means.

Algorithm When nz is at most two, and when permitted by maxsize, a fast Fourier
transform technique is applied. Otherwise, straightforward summing is used.

See Also spa

R̂i j k() 1
N
---- zi

t 1=
∑= = t()zj t k+()R(i + (j −1)nz, k+1)

zj
4-28

cra
craPurpose Perform correlation analysis and estimate impulse response.

Syntax cra(z);
[ir,R,cl] = cra(z,M,na,plot);
cra(R);

Description The output-input data are given as

z = [y u]

with y as the output column vector and u as the input column vector. The
routine only handles single-input-single-output data pairs. (For the
multivariate case, apply cra to two signals at a time.) cra prewhitens the input
sequence, i.e., filters u through a filter chosen so that the result is as
uncorrelated (white) as possible. The output y is subjected to the same filter,
and then the covariance functions of the filtered y and u are computed and
graphed. The cross correlation function between (prewhitened) input and
output is also computed and graphed. Positive values of the lag variable then
corresponds to an influence from u to later values of y. In other words,
significant correlation for negative lags is an indication of feedback from y to u
in the data.

A properly scaled version of this correlation function is also an estimate of the
system’s impulse response ir. This is also graphed along with 99% confidence
levels. The output argument ir is this impulse response estimate, so that its
first entry corresponds to lag zero. (Negative lags are excluded in ir.)

The output argument R contains the covariance/correlation information as
follows: The first column of R contains the lag indices. The second column
contains the covariance function of the (possibly filtered) output. The third
column contains the covariance function of the (possibly prewhitened) input,
and the fourth column contains the correlation function. The plots can be
redisplayed by cra(R).

The output argument cl is the 99% confidence level for the impulse response
estimate.

The optional argument M defines the number of lags for which the covariance/
correlation functions are computed. These are from –M to M, so that the length
of R is 2M+1. The impulse response is computed from 0 to M. The default value
of M is 20.
4-29

cra
For the prewhitening, the input is fitted to an AR model of order na. The third
argument of cra can change this order from its default value na = 10. With na
= 0 the covariance and correlation functions of the original data sequences are
obtained.

plot: plot = 0 gives no plots. plot = 1 (default) gives a plot of the estimated
impulse response together with a 99% confidence region. plot = 2 gives a plot
of all the covariance functions.

Examples Compare a second order ARX model’s impulse response with the one obtained
by correlation analysis:

ir = cra(z);
th = arx(z,[2 2 1]);
imp = [1;zeros(19,1)];
irth = idsim(imp,th);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')

See Also covf, spa
4-30

dtrend
dtrend Purpose Remove trends from output-input data.

Syntax zd = dtrend(z)
zd = dtrend(z,o,brkp)

Description z is a matrix, with data organized in column vectors. dtrend removes the trend
from each column and returns the result in zd.

The default (o = 0) removes the zero-th order trends, i.e., the sample means are
subtracted.

With o = 1, linear trends are removed, after a least-squares fit. With brkp not
specified, one single line is subtracted from the entire data record. A
continuous piecewise linear trend is subtracted if brkp contains breakpoints at
sample numbers given in a row vector.

Note that dtrend differs somewhat from detrend in the Signal Processing
Toolbox.

Examples Remove a V-shaped trend from the output with its peak at sample number 119,
and remove the sample mean from the input:

zd(:,1) = dtrend(z(:,1),1,119);
zd(:,2) = dtrend(z(:,2));
4-31

etfe
etfePurpose Estimate empirical transfer functions and periodograms.

Syntax g = etfe(z)
g = etfe(z,M,N,T)

Description etfe estimates the transfer function g of the general linear model

The matrix z contains the output-input data z = [y u], where y and u are
column vectors. The routine works only for single-input, single-output systems.

For a time series, z = y. Then g is returned as the periodogram of y.

g is given in frequency function format (see freqfunc), with the estimate of
 at the frequencies

w = [1:N]/N∗pi/T

The default values of N and T are 128 and 1, respectively. N must be a power of
two.

When M is specified other than the default value M = [], a smoothing operation
is performed on the raw spectral estimates. The effect of M is then similar to the
effect of M in spa. This can be a useful alternative to spa for narrowband spectra
and systems, which otherwise require large values of M.

When etfe is applied to time series, the corresponding spectral estimate is
normalized in the way that is defined in “Some Special Topics” on page 3-68.
Note that this normalization may differ from the one used by spectrum in the
Signal Processing Toolbox.

Examples Compare an empirical transfer function estimate to a smoothed spectral
estimate:

ge = etfe(z);
gs = spa(z);
bodeplot([ge gs])

Algorithm The empirical transfer function estimate is computed as the ratio of the output
Fourier transform to the input Fourier transform, using fft. The periodogram

y t() G q()u t() v t()+=

G ei ω()
4-32

etfe
is computed as the normalized absolute square of the Fourier transform of the
time series.

The smoothed versions (M less than the length of z) are obtained by applying a
Hamming window to the output FFT times the conjugate of the input FFT, and
to the absolute square of the input FFT, respectively, and subsequently
forming the ratio of the results. The length of this Hamming window is equal
to the number of data points in z divided by M, plus one.

See Also freqfunc, spa
4-33

ffplot
ffplotPurpose Plot frequency functions and spectra.

Syntax ffplot(g)
ffplot([g1 g2 ... gn])
ffplot(g,sd,C,mode)

Description This function has exactly the same syntax as bodeplot. The only difference is
that it gives graphs with linear frequency scales and Hz as the frequency unit.

See Also bodeplot, freqfunc, getff
4-34

fixpar
fixparPurpose Fix parameters in structures defined by ms2th and arx2th.

Syntax thn = fixpar(tho,matrix)
thn = fixpar(tho,matrix,elements,parval)

Description The fixpar function produces a new model structure thn in the theta format
from an old one tho, by fixing certain parameters to certain values. The matrix
tho must be originally defined by arx, arx2th, canstart, iv4, or ms2th but may
have been modified later on by fixpar, pem, thinit, or unfixpar.

To modify a state-space structure

the argument matrix is set equal to one of 'A', 'B', 'C', 'D','K', or 'x0'. The
argument elements is a matrix with two columns, in which each row specifies
the indices of the element in the chosen system matrix that need to be fixed.
For example, to fix the 1,2-element and the 3,5-element of the A matrix use

thn = fixpar(tho,'A',[1,2;3,5]);

If the argument elements is omitted (or entered as the empty matrix) all
elements of the indicated matrix will be fixed. In this case parval can be given
a scalar number, and all the indicated elements will be fixed to that number.

The default is that the elements are fixed to their nominal (initial or currently
estimated) value. To fix them to something else use the fourth input argument
parval. The r-th entry of this vector contains the value corresponding to the
element defined by the r-th row of elements.

To modify an ARX model

the argument matrix is set equal to one of 'A1', 'A2', ..., 'B0', 'B1', The
argument elements is then a matrix with two columns, where each row gives

x· t() A θ()x t() B θ()u t() K θ()e t()+ +=

y t() C θ()x t() D θ()u t() e t()+ +=

y t() A1y t 1–() A2y t 2–() … Anay t na–()+ + + + =

B0u t() B1u t 1–() … Bnbu t nb–() e t()+ + + +
4-35

fixpar
the indices of the element in the chosen ARX matrix that need to be fixed. The
role of parval is the same as for the state-space case above.

The routine does not apply to special model structures that you have originally
defined using mf2th, or to black-box input-output models other than ARX
models. Fixing certain parameters can, in those cases, be achieved by using the
third argument in pem during the estimation phase.

Examples Converting a state-space structure with all elements in the Kalman gain
matrix K free to an output error structure in which K is fixed to zero.

thn = fixpar(thn,'K',[],0)

Fixing the parameter to 1 in a scalar ARX model, and then estimating the
remaining parameters:

th = arx(z,[2 3 0]);
th = fixpar(th,'B2',[1,1],1);
th = pem(z,th);

See Also theta, thinit, unfixpar

b2
4-36

freqfunc
freqfuncPurpose Describe the frequency-function format.

Syntax help freqfunc

Description Frequency functions are created by etfe, spa, and th2ff, and used by
bodeplot, ffplot, and nyqplot. The internal format of the freqfunc format is
intended to be transparent. The basic way to display the information is to use
the plot commands. You can also retrieve the information from the format by
the function getff. This entry gives details of the internal representation, but
this information is not necessary for normal use of the System Identification
Toolbox.

The freqfunc format contains information about frequency values, amplitudes,
and phases, as well as their standard deviations. These are all given as
columns. The first row of a freqfunc matrix contains integers, that, in coded
form, describe the significance of the column in question. The interpretation of
these integers is as follows:

For transfer functions and spectra associated with output number 1:

n = 0 : The column is a spectrum.

n = 50: The column contains standard deviations of a spectrum.

n = 100: The column contains frequencies for the spectrum.

n = k, where k is value between 1 and 19: The column contains amplitude
values for the transfer function associated with input number k.

n = k + 20: The column contains phase values (in degrees) for input number k.

n = k + 50: The column contains amplitude standard deviations for input
number k.

n = k + 70: The column contains phase standard deviations for input number
k.

n = k + 100: The column contains the frequency values for input number k.

For the same quantities associated with output number , add ∗1000
to the numbers above.

ky ky 1–()
4-37

freqfunc
The specified frequencies are for a discrete-time model, which is by default,
equally spaced from 0 (excluded) to over 128 values. Here T is the
sampling interval (default = 1). For a continuous-time model, the frequencies
are 128 values, logarithmically spread over three decades, up to a decade over
the underlying Nyquist frequency (see th2ff).

Examples You can compute and graph the frequency functions at arbitrary frequency w (a
row vector with an arbitrary number of elements) with

g = spa(z,M,w)
g = th2ff(th,ku,w)

The MATLAB function logspace is useful for creating such frequency vectors.

See Also bodeplot, etfe, ffplot, getff, nyqplot, sett, spa, th2ff

π T⁄
4-38

getff
getffPurpose Retrieve frequency functions and spectra from the freqfunc format.

Syntax [w,amp,phas] = getff(g)
[w,amp,phas,sdamp,sdphas] = getff(g,ku,ky)

Description This function extracts information from the freqfunc format for plotting as an
alternative to bodeplot, ffplot, and nyqplot. Results in the freqfunc format
are obtained by etfe, spa, and th2ff.

The argument g is the frequency function or spectrum given in the freqfunc
format. ku is the chosen input number (only one) and ky is the chosen output
number. The noise source is counted as input number 0, so that ku = 0 will
extract spectral information.

w is a vector containing the frequency values (in radians/second). amp contains
the values of the magnitude (amplitude) of the frequency function and phas
contains the phase values (in degrees). The output arguments sdamp and
sdphas contain the corresponding standard deviations. All this information is
for input number ku and output number ky. If several entries in g correspond
to the same input-output pair, then w, amp, phas, sdamp, and sdphas have the
corresponding number of columns. The default values of ku and ky are both 1,
unless g contains only spectra. In that case getff extracts information about
the spectrum corresponding to output number ky.

Examples Make your own plot of the periodogram with linear scales:

per = etfe(y);
[w,amp] = getff(per);
plot(w,amp)
title('Periodogram of seismic data')
4-39

getzp
getzpPurpose Extract zeros and poles from the zepo format.

Syntax [ze,po] = getzp(zepo)
[ze,po] = getzp(zepo,ku,ky)

Description The basic use of getzp is to extract the poles and zeros of the coded format that
th2zp results in. zepo contains this information and is typically the output of
th2zp. ku contains the input number (just one) and ky the output number. The
noise source number k is here counted as input number –k.

ze contains the zeros and po the poles of the dynamics associated with input
number ku and output number ky. The default values of ku and ky are both 1.

Note that for the noise dynamics, zepo normally just contains information
about the zeros and poles from noise source k to output number k, (no cross
terms). To extract this information enter

[ze,po] = getzp(zepo,0,k)

See Also th2zp, zpform, zpplot
4-40

getmfth, getncap, gett
getmfth, getncap, gettPurpose Extract information from the theta format.

Syntax mymfile = getmfth(th)
N = getncap(th)
T = gett(th)

Description These functions retrieve some information that is coded into the theta format.
mymfile is the name of the M-file that you write to define a model structure
created by mf2th.

N is the number of data, from which a certain model th is estimated. If the
model is not estimated N is returned as [].

T is the sampling interval of the model th. If T is negative, the model is a
continuous-time one that has been estimated from data with the sampling
interval abs(T).

See Also mf2th, sett
4-41

ident
identPurpose Open the graphical user interface

Syntax ident
ident(session,directory)

Description ident by itself opens the main interface window, or brings it forward if it is
already open.

session is the name of a previous session with the graphical interface, and
typically has extension .sid. directory is the complete path for the location of
this file. If the session file is on the MATLABPATH, directory can be omitted.

When the session is specified, the interface will open with this session active.
Typing ident(session,directory) on the MATLAB command line, when the
interface is active, will load and open the session in question.

For more information about the graphical user interface, see Chapter 2 of this
manual.

Examples ident(‘iddata1.sid’)
ident(‘mydata.sid’,’\matlab\data\cdplayer\’)
4-42

idfilt
idfiltPurpose Filter data using Butterworth filters.

Syntax zf = idfilt(z,ord,Wn)
[zf,thf] = idfilt(z,ord,Wn,hs)

Description idfilt computes a Butterworth filter of order ord and filters all columns of the
data matrix

z = [y u]

through this filter.

If hs is not specified and Wn contains just one element, a low pass filter with
cutoff frequency Wn (measured as a fraction of the Nyquist frequency) is
obtained. If hs =' high' a high pass filter with this cutoff frequency is
obtained instead.

If Wn = [Wnl Wnh] is a vector with two elements, a filter (of order 2*ord) with
passband between Wnl and Wnh is obtained is hs is not specified. If
hs = 'stop' a bandstop filter with stop band between these two frequencies is
obtained instead.

The output argument thf is the filter given in the theta format.

It is common practice in identification to select a frequency band where the fit
between model and data is concentrated. Often this corresponds to bandpass
filtering with a pass band over the interesting breakpoints in a Bode diagram.

If ord is a positive integer, a non-causal, zero-phase filter is used for the
filtering. If ord is a negative integer, a causal filter (of order abs(ord)) is used
instead.

Algorithm The used filter is the same as butter in the Signal Processing Toolbox would
give. Also, the zero-phase filter is equivalent to filtfilt in that toolbox.

References Ljung (1987), Chapter 13.
4-43

idinput
idinputPurpose Generate signals, typically to be used as inputs for identification.

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
u = idinput(N,'sine',band,levels,auxvar)

Description idinput generates input signals of different kinds, that are typically used for
identification purposes. Only scalar inputs are generated.

N is the number of data points generated, i.e., the length of u.

type defines the type of input signal to be generated. This argument takes one
of the following values:

• type = 'rs' : This gives a random, Gaussian signal.

• type = 'rbs': This gives a random, binary signal.

• type = 'prbs': This gives a pseudo-random, binary signal.

• type = 'sine': This gives a signal which is a sum of sinusoids.

Default is type = 'rbs'.

The frequency contents of the signal is determined by the argument band. For
the choices type = 'rs', 'rbs', and 'sine', this argument is a row-vector with
two entries

band = [wlow, whigh]

that determine the lower and upper bound of the pass-band. The frequencies
wlow and whigh are expressed in fractions of the Nyquist frequency. A white
noise character input is thus obtained for band = [0 1], which also is the
default value.

For the choice type = 'prbs' we have

band = [twologp, M]

where the periodicity of the generated PRBS is 2^twologp –1, and M is such
that the signal is constant over intervals of length 1/M. twologp = 0 gives the
maximum length PRBS, corresponding to twologp = 18. Also in this case the
default is band = [0 1].
4-44

idinput
The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu for the
choices type = 'rbs', 'prbs' and 'sine'. For type = 'rs', the signal level
is such that minu is the mean value of the signal, minus one standard deviation,
while maxu is the mean value plus one standard deviation. Gaussian white
noise with zero mean and variance one is thus obtained for
levels = [–1, 1], which is also the default value.

For the option type = 'sine', there is a fourth argument

auxvar = [no_of_sinusoids, no_of_trials]

determining the number of sinusoids to be used in the input signal. The
variable no_of_trials determines how many trials to be made to minimize the
signal amplitude by assigning random phases to the different sinusoids.
Default is auxvar = [10, 10].

Algorithm Very simple algorithms are used. The frequency contents is achieved for 'rs'
by an eighth order Butterworth, non-causal filter, using idfilt. This is quite
reliable. The same filter is used for the 'rbs' case, before making the signal
binary. This means that the frequency contents is not guaranteed to be precise
in this case.

For the 'sine' case, the frequencies are selected to be equally spread over the
chosen pass band, and each sinusoid is given a random phase. A number of
trials are made, and the phases that give the smallest signal amplitude are
selected. (The amplitude is then scaled so as to satisfy the specifications of
levels.)

See Also The Frequency Domain System Identification Toolbox contains several
commands for input design that utilize more sophisticated algorithms.

Reference For PRBS, see, e.g., Söderström and Stoica (1989), Chapter C5.3.
4-45

idmodred
idmodredPurpose Reduce the order of a model in theta format.

Syntax THRED = idmodred(TH)
THRED = idmodred(TH,ORDER,OE)

Description This function reduces the order of any model TH given in the theta format. The
resulting reduced order model THRED is also in the theta format. This reduced
model is always represented internally in state-space form with no free
parameters, regardless of the nature of the model TH.

The function requires several routines in the Control Systems Toolbox.

ORDER: The desired order (dimension of the state-space representation). If
ORDER = [], which is the default, a plot will show how the diagonal elements
of the observability and controllability Gramians decay with the order of the
representation. You will then be prompted to select an order based on this plot.
The idea is that such a small element will have a negligible influence on the
input-output behavior of the model. It is thus suggested that an order is chosen,
such that only large elements in these matrices are retained.

OE: If the argument OE has the value ’oe’, then an output error model THRED is
produced, that is, one with the Kalman gain equal to zero (see (3.27) and (3.31)
in Chapter 3, "Tutorial"). Otherwise (default), also the noise model is reduced.

The function will recognize whether TH is a continuous- or discrete-time model
and perform the reduction accordingly. The resulting model THRED will be of the
same kind in this respect as TH.

Algorithm The functions (d)balreal and (d)modred from the Control Systems Toolbox
are used. The plot, in case ORDER = [], shows the vector g as returned from
(d)balreal.

Examples Build a high order multivariable ARX model, reduce its order to 3 and compare
the frequency responses of the original and reduced models:

TH = arx([y u],[4∗ones(3,3),4∗ones(3,2),ones(3,2)]);
THRED = idmodred(TH,3);
bodeplot([trf(TH),trf(THRED)])
4-46

idmodred
Use the reduced order model as initial condition for a third order state-space
model:

THI = ss2th(THRED);
THSS = pem([y u],THI);

See Also ss2th
4-47

idplot
idplotPurpose Plot input-output data.

Syntax idplot(z)
idplot(z,int,T,ny,pc)

Description z is the output-input data z = [y u] to be graphed. A split plot is obtained with
the output on top and the inputs, one by one if several, at the bottom. Pressing
the Return key advances the plot.

The data points specified in the row vector int are graphed. The default value
of int is all the data. You can use the sampling interval T (default T = 1) to
give correct time axes.

The argument ny is the number of outputs in the data matrix. Default is
ny = 1. The input is piecewise constant between sampling points, and it is
graphed accordingly. If you prefer linear interpolation between input data
points, use pc = 'li'. The default value is pc = 'pc'.

Examples Plot only a portion of the data points:

idplot(z,100:200)
4-48

idresamp
idresampPurpose Resample data by interpolation and decimation.

Syntax zr = idresamp(z,R)
[zr, R_act] = idresamp(z,R,filter_order,tol)

Description z : The data to be resampled. Each column of z contains a signal.

zr : The resampled data. The columns of zr correspond to those of z.

R : The resampling factor. The new data record will correspond to a new
sampling interval of R times the original one. R > 1 thus corresponds to
decimation and R < 1 corresponds to interpolation. Any positive real number
for R is allowed, but it will be replaced by a rational approximation (R_act).

R_act : The actually achieved resampling factor.

filter_order: The order of the presampling filters used before interpolation
and decimation. Default is 8.

tol : The tolerance in the rational approximation of R. Default is 0.1.

Algorithm The resampling factor is first approximated by a rational number by
[num,den] = rat(R,tol). The data are then interpolated by a factor den and
then decimated by a factor num. The interpolation and decimation are preceded
by prefiltering, and follow the same algorithms as in the routines interp and
decimate in the Signal Processing Toolbox.

Caution For signals that have much energy around the Nyquist frequency (like
piece-wise constant inputs), the resampled waveform may look “very different,”
due to the prefiltering effects. The frequency and information contents for
identification is, however, not mishandled.

Example Resample by a factor 1.5 and compare the signals.

plot(t,u)
[ur,ra] = idresamp(u,1.5);
plot(t,u,ra∗t,ur)
4-49

idsim
idsimPurpose Simulate systems specified in theta format.

Syntax y = idsim([u e],th)
[y, ysd] = idsim(u,th)

Description th describes an arbitrary model in the theta format. idsim returns y containing
the simulated output, corresponding to the input sequence u (one column for
each input) and the noise e. If e is omitted, a noise-free simulation is obtained.

The noise-sequence e is scaled by , where is the noise variance (loss
function) as specified by th. To achieve the correct noise effect, give e zero mean
and unit variance.

For multi-output systems simulated with noise, e should have as many
columns as the numbers of outputs. The noise is again scaled using the noise
covariance matrix in th.

The second output argument is the standard deviation of the simulated output.
This option is however not available for state-space models.

If th is a continuous-time model, it is first converted to discrete time with
sampling interval abs(T). See “Some Special Topics” on page 3-68

Examples Simulate a given system th0 (for example created by poly2th):

e = randn(500,1);
u = idinput(500,’prbs’);
y = idsim([u e],th0);

Validate a model by comparing a measured output y with one simulated using
an estimated model th:

yh = idsim(u,th);
plot([y yh])

Algorithm In case the model is of input-output type, idsim uses the MATLAB filter
function. For state-space models, it uses ltitr.

See Also idsimsd, poly2th

λ λ
4-50

idsimsd
idsimsdPurpose Simulate theta format system with uncertainty.

Syntax idsimsd(u,th)
idsimsd(u,th,N,noise)

Description u is a column vector (matrix) containing the input(s). th is a model given in the
theta format (see theta). N random models are created, according to the
covariance information given in th. The responses of each of these models to
the input u are computed and graphed in the same diagram. If
noise = 'noise', noise is added to the simulation, in accordance with the noise
model of th, and its own uncertainty.

The default values are

N = 10
noise = 'nonoise'

Examples Plot the step response of the model th and evaluate how it varies in view of the
model’s uncertainty:

step1 = [zeros(5,1); ones(20,1)];
idsimsd(step1,th)

See Also idsim, th2ff, th2zp
4-51

ivar
ivarPurpose Estimate the parameters of an AR model using an approximately optimal
choice of instrumental variable procedure.

Syntax th = ivar(y,na)
th = ivar(y,na,nc,maxsize,T)

Description The parameters of an AR model structure

are estimated using the instrumental variable method. y is the signal to be
modeled, entered as a column vector. na is the order of the A polynomial (the
number of A parameters). The resulting estimate is returned as th, in theta
format. The routine is for scalar signals only.

In the above model, is an arbitrary process, assumed to be a moving
average process of order nc, possibly time varying. (Default is nc = na.)
Instruments are chosen as appropriately filtered outputs, delayed nc steps.

The optional arguments maxsize and T are explained under auxvar.

Examples Compare spectra for sinusoids in noise, estimated by the IV method and
estimated by the forward-backward least-squares method:

y = sin([1:500]'∗1.2) + sin([1:500]'∗1.5)...
 + 0.2∗randn(500,1);
thiv = ivar(y,4);
thls = ar(y,4);
giv = th2ff(thiv);
gls = th2ff(thls);
bodeplot([giv gls])

See Also ar, etfe, spa

References Stoica, P. et al., Optimal Instrumental variable estimates of the AR-parameters
of an ARMA process, IEEE Trans. Autom. Control, Vol AC-30, 1985, pp.
1066-1074.

A q()y t() v t()=

v t()
4-52

ivstruc
ivstrucPurpose Compute fit between simulated and measured output for a group of model
structures.

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type.
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

Each of ze and zv are matrices containing output-input data [y u]. For
multi-input systems, u has the corresponding number of columns. Models for
each model structure defined in NN are estimated using the instrumental
variable (IV) method on data set ze. The estimated models are simulated using
the inputs from data set zv. The normalized quadratic fit between the
simulated output and the measured output in zv is formed and returned in v.
The rows below the first row in v are the transpose of NN, and the last row
contains the logarithms of the condition numbers of the IV matrix

A large condition number indicates that the structure is of unnecessarily high
order (see page 415 in Ljung (1987)).

The information in v is best analyzed using selstruc.

If p is equal to zero, the computation of condition numbers is suppressed. For
the use of maxsize, see auxvar.

The routine is for single-output systems only.

IMPORTANT: The IV method used does not guarantee that the obtained
models are stable. The output-error fit calculated in v may then be misleading.

ς t()ϕT
t()∑
4-53

ivstruc
Examples Compare the effect of different orders and delays, using the same data set for
both the estimation and validation:

v = ivstruc(z,z,struc(1:3,1:2,2:4));
nn = selstruc(v)
th = iv4(z,nn);

Algorithm A maximum order ARX model is computed using the least-squares method.
Instruments are generated by filtering the input(s) through this model. The
models are subsequently obtained by operating on submatrices in the
corresponding large IV matrix.

See Also arxstruc, iv4, selstruc, struc
4-54

ivx
ivxPurpose Estimate the parameters of an ARX model using the instrumental variable (IV)
method with arbitrary instruments.

Syntax th = ivx(z,nn,x)
th = ivx(z,nn,x,maxsize,T)

Description ivx is a routine analogous to the iv4 routine, except that you can use arbitrary
instruments. These are contained in the matrix x. Make this the same size as
the output, i.e., the first column(s) of z. The instruments used are then
analogous to the regression vector itself, except that y is replaced by x.

Note that ivx does not return any estimated covariance matrix for th, since
that requires additional information.

Use iv4 as the basic IV routine for ARX model structures. The main interest in
ivx lies in its use for nonstandard situations; for example when there is
feedback present in the data, or when other instruments need to be tried out.
Note that there is also an IV version that automatically generates instruments
from certain filters you define (type help iv).

See Also iv4, ivar

References Ljung (1987), page 198.
4-55

iv4
iv4Purpose Estimate the parameters of an ARX model using an approximately optimal
four-stage instrumental variable (IV) procedure.

Syntax th = iv4(z,nn)
th = iv4(z,nn,maxsize,T)

Description This routine is an alternative to arx and the use of the arguments are entirely
analogous to the arx function. The main difference is that the procedure is not
sensitive to the color of the noise term in the model equation.

For an interpretation of the loss function (innovations covariance matrix),
consult “Some Special Topics” on page 3-68.

Examples Here is an example of a two-input one-output system with different delays on
the inputs and :

z = [y u1 u2];
nb = [2 2];
nk = [0 2];
th = iv4(z,[2 nb nk]);

Algorithm The first stage uses the arx function. The resulting model generates the
instruments for a second-stage IV estimate. The residuals obtained from this
model are modeled as a high-order AR model. At the fourth stage, the
input-output data are filtered through this AR model and then subjected to the
IV function with the same instrument-filters as in the second stage.

For the multi-output case, optimal instruments are obtained only if the noise
sources at the different outputs have the same color. The estimates obtained
with the routine are reasonably accurate though even in other cases.

See Also arx, oe

References Ljung (1987), equations (15.21)-(15.26).

e t()

u1 u2
4-56

mf2th
mf2thPurpose Package model structures you define into the theta model format.

Syntax th = mf2th(model,cd,parval)
th = mf2th(model,cd,parval,aux,lambda,T)

Description th is returned as a model structure in the theta format. model is the name of
an M-file that defines how the state-space matrices depend on the parameters
to be estimated. The format of this M-file is given below. The argument cd must
be assigned either the value 'c' which designates that the underlying
parameterization refers to a continuous-time model, or the value 'd',
indicating that the model parameterization is inherently a discrete-time one.

The argument parval contains the nominal values of the parameters. This is a
row vector of the same length as the number of free parameters in the model
structure. The argument aux is a matrix of auxiliary variables that the M-file
can use for various purposes.

T denotes the sampling interval of the data, for which the model is going to be
estimated (and the sampling interval that is used when the model is used for
simulation and prediction). Give T a positive value even if the underlying model
is defined to be continuous time.

The model structure corresponds to the general linear state-space structure

The matrices in this time-discrete model can be parameterized in an arbitrary
way by the vector . Write the format for the M-file as follows:

[A,B,C,D,K,x0] = mymfile(pars,T,aux)

Here the row vector pars contains the parameters , and the output
arguments A, B, C, D, K, and x0 are the matrices in the discrete-time model
description that correspond to this value of the parameters.

x t T+() A θ()x t() B θ()u t() K θ()e t()+ +=

x 0() x0 θ()=

y t() C θ()x t() D θ()u t() e t()+ +=

θ

θ

4-57

mf2th
T is the sampling interval, and aux is any matrix of auxiliary variables with
which you want to work. (In that way you can change certain constants and
other aspects in the model structure without having to edit the M-file.) Note
that the two arguments T and aux must be included in the function head of the
M-file, even if they are not utilized within the M-file.

If the underlying parameterization is a continuous-time one, it is still the
discrete-time model matrices, corresponding to the sampling interval T that
should be delivered by the M-file. However. it is desirable that if the M-file
myfile is called with a negative value of T, it outputs the matrices of the
corresponding continuous-time state-space model. If such a feature is included
in the M-file, use cd = 'c'. This allows for easy transformations between
continuous and discrete time using the normal functions thc2thd and thd2thc.

“Defining Model Structures” on page 3-29 contains several examples of typical
M-files that define model structures.

Examples Use the M-file 'mynoise' given in Section 6 to obtain a physical
parametrization of the Kalman gain:

thn = mf2th('mynoise','d',[0.1,–2,1,3,0.2],1)
th = pem(z,thn)
4-58

midprefs
midprefsPurpose Select a directory for idprefs.mat, a file that stores the graphical user
interface’s start-up information.

Syntax midprefs
midprefs(path)

Description The graphical user interface ident allows a large number of variables for
customized choices. These include the window layout, the default choices of
plot options, and names and directories of the four most recent sessions with
ident. This information is stored in the file idprefs.mat, which should be
placed on the user’s MATLABPATH. The default, automatic location for this file is
in the same directory as the user’s startup.m file.

midprefs is used to select or change the directory where you store
idprefs.mat. Either type midprefs, and follow the instructions, or give the
directory name as the argument. Include all directory delimiters as in the PC
case

midprefs('c:\matlab\toolbox\local\')

or in the UNIX case

midprefs('/home/ljung/matlab/')

Warning The file idprefs.mat contains a variable with the directory name, which also
needs to be updated. Therefore, do not just move it using the file system.
Always use midprefs to change the directory for idprefs.mat.
4-59

modstruc
modstrucPurpose Define state-space structure with unknown elements.

Syntax ms = modstruc(A,B,C,D,K)
ms = modstruc(A,B,C,D,K,x0)

Description modstruc is, like canform, a function that defines model parameterizations in
state-space form, which are used in ms2th to create model structures in the
theta format. The only use of the resulting matrix ms is as an input to ms2th.

The model considered is in state-space form:

The function applies both to the continuous and discrete-time cases; which one
is determined only when the structure is formed with ms2th.

The input arguments A, B, C, D, K, and x0 are the matrices of the above
state-space model. Numerical values in these matrices indicate fixed (known)
entries, while the symbol NaN marks an element that is not known and you
need to estimate.

The default value of the initial state vector x0 is the zero vector, but it may also
contain parameters you need to estimate.

Examples Define a continuous-time model structure in diagonal form with the two
(real) poles and the numerator unknown:

A = [NaN,0;0,NaN];
B = [NaN;NaN];
C = [1,1];
D = 0;
K = [0;0];
ms = modstruc(A,B,C,D,K)
th = ms2th(ms,'c');

See Also canform, fixpar, ms2th, thinit, unfixpar

x· t() A θ()x t() B θ()u t() K θ()e t()+ +=

x 0() x0 θ()=

y t() C θ()x t() D θ()u t() e t()+ +=
4-60

ms2th
ms2thPurpose Package standard state-space parameterizations into the theta model format.

Syntax th = ms2th(ms)
th = ms2th(ms,cd,parval,lambda,T)

Description The function returns th as a model structure in the theta format for further use
in estimating, simulating, and analyzing models. The argument ms defines
which parameters are fixed and which ones you need to estimate. It is typically
formed by modstruc or canform.

The argument cd indicates whether the state-space matrices in ms refer to a
continuous-time model (cd = 'c') or a discrete-time model (cd = 'd').
cd = 'd' is the default.

For a continuous-time model there are two options for how to sample it, as it is
fitted to observed sample data (in pem): By selecting cd = ‘czoh’ (continuous,
zero order hold) the input is assumed to be piecewise constant over the
sampling interval. By selecting cd = ‘cfoh’ (continuous, first order hold), the
input is supposed to be piecewise linear between the samples. This means that
the continuous-time input u(t) is obtained by linear interpolation between the
sampled values. Use cd = ‘czoh’ (which is the default for continuous-time
models) if the system has been controlled using a piece-wise constant input.
Use cd = 'cfoh' if the input has been a continuous function during the data
acquisition.

The row vector parval contains the nominal values of the free parameters
(those that correspond to NaN in ms). These nominal values are used as initial
estimates when the parameters in th are identified with pem. They are also
used whenever the model th is simulated or analyzed. The default value of
parval is all zeros.

The numbering of the parameters in parval (as well as in all other contexts
in which the model parameters are listed) is as follows. The matrix A is first
scanned, row by row, for free parameters, then the matrix B is scanned, again
row by row, and then C, D, K, and X0 each of them row by row. The order in
which the free parameters are found by this scanning defines the ordering in
parval.
4-61

ms2th
Note that setting all initial estimates equal to zero is not a good starting point
for the iterative search for parameter estimates in pem, since this case often
corresponds to a nonobservable/noncontrollable model. It is better to give more
realistic values of parval or to randomize them using thinit.

The argument lambda gives the covariance matrix of the innovation for the
sampling interval indicated in T. The default value of lambda is the unit matrix.

T denotes the sampling interval of the data, for which the model is going to be
estimated (and the sampling interval that is used when the model is used for
simulation and prediction). Give T a positive value even if the underlying model
is defined to be continuous time.

Examples Define a continuous-time model structure corresponding to

with initial values

and estimate the free parameters:

A = [NaN,0;0,NaN];
B = [NaN;NaN];
C = [1,1];
ms = modstruc(A,B,C,0,[0;0]);
th = ms2th(ms,'c',[–0.2,–0.3,2,4]);
th = pem(z,th);

See Also canform, fixpar, modstruc, pem, thinit, unfixpar

e t()

x·
θ1 0

0 θ2

x
θ3

θ4

u+=

y 1 1 x e+=

θ 0.2– 0.3– 2 4=
4-62

nuderst
nuderstPurpose Select the step size for numerical differentiation.

Syntax nds = nuderst(pars)

Description The function pem uses numerical differentiation with respect to the model
parameters when applied to state-space structures. The same is true for the
functions th2ff and th2zp when the parameter covariance information is
translated to frequency function and zero-pole accuracy (again only for
state-space structures). Finally, the command thd2thc uses numerical
differentiation when translating the covariance information for any model
structure.

The step size used in these numerical derivatives is determined by the M-file
nuderst. The output argument nds is a row vector whose k-th entry gives the
increment to be used when differentiating with respect the k-th element of the
parameter vector pars.

The default version of nuderst uses a very simple method. The step size is the
maximum of and times the absolute value of the current parameter.
You can adjust this to the actual value of the corresponding parameter by
editing nuderst. Note that the nominal value, for example 0, of a parameter
may not reflect its normal size.

10 7– 10 4–
4-63

nyqplot
nyqplotPurpose Plot Nyquist curve of frequency function.

Syntax nyqplot(g)
nyqplot([g1 g2 ... gn])
nyqplot(g,sd,mode)

Description nyqplot is an alternative to bodeplot and ffplot to graph frequency functions
in the freqfunq format. The Nyquist diagram of a frequency function is a graph
of its imaginary part against its real part.

The argument g is the frequency function in question, given in the freqfunc
format, typically as the output of th2ff, spa, or etfe. Several plots are
obtained in the same diagram by simply listing the different frequency
functions after each other. These need not be specified at the same frequencies
(although they have to be of the same length).

If the frequency function(s) contains information about several different
input-output pairs, the default is that the Nyquist plot for each pair is graphed
separately. Pressing the Return key advances from one pair to the next. With
mode = 'same' all plots corresponding to the same input are given in the same
diagram.

If sd is given a value larger than 0, a confidence region around the nominal
Nyquist plot is marked with dash-dotted lines. This region corresponds to sd
standard deviations. (The information in g does not contain the correlation
between the magnitude and phase estimates. The confidence region is
therefore only approximate. It is computed by plotting the two curves ,
where is the standard deviation (magnitude and phase) of g.)

Examples g = th2ff(thmod)
nyplot(g,3)

See Also bodeplot, etfe, ffplot, freqfunc, spa, th2ff

g sd g∆±
g∆
4-64

n4sid
n4sidPurpose Estimate state-space models using a subspace method.

Syntax TH = n4sid(z)
[TH,AO] = n4sid(z,order,ny,auxord,dkx,maxsize,T,'trace')

Description The function n4sid estimates models in state-space form, and returns them in
the theta format. It handles an arbitrary number of input and outputs,
including the time series case (no input). The state-space model is in the
innovations form:

x(t+1) = A x(t) + B u(t) + K e(t)
 y(t) = C x(t) + D u(t) + e(t)

TH: The resulting model in theta format. No covariance information about the
uncertainty of the model is contained in TH.

AO: See under auxord below.

z: A matrix that contains the output-input data: z = [y u], where y and u are
column vectors. In the multi-variable case, u and y contain one column for each
output and input. In the time series case z = y.

order: The desired order of the state-space model. If order is entered as a row
vector (like order = [1:10], which is the default choice), preliminary
calculations for all the indicated orders are carried out. A plot will then be
given that shows the relative importance of the dimension of the state vector.
More precisely, the singular values of the Hankel matrices of the impulse
response for different orders are graphed. You will be prompted to select the
order, based on this plot. The idea is to choose an order such that the singular
values for higher orders are comparatively small. If order = 'best', a model
of “best” (default choice) order is computed, among the orders 1:10.

ny: The number of outputs in the data set z. Default is ny = 1.

auxord: An “auxiliary order” used by the algorithm. This can be seen as a
prediction horizon, and it should be larger than the order. The default value is
auxord = 1.2∗order+3. The choice of auxord could have a substantial influence
on the model quality, and there are no simple rules for how to choose it. If you
enter auxord as a row vector (like auxord = [5:15]), models for all these values
will be computed. The prediction error for each of the models are computed
using the data z, and that value of auxord that minimizes the fit will be
selected. This value is returned as the output argument AO. If the last given
4-65

n4sid
argument to n4sid is 'trace', information about the different choices of
auxord will be given to the screen. Note that auxord can be chosen as a vector,
only if order is a given value (no vector).

dkx: The argument dkx determines some additional structure of the matrices
of the state-space model to be estimated. It is a row vector with three entries:

dkx = [d, k, x]

The entries refer to the matrices K, D, and the initial state X(0) of the
state-space model given above.

k = 1 indicates that the K-matrix in the model (the Kalman Gain) will be
estimated, while k = 0 means that this matrix will be fixed to zero. This will
give a so called output error model.

d = 1 indicates that D-matrix in the model (the direct term from input to
output) will be estimated, while d = 0 means that this matrix is fixed to zero.
This also implies that there will be a delay of (at least) one sample between the
input and the output.

x = 1 indicates that the initial state x(0) will be estimated and stored in the
model TH, while x = 0 means that the initial state will be taken as zero. Note
that the initial state is something that relates to the particular data set for
which the model was estimated, and may not be relevant when the model is
evaluated on a new set of data.

Default is

dkx = [0, 1, 0]

The optional variables maxsize and T are explained under AUXVAR.

trace: Letting the last input argument be 'trace', gives information to the
command line about the choice of auxiliary order, in case this is given as a
vector.

Algorithm The function implements the methods described in P. Van Overschee and B. De
Moor: N4SID:Subspace algorithms for the identication of combined
deteministic-stochastic systems. Automatica, Vol. 30, No 1, pp. 75-93, 1994.

The algorithm is complemented with a separate linear least-squares step to
re-estimate the matrices B, D, and X(0), which enter linearly.
4-66

n4sid
Examples Build a fifth order model from data with three inputs and two outputs. Try
several choices of auxiliary orders. Look at the frequency response of the model.
(Note that there will be no confidence intervals!)

z = [y1 y2 u1 u2 u3];
th = n4sid(z,5,2,7:15,’trace’);
bodeplot(trf(th))

Use the resulting model as initial values for estimating a state-space model of
the same order using the prediction error method:

thi = ss2th(th);
thp = pem(z,thi);

See Also auxvar, canstart, pem, theta
4-67

oe
oePurpose Estimate the parameters of an Output-Error model.

Syntax th = oe(z,nn)
th = oe(z,nn,’trace’)
[th, iter_info] = oe(z,nn,maxiter,tol,lim,maxsize,T,'trace')

Description The parameters of the Output-Error model structure

are estimated using a prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors. nn can be given either as

 nn = [nb nf nk]
or as

nn = thi

In the former case, nb, and nf are the orders of the Output-Error model and nk
is the delay. In the latter case, this is an initial value for the estimate, given in
theta format. See “The System Identification Problem” on page 3-8 for an exact
definition of the orders and delay.

th is returned with the resulting parameter estimates and estimated
covariances, stored in theta format.

The optional variables iter_info, lim, maxiter, maxsize, tol, and T are
explained under auxvar.

For multi-input models, nb, nf, and nk are row vectors, such that entry number
i gives the orders and delays associated with the i-th input.

oe does not support multi-output models. Use state-space model for this case
(see canstart, n4sid, and pem)

If a last argument 'trace' is supplied, information about the progress of the
iterative search for the model will be furnished to the MATLAB command
window.

y t() B q()
F q()
-----------u t nk–() e t()+=
4-68

oe
Algorithm oe uses essentially the same algorithm as armax with modifications to the
computation of prediction errors and gradients.

See Also armax, auxvar, bj, pem, theta
4-69

pe
pePurpose Compute the prediction errors associated with a model and a data set.

Syntax e = pe(z,th)

Description Matrix z is the output-input data set, z = [y u], and th is a model specified in
theta format. e is returned containing the prediction errors that result when
model th is applied to the data,

See Also resid, theta

e t() H
1–

q() y t() G q()u t()–[]=
4-70

pem
pemPurpose Estimate the parameters of general linear models.

Syntax th = pem(z,nn)
th = pem(z,nn,'trace')
[th, iter_info] = pem(z,nn,index,maxiter,tol,lim,...

maxsize,T,'trace')

Description The function pem handles all model structures, including the general
multi-input-single-output structure

and general structures defined by fixpar, mf2th, ms2th, thinit, and
unfixpar. Multivariable ARX structures defined by arx2th are also covered.

The matrix z contains the output-input data z = [y u], where y and u are
column vectors (in the multi-variable case u and y contain one column for each
input and output).

nn is given either as

 nn = [na nb nc nd nf nk]
or as

nn = thi

In the former case, na, nb, nc, nd, and nf are the orders of the model and nk is
the delay(s). For multi-input systems, nb, nf, and nk are row vectors giving the
orders and delays of each input. (See Section 3 of the Tutorial for exact
definitions of the orders).

In the latter case, thi defines a model structure and an initial value for the
estimate, given in theta format.

th is returned with the resulting parameter estimates and estimated
covariances, stored in theta format.

The optional argument index is a row vector that contains the indices of the
parameters that are to be estimated. The others remain fixed to their nominal
values. The ordering of the parameters is defined under th2par. The default

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–() …

Bnu q()
Fnu q()
-----------------unu t nknu–() C q()

D q()
------------e t()+ + +=
4-71

pem
value of index is that all free parameters are estimated. The optional variables
iter_info, lim, maxiter, maxsize, tol, and T are explained under auxvar.

If a last argument ‘trace’ is supplied, information about the progress of the
iterative search for the model will be furnished to the MATLAB command
window.

For the special cases of single-input models of Output-Error, ARMAX, and
Box-Jenkins type, it is more efficient to use oe, armax, and bj.

Examples Here is an example of a system with three inputs and two outputs. A canonical
form state-space model of order 5 is sought.

z = [y1 y2 u1 u2 u3];
thc = canstart(z,5,3)
th = pem(z,thc);

Algorithm pem uses essentially the same algorithm as armax with modifications to the
computation of prediction errors and gradients.

See Also armax, auxvar, bj, oe, theta
4-72

poly2th
poly2thPurpose Construct theta format matrix for input-output models.

Syntax th = poly2th(A,B)
th = poly2th(A,B,C,D,F,lam,T)

Description poly2th creates a matrix containing parameters that describe the general
multi-input-single-output model structure:

A, B, C, D, and F specify the polynomial coefficients.

For single-input systems, these are all row vectors in the standard MATLAB
format:

A = [1 a1 a2 ... ana]

A, C, D, and F all start with 1, while B contains leading zeros to indicate the
delays. See “Defining Model Structures” on page 3-29.

For multi-input systems, B and F are matrices with one row for each input.

For time series, B and F are entered as empty matrices:

 B = []; F = [];

lam is the variance of the white noise sequence , while T is the sampling
interval.

A negative value of T indicates that the model is a continuous-time one. Then
the interpretation of the arguments is that

A = [1 2 3 4]

corresponds to the polynomial in the Laplace variable s, and so
on. For continuous-time systems lam indicates the level of the spectral density
of the innovations. (A sampled version of the model has the innovations
variance lam/T, where T is the sampling interval. The continuous-time model
must have a white noise component in its noise description. See “Some Special
Topics” on page 3-68.

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–()=

Bnu q()
Fnu q()
-----------------unu t nknu–() C q()

D q()
------------e t()+ +

e t()

s
3

2s
2

3s 4+ + +
4-73

poly2th
Trailing arguments C, D, F, lam, and T can be omitted, in which case they are
taken as 1. (If B=[], then F is taken as [].)

For discrete-time models (T>0), note the following: poly2th strips any trailing
zeros from the polynomials when determining the orders. It also strips leading
zeros from the B polynomial to determine the delays. Keep this in mind when
you use poly2th and th2poly to modify earlier estimates to serve as initial
conditions for estimating new structures. See “Some Special Topics” on page
3-68.

Examples To create a system of ARMAX type (the “Åström system”):

A = [1 –1.5 0.7];
B = [0 1 0.5];
C = [1 –1 0.2];
th0 = poly2th(A,B,C);

This gives a system with one delay (nk = 1).

Create the continuous-time model

Sample it with T=0.1 and then simulate it without noise:

B=[0 1;1 3];
F=[1 1 0;1 2 4]
th=poly2th(1,B,1,1,F,1,–1)
thd=thc2thd(th,0.1)
y=idsim([u1 u2],thd);

See Also idsim, theta

y(t) =

1

s(s+ 1)
u1 t() +

s+ 3
s2 + 2s+ 4

u2 (t) + e(t)
4-74

predict
predictPurpose Predict the output k-step ahead.

Syntax p = predict(z,th)
[yp,thpred] = predict(z,th,k)

Description z is the output-input data in the usual format

z = [y u]

where y is a matrix whose r-th column is the r-th output signal and
correspondingly for the input u.

The argument k indicates that the k-step ahead prediction of y according to the
model th (in the theta format) is computed. In the calculation of yp(t) the model
can use outputs up to time

: ,

and inputs up to the current time t. The default value of k is 1.

The output yp is a matrix of the same size as y, and its i,j element contains the
predicted value of the corresponding element in y. The output argument
thpred contains the k-step ahead predictor in the theta format, in the case that
th corresponds to an input-output model. (The predictor is a system with

 inputs and outputs, being the number of outputs and the
number of inputs to th.)

An important use of predict is to evaluate a model’s properties in the
mid-frequency range. Simulation with idsim (which conceptually corresponds
to k = inf) can lead to levels that drift apart, since the low frequency behavior
is emphasized. One step ahead prediction is not a powerful test of the model’s
properties, since the high frequency behavior is stressed. The trivial predictor

 can give good predictions in case the sampling of the data is fast.

Another important use of predict is to evaluate models of time series. The
natural way of studying a time series model’s ability to reproduce observations
is to compare its k-step ahead predictions with actual data.

Note that for output-error models, there is no difference between the k-step
ahead predictions and the simulated output, since, by definition, output-error
models only use past inputs to predict future outputs.

t k– y s() s, t k–= t k– 1– …,

ny nu+ ny ny nu

ŷ t() y t 1–()=
4-75

predict
Algorithm For a model th that is an input-output model, the formula (3.31) in Ljung
(1987) is applied to compute the predictor. For state-space models, the state
equations are simulated k-steps ahead with initial value ,
where is the Kalman filter state estimate.

Examples Simulate a time series, estimate a model based on the first half of the data, and
evaluate the four step ahead predictions on the second half:

th0 = poly2th([1 –0.99],[],[1 –1 0.2]);
y = idsim(randn(400,1),th0);
th = armax(y(1:200),[1 2]);
yp = predict(y,th,4);
plot([y(201:400),yp(201:400)])

Note that the last two commands also are achieved by

compare(y,th,4,201:400);

See Also compare, idsim, pe

x t k–() x̂ t k–()=
x̂ t k–()
4-76

present
presentPurpose Display the information in a theta matrix.

Syntax present(th)

Description This function displays the polynomials of the model th, together with their
standard deviations, loss function, and Akaike’s Final Prediction Error
Criterion (FPE) (which essentially equals the AIC). It also displays information
about how th was created.

Leading zeros in B correspond to delays; therefore, the delay is nk if B starts
with nk exact zeros.

For input-output models, the estimated standard deviations are given just
below the estimated parameters. (Note that leading zeros and ones are exact
and have zero standard deviation.)

For state-space models and multivariable ARX models, the standard
deviations are given as fake, imaginary parts of the parameter estimates.

See Also theta
4-77

rarmax
rarmaxPurpose Estimate recursively the parameters of an ARMAX or ARMA model.

Syntax thm = rarmax(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = ...
 rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors. nn is given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the delay.
See equations (3.16)-(3.18) in Chapter 3, "Tutorial" for an exact definition of the
orders.

If z = y and nn = [na nc], rarmax estimates the parameters of an ARMA
model for y:

Only single-input, single-output models are handled by rarmax. Use rpem for
the multi-input case.

The estimated parameters are returned in the matrix thm. The k-th row of thm
contains the parameters associated with time k, i.e., they are based on the data
in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

See equations (3.16),(3.18) in Chapter 3, "Tutorial" for more information.

yhat is the predicted value of the output, according to the current model, i.e.,
row k of yhat contains the predicted value of z(k,1) based on all past data.

A q()y t() B q()u t nk–() C q()e t()+=

A q()y t() C q()e t()=
4-78

rarmax
The actual algorithm is selected with the two arguments adm and adg. These
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row
vector, consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend in a rather complicated way on the chosen model
orders. The normal choice of phi0 and psi0 is to use the outputs from a
previous call to rarmax with the same model orders. (This call could of course
be a dummy call with default input arguments.) The default values of phi0 and
psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want
nk=0, shift the input sequence appropriately and use nk=1.

Algorithm The general recursive prediction error algorithm (11.44), (11.47)-(11.49) of
Ljung (1987) is implemented. See “Recursive Parameter Estimation” on page
3-61 for more information.

Examples Compute and plot, as functions of time, the four parameters in a second order
ARMA model of a time series given in the vector y. The forgetting factor
algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)
4-79

rarx
rarxPurpose Estimate recursively the parameters of an ARX or AR model.

Syntax thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description The parameters of the ARX model structure

are estimated using different variants of the recursive least-squares method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors. nn is given as

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the delay. See
equation (3.16) in the Tutorial for an exact definition of the orders.

If z = y and nn = na, rarx estimates the parameters of an AR model for y:

Models with several inputs

are handled by allowing u to contain each input as a column vector,

u = [u1 ... unu]

and by allowing nb and nk to be row vectors defining the orders and delays
associated with each input.

Only single-output models are handled by rarx.

The estimated parameters are returned in the matrix thm. The k-th row of thm
contains the parameters associated with time k, i.e., they are based on the data

A q()y t() B q()u t nk–() e t()+=

A q()y t() e t()=

A q()y t() B1 q()u1 t nk1–() …Bnuunu t nknu–() e t()+ +=
4-80

rarx
in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

See equation (3.16) in Chapter 3, "Tutorial". In the case of a multi-input model,
all the b parameters associated with input number 1 are given first, and then
all the b parameters associated with input number 2, and so on.

yhat is the predicted value of the output, according to the current model, i.e.,
row k of yhat contains the predicted value of z(k,1) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These
are described in “Recursive Parameter Estimation” on page 3-61. The options
are as follows:

With adm ='ff' and adg = lam the forgetting factor algorithm (10.6abd)+(10.8)
is obtained with forgetting factor = lam. This is what is often referred to as
Recursive Least Squares, RLS. In this case the matrix P (see below) has the
following interpretation: /2 ∗ P is approximately equal to the covariance
matrix of the estimated parameters. Here is the variance of the innovations
(the true prediction errors e(t) in (10.3)).

With adm ='ug' and adg = gam the unnormalized gradient algorithm
(10.6abc)+(10.9) is obtained with gain gamma= gam. This algorithm is
commonly known as unnormalized Least Mean Squares, LMS. Similarly
adm ='ng' and adg = gam gives the normalized gradient or Normalized Least
Mean Squares, NLMS algorithm (10.6abc) + (10.10). In these cases P is not
defined or applicable.

With adm ='kf' and adg = R1 the Kalman Filter Based algorithm (10.6) is
obtained with R2= 1 and R1 = R1. If the variance of the innovations e(t) is not
unity but , then ∗ P is the covariance matrix of the parameter estimates,
while =R1 / is the covariance matrix of the parameter changes in (10.4).

The input argument th0 contains the initial value of the parameters; a row
vector, consistent with the rows of thm. (See above.) The default value of th0 is
all zeros.

The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. The default value of P0 is 104 times
the identity matrix.

λ

R2
R2

R2 R2
R1 R2
4-81

rarx
The arguments phi0 and phi contain initial and final values, respectively, of
the data vector:

Then, if

z = [y(1),u(1); ... ;y(N),u(N)]

you have phi0 = and phi = . The default value of phi0 is all zeros. For
online use of rarx, use phi0, th0, and P0 as the previous outputs phi, thm (last
row), and P.

Note that the function requires that the delay nk be larger than 0. If you want
nk=0, shift the input sequence appropriately and use nk=1.

Examples Adaptive noise canceling: The signal y contains a component that has its
origin in a known signal r. Remove this component by estimating, recursively,
the system that relates r to y using a sixth order FIR model together with the
NLMS algorithm:

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
%noise is the adaptive estimate of the noise
%component of y
plot(y–noise)

ϕ t() y t 1–() … y t na–() u t 1–() …u t nb– nk– 1+(), , , ,[]=

ϕ 1() ϕ N()
4-82

rarx
If the above application is a true online one, so that you want to plot the best
estimate of the signal y – noise at the same time as the data y and u become
available, proceed as follows:

phi = zeros(6,1); P=1000∗eye(6);
th = zeros(1,6); axis([0 100 –2 2]);
plot(0,0,'∗'), hold
%The loop:
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y–ns,'∗')
time = time +Dt
end

This example uses a forgetting factor algorithm with a forgetting factor of 0.98.
readAD represents an M-file that reads the value of an A/D converter at the
indicated time instance.
4-83

rbj
rbjPurpose Estimate recursively the parameters of a Box-Jenkins model.

Syntax thm = rbj(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = ...
 rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors. nn is given as

nn = [nb nc nd nf nk]

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and nk is the
delay. See equations (3.21) and (3.14),(3.18), (3.22) and (3.29) in the Tutorial
for an exact definition of the orders.

Only single-input, single-output models are handled by rbj. Use rpem for the
multi-input case.

The estimated parameters are returned in the matrix thm. The k-th row of thm
contains the parameters associated with time k, i.e., they are based on the data
in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order:

thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

(See equations (3.14),(3.18),(3.22) and (3.20) in the Tutorial.)

yhat is the predicted value of the output, according to the current model, i.e.,
row k of yhat contains the predicted value of z(k,1) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These
are described under rarx.

y t() B q()
F q()
-----------u t nk–() C q()

D q()
------------e t()+=
4-84

rbj
The input argument th0 contains the initial value of the parameters, a row
vector, consistent with the rows of thm. (See above.) The default value of th0 is
all zeros.

The arguments P0 and P are the initial and final values, respectively of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend in a rather complicated way on the chosen model
orders. The normal choice of phi0 and psi0 is to use the outputs from a
previous call to rbj with the same model orders. (This call could, of course, be
a dummy call with default input arguments.) The default values of phi0 and
psi0 are all zeros.

Note that the function requires that the delay nk is larger than 0. If you want
nk=0, shift the input sequence appropriately and use nk=1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1987) is
implemented. See also “Recursive Parameter Estimation” on page 3-61.
4-85

resid
residPurpose Compute and test the residuals (prediction errors) of a model.

Syntax [e,r] = resid(z,th)
[e,r] = resid(z,th,M,maxsize)
resid(r);

Description Matrix z contains the output-input data z = [y u], where y and u are column
vectors. In the multivariable case, y and u are matrices, with columns
corresponding to the different inputs and outputs.

th is the model to be evaluated on the given data set, defined in theta format.

e is returned with the residuals (prediction errors) associated with the model
and the data.

The autocorrelation function of e and the cross correlation between e and the
input(s) u are computed and displayed. The 99% confidence intervals for these
values are also computed and displayed as dotted (red) curves. The
computation of these values is done assuming e to be white and independent of
u. The functions are displayed up to lag M, which is 25 by default.

The correlation information is returned with r. The plots can then be reviewed
by

resid(r);

See “Model Structure Selection and Validation” on page 3-49 for more
information.

The argument maxsize is explained under auxvar.

Examples Here are some typical model validation commands:

e = resid(z,th);
plot(e)
compare(z,th);

See Also auxvar, compare, pem, theta

References Ljung (1987), Section 16.5.
4-86

roe
roePurpose Estimate recursively the parameters of an Output-Error model.

Syntax thm = roe(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the Output-Error model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors. nn is given as

nn = [nb nf nk]
where nb and nf are the orders of the Output-Error model, and nk is the delay.
See equations (3.14) and (3.19)-(3.20) in the Tutorial for an exact definition of
the orders.

Only single-input, single-output models are handled by roe. Use rpem for the
multi-input case.

The estimated parameters are returned in the matrix thm. The k-th row of thm
contains the parameters associated with time k, i.e., they are based on the data
in the rows up to and including row k in z.

Each row of thm contains the estimated parameters in the following order:

thm(k,:) = [b1,...,bnb,f1,...,fnf]

See equations (3.14), (3.20) in the Tutorial.

yhat is the predicted value of the output, according to the current model, i.e.,
row k of yhat contains the predicted value of z(k,1) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row
vector, consistent with the rows of thm. (See above.) The default value of th0 is
all zeros.

y t() B q()
F q()
-----------u t nk–()=
4-87

roe
The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend in a rather complicated way on the chosen model
orders. The normal choice of phi0 and psi0 is to use the outputs from a
previous call to roe with the same model orders. (This call could be a dummy
call with default input arguments.) The default values of phi0 and psi0 are all
zeros.

Note that the function requires that the delay nk is larger than 0. If you want
nk=0, shift the input sequence appropriately and use nk=1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1987) is
implemented. See also “Recursive Parameter Estimation” on page 3-61.

See Also oe, rarx, rbj, rplr,
4-88

rpem
rpemPurpose Estimate recursively the parameters of a general multi-input single-output
linear model.

Syntax thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the general linear model structure

are estimated using a recursive prediction error method.

Matrix z contains the output-input data z = [y u] where y and u are column
vectors (in the multi-input case u contains one column for each input). nn is
given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay.
For multi-input systems nb, nf, and nk are row vectors giving the orders and
delays of each input. See equations (3.13)-(3.23) in the Tutorial for an exact
definition of the orders.

The estimated parameters are returned in the matrix thm. The k-th row of thm
contains the parameters associated with time k, i.e., they are based on the data
in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
 c1,...,cnc,d1,...,dnd,f1,...,fnf]

See equations (3.13)-(3.23) in the Tutorial. For multi-input systems the B part
in the above expression is repeated for each input before the C part begins, and
also the F part is repeated for each input. This is the same ordering as in
th2par.

yhat is the predicted value of the output, according to the current model, i.e.,
row k of yhat contains the predicted value of z(k,1) based on all past data.

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–() …

Bnu q()
Fnu q()
----------------- unu t nknu–() C q()

D q()
------------e t()+ + +=
4-89

rpem
The actual algorithm is selected with the two arguments adg and adm. These
are described under rarx

The input argument th0 contains the initial value of the parameters;, a row
vector, consistent with the rows of thm. (See above.) The default value of th0 is
all zeros.

The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend in a rather complicated way on the chosen model
orders. The normal choice of phi0 and psi0 is to use the outputs from a
previous call to rpem with the same model orders. (This call could be a dummy
call with default input arguments.) The default values of phi0 and psi0 are all
zeros.

Note that the function requires that the delay nk is larger than 0. If you want
nk=0 , shift the input sequence appropriately and use nk=1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1987) is
implemented. See also “Recursive Parameter Estimation” on page 3-61.

For the special cases of ARX/AR models, and of single-input ARMAX/ARMA,
Box-Jenkins, and Output-Error models, it is more efficient to use rarx,
rarmax, rbj, and roe.

See Also pem, rarmax, rarx, rbj, roe, rplr
4-90

rplr
rplrPurpose Estimate recursively the parameters of a general multi-input single-output
linear model.

Syntax thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description This is a direct alternative to rpem and has essentially the same syntax. See
rpem for an explanation of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation. See
Section 11.5 in Ljung (1987). Several of the special cases are well known
algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr gives the
Extended Least Squares, ELS method. When applied to the output error
structure (nn = [0 nb 0 0 nf nk]) the method is known as HARF in the adm
= 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time series case in which an ARMA model is
estimated with

z = y
nn = [na nc]

You can thus use rplr as an alternative to rarmax for this case.

See Also pem, rarmax, rarx, rbj, roe, rpem
4-91

segment
segmentPurpose Segment data and estimate models for each segment.

Syntax segm = segment(z,nn)
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description segment builds models of AR, ARX, or ARMAX/ARMA,

assuming that the model parameters are piece-wise constant over time. It
results in a model that has split the data record into segments over which the
model remains constant. The function models signals and systems that may
undergo abrupt changes.

The argument z is the output-input data

z = [y u]

where y is a column vector containing the outputs and u is a column vector
containing the inputs. If the system has several inputs, u has the corresponding
number of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk]

where na, nb, and nc are the orders of the corresponding polynomials. See
(3.13)-(3.18) in Chapter 3, "Tutorial". Moreover nk is the delay. If the model has
several inputs, nb and nk are row vectors, giving the orders and delays for each
input.

For an ARX model (nc = 0) enter

nn = [na nb nk]

For an ARMA model of a time series

z = y
nn = [na nc]

and for an AR model

nn = na

A q()y t() B q()u t nk–() C q()e t()+=
4-92

segment
The output argument segm is a matrix, whose k-row contains the parameters
corresponding to time k. This is analogous to the output argument thm in rarx
and rarmax. The output argument thm of segment contains the corresponding
model parameters that have not yet been segmented. That is, they are not
piecewise constant, and therefore correspond to the outputs of the functions
rarmax and rarx. In fact, segment is an alternative to these two algorithms,
and has a better capability to deal with time variations that may be abrupt.

The output argument V contains the sum of the squared prediction errors of the
segmented model. It is a measure of how successful the segmentation has been.

The input argument R2 is the assumed variance of the innovations e(t) in the
model. The default value of R2 is that it is estimated. Then the output
argument R2e is a vector whose k-th element contains the estimate of R2 at time
k.

The argument q is the probability that the model undergoes at an abrupt
change at any given time. The default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they occur.
The default value is the identity matrix with dimension equal to the number
of estimated parameters.

M is the number of parallel models used in the algorithm (see below). Its default
value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the initial
covariance matrix of the parameters. The default is 10 times the identity
matrix.

ll is the guaranteed life of each of the models. That is, any created candidate
model is not abolished until after at least ll time steps. The default is ll = 1.
Mu is a forgetting parameter that is used in the scheme that estimates R2. The
default is 0.97.

The most critical parameter for you to choose is R2. It is usually more robust
to have a reasonable guess of R2 than to estimate it. Typically, you need to try
different values of R2 and evaluate the results. (See the example below.)
sqrt(R2) corresponds to a change in the value y(t) that is normal, giving no
indication that the system or the input might have changed.
4-93

segment
Algorithm The algorithm is based on M parallel models, each recursively estimated by an
algorithm of Kalman filter type. Each is updated independently, and its
posterior probability is computed. The time varying estimate thm is formed by
weighting together the M different models with weights equal to their posterior
probability. At each time step the model (among those that have lived at least
ll samples) that has the lowest posterior probability is abolished. A new model
is started, assuming that the system parameters have jumped, with probability
q, a random jump from the most likely among the models. The covariance
matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest posterior
probability is tracked back and the time instances where it jumped are marked.
This defines the different segments of the data. (If no models had been
abolished in the algorithm, this would have been the maximum likelihood
estimates of the jump instances.) The segmented model segm is then formed by
smoothing the parameter estimate, assuming that the jump instances are
correct. In other words, the last estimate over a segment is chosen to represent
the whole segment.

Examples Check how the algorithm segments a sinusoid into segments of constant levels.
Then use a very simple model y(t) = b1 * 1, where 1 is a faked input and
describes the piecewise constant level of the signal y(t) (which is simulated as
a sinusoid).

y = sin([1:50]/3)';
thm = segment([y,ones(y)],[0 1 1],0.1);
plot([thm,y])

By trying various values of R2 (0.1 in the above example), more levels are
created as R2 decreases.

b1
4-94

selstruc
selstrucPurpose Select model order (structure).

Syntax [nn,vmod] = selstruc(v)
[nn,vmod] = selstruc(v,c)

Description selstruc is a function to help choose a model structure (order) from the
information contained in the matrix v obtained as the output from arxstruc or
ivstruc.

The default value of c is 'plot'. This graphs the values of the loss functions in
v against the total number of parameters in the corresponding model structure.
If v was generated by ivstruc, so that it also contains the condition numbers
of the IV matrices, then these are also graphed against the number of
parameters. Based on inspection of these plots, you can choose a suitable
number of parameters, and nn returns the best structure with this number of
parameters.

If c = 'log', the logarithms of the loss functions are graphed instead.

c = 'aic' gives no plots, but returns in nn the structure that minimizes
Akaike’s Information Theoretic Criterion (AIC),

where V is the loss function, d is the total number of parameters in the
structure in question, and N is the number of data points used for the
estimation.

c = 'mdl' returns in nn the structure that minimizes Rissanen’s Minimum
Description Length (MDL) criterion.

When c equals a numerical value, the structure that minimizes

is selected.

The output argument vmod has the same format as v, but it contains the
logarithms of the accordingly modified criteria.

Vmod V∗ 1 2∗ d N⁄()+()=

Vmod V∗ 1 N()log ∗d N⁄+()=

Vmod V∗ 1 c∗d n⁄+()=
4-95

selstruc
The formal grounds for applying AIC or MDL require that v be generated by
arxstruc with ze = zv. When cross-validation is used (ze different from zv),
the logical choice is c = 0.

When selecting model structures, it is important to assess carefully whether
the benefit of a better fit is worth the additional complexity of a higher order
model. See Chapter 3, "Tutorial" for more information.

Examples Here is a typical sequence of commands for finding a suitable model structure:

NN = struc(2,2,1:8);
v = arxstruc(z(1:200,:),z(201:400,:),NN);
nn = selstruc(v,0);
nk = nn(3);
NN = struc(1:4,1:4,nk);
va = arxstruc(z(1:200,:),z(201:400,:),NN);
vi = ivstruc(z(1:200,:),z(201:400,:),NN);
nna = selstruc(va);
nni = selstruc(vi);

See Also arxstruc, ivstruc, struc
4-96

sett
settPurpose Set the sampling interval directly.

Syntax modn = sett(mod,T)

Description All functions that create model descriptions in the theta or freqfunc format set
the sampling interval T in their last argument. For convenience sett offers an
alternative to set it directly. It can be applied both to the case where mod is a
model in the theta format and to the case where mod is a frequency function or
spectrum in the freqfunc format, with a default choice of frequencies.

th = armax(z,nn);
th = sett(th,T);

is equivalent to

th = armax(z,nn,[],[],[],[],T)

Similarly,

g = spa(z);
g = sett(g,T);

is equivalent to

g = spa(z,[],[],[],T)

Note that you cannot use sett to recalculate models to a new sampling
interval. Use thc2thd or thd2thc instead.

See Also freqfunc, theta
4-97

spa
spaPurpose Estimate frequency response and spectrum by spectral analysis.

Syntax [g,phiv] = spa(z)
[g,phiv,z_spe] = spa(z,M,w,maxsize,T)

Description spa estimates the transfer function g and the noise spectrum phiv = of the
general linear model

where is the spectrum of ν(t).

Matrix z contains the output-input data z = [y u], where y and u are column
vectors. If there are several inputs, u is a matrix with one column for each
input. The data may be complex-valued.

g is returned in the frequency function format (see freqfunc) with the
estimate of at the frequencies specified by row vector w. The default
value of w is

w = [1:128]/128∗pi/T

phiv is returned with the autospectrum estimate of at the same
frequencies. Both outputs are returned with estimated standard deviations
(see freqfunc).

M is the length of the lag window used in the calculations. The default value is

M = min(30,length(z)/10)

Changing the value of M exchanges bias for variance in the spectral estimate.
As M is increased, the estimated functions show more detail, but are more
corrupted by noise. The sharper peaks a true frequency function has, the
higher M it needs. See etfe as an alternative for narrowband signals and
systems.

T is the sampling interval and maxsize controls the memory-speed trade-off
(see auxvar).

Φv

y t() G q()u t() v t()+=

Φv ω()

G ei ω() ω

Φv ω()
4-98

spa
For time series z = y, g is returned with the estimated output spectrum and
its estimated standard deviation.

IMPORTANT: For multi-output data the argument M must be entered as a row
vector of the same length as the number of outputs. This is the way the
distinction between inputs and outputs in z is clarified. For default window
size use in the multi-output case

M = [–1, –1, ..., –1]

The optional third output argument z_spe gives directly the spectrum matrix
of z as follows:

reshape(z_spe(:,k),nz,nz) = The spectrum S at frequency W(k)

where nz is the number of channels in the data matrix z and

Here win(m) is weight at lag m of an M-size Hamming window and W(k) is the
frequency value i rad/s. Note that ' denotes complex-conjugate transpose.

The normalization of the spectrum differs from the one used by spectrum in the
Signal Processing Toolbox . See “Some Special Topics” on page 3-68 for a more
precise definition.

Examples With default frequencies

g = spa(z);
bodeplot(g)

With logarithmically spaced frequencies

w = logspace(–2,pi,128);
[g,phiv] = spa(z,[],w);
% (empty matrix gives default)
bodeplot([g phiv],3)

plots the estimated spectrum together with confidence intervals of three
standard deviations.

S Ez t m+()z t()′ iW k()mT–()exp win m()
m M–=

M

∑=
4-99

spa
Algorithm The covariance function estimates are computed using covf. These are
multiplied by a Hamming window of lag size M and then Fourier transformed.
The relevant ratios and differences are then formed. For the default
frequencies, this is done using FFT, which is more efficient than for
user-defined frequencies. For multi-variable systems, a straightforward
for-loop is used.

Note that M = is in Table 6.1 of Ljung (1987). The standard deviations are
computed as on pages 155-156 and 264 of Ljung (1987).

See Also auxvar, bodeplot, etfe, ffplot, freqfunc, th2ff

References Ljung (1987), Section 6.4.

ϒ

4-100

ss2th
ss2thPurpose Create a model structure parametrized in canonical form.

Syntax THS = ss2th(TH)
THS = ss2th(TH,orders)

Description This function converts any model in theta format to a canonically
parameterized state-space model, also in theta format. It is useful when a
model has been obtained in some way, and you want to use it as an initial model
for prediction error estimation using pem.

TH: The given model, which can be any model in theta format.

THS: The resulting model, also in theta format. A canonical parametrization in
observer form, based on the pseudo-observability indices orders.

orders: The pseudo-observability indices. A row vector, with as many elements
as there are outputs in the model TH. Their sum must be equal to the order of
the model TH. See canform for more details. If orders is omitted, a default
choice of indices is made.

If the model TH is an output error model (its Kalman gain equal to zero), then
so is THS. Also if there is a delay from input to output in TH (corresponding to a
state-space representation (3.27) in the Tutorial with D=0) then THS will also
have such a structure.

 Examples Make a parametrized state-space model from given matrices A, B, C, D, and K
and use it as initial condition for pem estimation:

th1 = ms2th(modstruc(A,B,C,D,K),’d’);
thi = ss2th(th1);
th = pem(z,thi);

Let the model obtained from n4sid be used as the initial value for prediction
error estimation:

thn = n4sid(z,3);
thp = pem(z,ss2th(thn));

See Also canform, canstart, ms2th, n4sid
4-101

struc
strucPurpose Generate model structure matrices.

Syntax NN = struc(NA,NB,NK)

Description struc returns in NN the set of model structures comprised of all combinations
of the orders and delays given in row vectors NA, NB, and NK. The format of NN
is consistent with the input format used by arxstruc and ivstruc. The
command is intended for single-input systems only.

Examples The statement

NN = struc(1:2,1:2,4:5);

produces

NN =
 1 1 4
 1 1 5
 1 2 4
 1 2 5
 2 1 4
 2 1 5
 2 2 5
4-102

thc2thd
thc2thdPurpose Convert a model from continuous time to discrete time.

Syntax thd = thc2thd(thc,T)

Description thc is a continuous-time model in the theta format. thd is what is obtained
when it is sampled with sampling interval T. If thc is of input-output type, the
covariance matrix of the parameters is not translated.

Note that the innovations variance of the continuous-time model is
interpreted as the intensity of the spectral density of the noise spectrum. The
innovations variance in thd will thus be given as /T.

Examples Define a continuous-time system and study the poles and zeros of the sampled
counterpart:

thc = poly2th(1,1,1,1,[1 1 0],1,–1);
thd = thc2thd(thc,0.5);
zpplot(th2zp(thd))

See Also thd2thc

λ

λ

4-103

thd2thc
thd2thcPurpose Convert a model from discrete to continuous time.

Syntax thc = thd2thc(thd)
thc = thd2thc(thd,delay,NoP)

Description The discrete-time model thd, given in the theta format, is converted to a
continuous-time counterpart thc. The covariance matrix of the parameters in
the model is also translated using Gauss’ approximation formula and
numerical derivatives of the transformation. The step sizes in the numerical
derivatives are determined by the function nuderst. To inhibit the translation
of the covariance matrix and save time, enter NoP = 1.

If the discrete-time model contains pure time delays, i.e., , then these are
first removed before the transformation is made. These delays should then be
appended as pure time-delay (deadtime) to the continuous-time model. This is
done automatically by th2ff. To have the time delay approximated by a
finite-dimensional continuous system, enter delay = 'del'. The default is
delay = 'nodel'.

If the innovations variance is in thd, and its sampling interval is T, then the
continuous-time model has an indicated level of innovations spectral density
equal to T ∗ .

IMPORTANT: The transformation from discrete to continuous time is not
unique. thd2thc selects the continuous-time counterpart with the slowest
time constants, consistent with the discrete-time model. The lack of
uniqueness also means that the transformation may be ill-conditioned or even
singular. In particular, poles on the negative real axis, in the origin, or in the
point 1, are likely to cause problems. Interpret the results with care.

Examples Transform an identified model to continuous time and compare the frequency
responses of the two models:

gd = th2ff(th);
thc = thd2thc(th);
gc = th2ff(thc);
bodeplot([gd, gc],3)

See Also nuderst, thc2thd

References See “Some Special Topics” on page 3-68.

nk 1>

λ

λ

4-104

theta
thetaPurpose Describe the theta format.

Syntax help theta
help thss

Description theta is a packed matrix containing information about both a model structure
and its nominal or estimated parameters. It also contains other relevant
information about the identification result.

This model format is the basic format with the System Identification Toolbox.
It is used by all parametric identification methods and it can be transformed to
many other model representations. See the tables in the beginning of this
chapter for more details.

The internal format of the theta format is intended to be transparent to the
user. The basic way to display the information is to use the present command.
Some specific information is retrieved from the format by the functions
getmfth, getncap, gett, and th2par. This entry gives the details of the internal
representation, but this information is not necessary for most users of the
System Identification Toolbox. The formats differ whether the underlying
model is in state-space form or of the input-output black box character.

I. For the general multi-input single-output linear model structure

A, B, C, D, and F are polynomials in the delay operator of orders na, nb, nc, nd,
and nf, respectively. If the system has nu inputs, nb, nf and nk are row vectors
of dimension nu containing information about the orders and delays associated
with each of the inputs. In the case of a time series (no u), B and F are not
defined.

Let n be the sum of all the orders (the number of estimated parameters) and let

r = max(n, 7, 6 + 3 nu)

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–() …

Bnu q()
Fnu q()
-----------------u nu t nknu–() C q()

D q()
------------e t()+ + +=
4-105

theta
Then theta is a (3+n) r matrix organized as follows:

• Row 1 has entries: estimated variance of e, sampling interval T, nu, na, nb,
nc, nd, nf, and nk.

• Row 2 has entries: FPE (Akaike’s Final Prediction Error), year, month,
date, hour, minute and command by which the model was generated. The
matrix entry (2,7) thus contains the coded number of which command gener-
ated the model. This number is less than 20 for the black-box models of the
type above.

• Row 3 is the vector of estimated parameters, A, B ,C, D, and F, (excluding
leading 1s and 0s).

• Rows 4 to 3+n contain the estimated covariance matrix.

• For continuous-time models, a possible element (4+n,1) contains a dead-time
for the system. This is used when computing frequency functions in th2ff.

II. For models that are defined as state-space structures there is an underlying
M-file that defines the structure. This M-file is called by

[A,B,C,D,K,X0] = mfname(par,T,aux)

(See mf2th.) For model structures that are defined by ms2th, the name of this
M-file is ssmodx9 or ssmodx8 and the argument aux is the actual model
structure ms created by modstruc. Notice in particular that multi-output ARX
models are internally represented as state-space models with the aid of
ssmodx9.

Suppose that the number of estimated parameters is n and that the length of
the name of your M-file mfname is r. Suppose also that the model has ny outputs
and that the size of the argument aux above is nr times nc. Then theta is a
matrix of dimension

max(n, ny, nc, 7 + r) by 3+ n + nr + ny)

organized as follows:

• Row 1 has entries: determinant of innovations covariance, sampling inter-
val, number of inputs, number of outputs, number of estimated parameters,
number of rows of aux, number of columns of aux, and name of
M-file that defines the structure.
4-106

theta
• Row 2 contains the entries: FPE (Akaike’s Final Prediction Error), year,
month, date, hour, minute, and command by which the model was generated.
This last one is a number larger than 20 for state-space structures.

• Entry (2,8) is interpreted as follows: “1” means that the underlying param-
eterization is in continuous time, using ssmodx9. “ll” means that the under-
lying parameterization is in continuous time, to be sampled by
first-order-hold, using ssmodx8. “2” means that it is in discrete time, again
using ssmodx9. ‘3” means that the model is a multivariate ARX model. “4”
means that the underlying parameterization is in discrete time and user de-
fined. “5” means that the model is a user-defined continuous-time parame-
terization, equipped with sampling inhibition when called with a negative
value of T.

• Row 3 contains the estimated (nominal) values of the parameters.

• Rows 4 to 3 + n contain the estimated covariance matrix of the parameters.

• Rows 4 + n to 3 + n + nr contain the matrix aux.

• Rows 4 +n + nr to 3+n + nr + ny contain the covariance matrix of the inno-
vations of the model.
4-107

thinit
thinitPurpose Set initial values for the parameters to be estimated.

Syntax th = thinit(th0)
th = thinit(th0,R,pars,sp)

Description This function randomizes initial parameter estimates for model structures th0
in the theta format that correspond to state-space models. th is the same model
structure as th0, but with a different nominal parameter vector. This vector is
used as the initial estimate by pem.

The parameters are randomized around pars with variances given by the row
vector R. Parameter number k is randomized as pars(k) + e*sqrt(R(k)),
where e is a normal random variable with zero mean and a variance of 1. The
default value of R is all ones, and the default value of pars is the nominal
parameter vector in th0.

Only models that give stable predictors are accepted. If sp = 'b', only models
that are both stable and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires stability
only of the predictor. Sp = 'p' is the default.

A maximum of 100 trials are made by thinit. It may be difficult to find a stable
predictor for high order systems just by trial and error. An alternative is then
to compute the Kalman filter predictor for a randomized model.

See Also canstart, mf2th, ms2th, pem
4-108

th2arx
th2arxPurpose Extract the ARX parameters from a theta format model.

Syntax [A,B] = th2arx(th)
[A,B,dA,dB] = th2arx(th)

Description th is the model in the theta format. A and B are returned as the matrices that
define the ARX structure:

A = [I A1 A2 ... Ana]
B = [B0 B1 ... Bnb]

where

Delays in the system are indicated by leading zeros in the B matrices. See
Section 6 in the Tutorial.

dA and dB are the standard deviations of A and B.

See Also arx2th

y t() A1y t 1–() … Anay t na–()+ + + B0u t() B1u t 1–() … Bnbu t nb–()+ + +=
4-109

th2ff, trf
th2ff, trfPurpose Compute the frequency response and standard deviations of a theta format
model.

Syntax [g,phiv] = th2ff(th)
[g,phiv] = th2ff(th,ku,w,ky)

Description th2ff computes the frequency functions of th, where th is a matrix in theta
format containing a general model.

g is returned with the transfer function estimate (see (3.4), (3.23), and (3.25) in
the Tutorial)

computed at the frequencies given in row vector w. If th has several inputs
and outputs, g is computed for the input and output numbers specified in row
vectors ku and ky, respectively. The format of g is detailed under freqfunc.
The default values of ku and ky are all input and output pairs contained in th.

For a time continuous model the frequency function is obtained instead.

Phiv () is returned with the estimated noise spectrum for each of the outputs

where is the estimated variance of e(t) (the loss function) specified by th.
phiv is computed at the same frequencies as g. The normalization of the
spectrum differs from the one used by spectrum in the Signal Processing
Toolbox. See “Some Special Topics” on page 3-68, for a precise definition. Note
that no cross-spectra between different outputs are computed.

The standard deviations of the frequency function(s) and the spectra are also
computed, using the Gauss approximation formula. For models with
complicated parameter dependencies, numerical differentiation is applied. The
step sizes for the numerical derivatives are determined by nuderst.

G e
iω()

ω

G iω()

Φv

Φv ω() λ∗T∗ H e
iwt()

2
=

λ

4-110

th2ff, trf
The default values of the frequencies are in the discrete-time case are

w = [1:128]/128∗pi/T

where T is the sampling interval specified by th (default = 1) and for the
continuous-time case

w = logspace(log10(pi/abs(T)/100),log10(10*pi/ abs(T)),128)

where abs(T)is the “underlying” sampling interval for the continuous-time
model.

The frequency functions can be graphed with bodeplot, ffplot, and
nyqplot.

IMPORTANT: The command trf has the same syntax as th2ff but does not
calculate the standard deviations, and can be considerably faster.

Examples Compare the results from spectral analysis and an ARMAX model
(input-output dynamics only).

th = armax(z,[2 2 2 1]);
gp = th2ff(th);
gs = spa(z);
bodeplot([gs gp])

Plot, but don’t store, the frequency function g associated with th:

 bodeplot(th2ff(th))

See Also bodeplot, etfe, ffplot, nyqplot, sett, spa
4-111

th2par
th2parPurpose Extract the parameters from the theta format.

Syntax [par,P,lam] = th2par(th)

Description th is a model, defined in the theta format. par is returned as the nominal or
estimated values of the free parameters in th. The covariance matrix of the
parameters is obtained as P, and lam is the variance (covariance matrix) of the
innovations.

The ordering for the parameters is as follows. For the general input-output
model (7.2), you have

Here, superscript refers to the input number.

For a state-space structure, defined by ms2th, the parameters in pars are
obtained in the following order: The A matrix is first scanned row by row for
free parameters. Then the B matrix is scanned row by row, and so on for the C,
D, K, and X0 matrices. (See ms2th.)

For a state-space matrix that is defined by mf2th, the ordering of the
parameters is the same as in your M-file.

Multivariate ARX models are internally represented in state-space form. The
ordering of the parameters may not be transparent in this case; it is better to
use th2arx.

pars a1 … ana b1
1 … bnb1

1 … b1
2 … bnb2

2 …, , , , , , , , , ,[=

b1
nu … bnbnu

nu … c1 … cnc d1 … dnc f1
1 … fnf1

1 … f1
nu … fnfnu

nu], , , , , , , , , , , , , , , ,
4-112

th2poly
th2polyPurpose Convert theta matrix into its component polynomials.

Syntax [A,B,C,D,F,LAM,T] = th2poly(th)

Description This is essentially the inverse of the poly2th function. It returns the
polynomials of the general model

as contained by the matrix th in theta format. See “Examining Models” on page
3-40.

LAM is the noise variance and T is the sampling interval.

See Also poly2th, th2tf, theta

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–() …

Bnu q()
Fnu q()
-----------------unu t nknu–() C q()

D q()
------------e t()+ + +=
4-113

th2ss
th2ssPurpose Transform a model to state-space form.

Syntax [A,B,C,D,K,X0] = th2ss(th)
[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = th2ss(th)

Description th is the model given in the theta format. A, B, C, D,K, and X0 are the matrices
in the state-space description

where is or depending on whether th is a continuous or
discrete-time model.

dA, dB, dC, dD, dK, and dX0 are the standard deviations of the state-space
matrices.

If the underlying model itself is a state-space model, the matrices correspond
to the same basis. If the underlying model is an input-output model, an
observer canonical form representation is obtained.

Algorithm The computation of the standard deviations in the input-output case assumes
that an A polynomial is not used together with a F or D polynomial in (7.2). For
the computation of standard deviations in the case that the state-space
parameters are complicated functions of the parameters, Gauss approximation
formula is used together with numerical derivatives. The step sizes for this
differentiation are determined by nuderst.

See Also mf2th, ms2th, nuderst

x̃ t() Ax t() Bu t() Ke t()+ +=

x 0() x0=

y t() Cx t() Dx t() e t()+ +=

x̃ t() x· x t 1+()
4-114

th2tf
th2tfPurpose Transform a model to transfer function form.

Syntax [num,den] = th2tf(th)
[num,den] = th2tf(th,iu)

Description th is a model given in the theta format. num is a matrix whose row number k gives
the numerator polynomial associated with the transfer function from input
number iu to output number k. den is a row vector giving the (common)
denominator polynomial for these transfer functions. The default value of iu is 1.

The formats of num and den are the same as those used by the Signal Processing
Toolbox and the Control Systems Toolbox, both for continuous-time and
discrete-time models. See “Examining Models” on page 3-40.

To obtain the transfer function from noise source number k, enter iu = –k.

Examples For a continuous-time model

num = [1 2]
den = [1 3 0]

corresponds to the transfer function

For a discrete-time model

num = [2 4 0]
den = [1 2 3 5]

corresponds to the transfer function

which is the same as

See Also th2poly

G s() s 2+

s
2

3s+
-----------------=

H z() 2z
2

4z+

z
3

2z
2

3z 5+ + +
---=

H q() 2q
1–

4q
2–

+

1 2q
1–

3q
2–

5q
3–

+ + +
--=
4-115

th2zp, zp
th2zp, zpPurpose Compute zeros, poles, and static gains of a theta format model.

Syntax [zepo,k] = th2zp(th)
[zepo,k] = th2zp(th,ku,ky,thresh)

Description For any model described in theta format by th, the poles and zeros and static
gains, along with their standard deviations are computed. The poles and zeros
are stored in coded form in the matrix zepo, while the static gains are returned
in k.

The best way to display the information in zepo is to plot it using zpplot. The
information can also be retrieved with getzp.

The first row of k contains the integer (jy-1)∗1000+ju, where jy is the output
number and ju is the input number for the gain in question. The second row of
k contains the corresponding gains, and the third row the standard deviation
of the gain in question.

NOTE: The gain here is the static gain, i.e., the steady state gain from a step in
input number ju to output number jy. It is thus the same for a discrete-time
and a continuous-time representation of the same model. This is different
from the routines ss2zp and zp2ss in the Signal Processing Toolbox, which
use the transfer function gain, i.e., the coefficient of the highest power in the
numerator.

Row vectors ku and ky contain the indices of the inputs and outputs,
respectively, for which the zeros, poles and gains are to be computed. In this
context, the noise e(t) is counted as inputs with negative numbers. That is,
noise source number ju (the ju-th component of e(t) is counted as input
number ju. The value 0 in the vector ku is the default for “all noise sources.”
The default values of ku and ky are all inputs and all outputs (no noise inputs).

The optional argument thresh is a threshold for the computation of the zeros.
Zeros at infinity may, due to the numerical procedure, end up as large, finite
values. To avoid this, any zero whose absolute value is larger than thresh is
regarded to be at infinity. The default value of thresh is 100000.

The procedure handles both models in continuous and discrete time.
4-116

th2zp, zp
For the general discrete-time multi-input, single-output model

the zeros are the roots of (with z replacing the forward shift
operator q), and the poles are the roots of . The static gain is
k =B(1)/(A(1)F(1)).

For models that are internally represented in state-space form, the poles are
the eigenvalues of the system matrix. The zeros are the zeros of the
corresponding transfer function. These zeros may thus differ from the
transmission zeros associated with the multivariable system. To find the
trans-mission zeros, first use th2ss and then apply tzero from the Control
System Toolbox.

Note that you cannot rely on information about zeros and poles at the origin
and at infinity. (This is a somewhat confusing issue anyway.)

zepo is returned in a format that allows easy plotting with zpplot. (Then zeros
and poles at the origin and at infinity are ignored.) The routine zpform is useful
when comparing different models.

The alternative routine zp has the same syntax as th2zp but does not compute
standard deviations. This can be a useful alternative, when the standard
deviations are not of interest, and computation time for th2zp is long.
Moreover, zp uses ss2zp from the Signal Processing Toolbox, which may give
better numerical accuracy in difficult cases.

Note: Although zp computes zeros and poles for all combinations of noise
sources and outputs, present in the indices ky, ku, the command th2zp only
gives information about poles and zeros from noise source number ju to output
number ju (if ku contains the number -ju).

Algorithm The standard deviations are computed using Gauss’s approximation formula,
using the parameter covariance matrix contained in th. When the transfer
function depends on the parameters in a complicated way, numerical

A q()y t()
B1 q()
F1 q()
--------------u1 t nk1–() …

Bnu q()
Fnu q()
-----------------unu t nknu–() C q()

D q()
------------e t()+ + +=

znb nk+ B z()
zna nf+ A z()F z()
4-117

th2zp, zp
differentiation is applied. The step sizes for the differentiation are determined
in the M-file nuderst.

Note that Gauss’s approximation formula gives infinite variance to poles and
zeros that are exactly repeated.

Examples The statement

zpplot(th2zp(th))

plots, but does not store, the poles and zeros.

To compare the zeros and poles of second and third order ARX models
(input-output dynamics only), use

th2 = arx(z,[2 2 1]);
th3 = arx(z,[3 3 1]);
zp2 = th2zp(th2);
zp3 = th2zp(th3);
zpplot(zpform(zp2,zp3))

See Also getzp, theta, zepo, zpform, zpplot
4-118

unfixpar
unfixparPurpose Free parameters in structures defined by ms2th and arx2th.

Syntax thn = unfixpar(tho,matrix)
thn = unfixpar(tho,matrix,elements)

Description This function is the inverse of fixpar. The interpretation of the arguments is
the same. unfixpar makes the indicated parameters free parameters to be
estimated. The nominal/initial values of these parameters are taken to be
equal to their actual values in the structure tho.

See Also fixpar, ms2th, theta, thinit
4-119

zepo
zepoPurpose Describe the zeros and pole format.

Syntax help zepo

Description The zepo format is created by th2zp and zp and used by zpplot. It contains
information about zeros and poles and their standard deviations. The internal
format is intended to be transparent to the user. The basic way to display the
information is to use the zpplot command. Some specific infor-mation is
retrieved from the format by the function getzp. This entry gives the details of
the internal representation, but this information is not necessary for most
users of the System Identification Toolbox.

The first row of the matrix consists of integers that give information about
what the column below contains. The integers are coded in the following way:

• The zeros associated with input number ku and output number ky corre-
spond to the number (ky - 1)*1000 + ku.

• The standard deviations of these zeros correspond to the number
(ky-1)*1000 + ku +60.

• The poles associated with input number ku and output number ky corre-
spond to the number (ky - 1)*1000 + ku + 20.

• The standard deviation of these poles correspond to the number
(ky - 1)*1000 + ku + 80.

• The zeros associated with noise input number ky and output number ky (only
these are normally represented) correspond to the number 500 + ky.

• The standard deviation of these, the corresponding poles, and their standard
deviations are obtained by adding 60, 20, and 80, respectively to this num-
ber.

• Positions corresponding to nonexisting zeros and poles (as well as zeros and
poles at infinity) are represented by inf.

• If any of the above numbers is negative, it indicates that the pole or zero rep-
resentation corresponds to a continuous-time model. Then the absolute val-
ue of the number has the interpretation above.
4-120

zepo
• For complex conjugated pairs, the first row in the corresponding entry for the
standard deviation contains a complex number whose real and imaginary
parts are the standard deviations of the real and imaginary parts, respec-
tively, of the pole or zero in question. The next row entry (corres-ponding to
the conjugate pole or zero) contains a real number that is the correlation be-
tween the real and imaginary parts.

See Also getzp, th2zp, zpform, zpplot
4-121

zpform
zpformPurpose Merge zero-pole information from different models.

Syntax zepo = zpform(zepo1,zepo2,...,ku)

Description The zeros and poles in zepo1, zepo2, ... from different models are merged into
one matrix to be used by zpplot. zepo1, zepo2, ... have the format as produced
by th2zp. ku is an optional row vector containing the input numbers to be
picked out when forming zepo. The default value is ku is equal to all inputs
present in zepo1, zepo2, ... A maximum of five input arguments to
zpform is possible.

Examples The statement

zpplot(zpform(zpbj2,zpbj4,zpax2,zpax4,0))

compares the noise characteristics from four different models.

See Also th2zp, zpplot
4-122

zpplot
zpplotPurpose Plot zeros and poles.

Syntax zpplot(zepo)
zpplot(zpform(zepo1,zepo2, ..., zepon))
zpplot(zepo,sd,mode,axis)

Description The zeros and poles specified by zepo (see zepo for the format) are graphed,
with o denoting zeros and x denoting poles. Poles and zeros associated with the
same input, but different models, are always graphed in the same diagram, and
pressing the Return key advances the plot from one model to the next. On
color screens poles, zeros and their confidence regions, corresponding to the
same model all have the same color. Poles and zeros at infinity are ignored. For
discrete-time models, zeros and poles at the origin are also ignored.

If sd has a value larger than zero, confidence regions around the poles and
zeros are also graphed. The regions corresponding to sd standard deviations
are marked. The default value is sd = 0. Note that the confidence regions may
sometimes stretch outside the plot, but they are always symmetric around the
indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a unit circle is
also drawn.

When zepo contains information about several different inputs, there are some
options:

mode = 'sub' splits the screen into several plots.

mode = 'same' gives all plots in the same diagram. Pressing the Return key
advances the plots.

mode = 'sep' erases the previous plot before the next input is treated.

The default value is mode = 'sub'.

axis = [x1 x2 y1 y2] fixes the axis scaling accordingly. axis = m is the same
as

axis = [–m m –m m]
4-123

zpplot
Examples zpbj = th2zp(thbj2);
zpax = th2zp(tharmax4);
zpoe = th2zp(thoe3);
zpplot(zpform(zpoe,zpax,zpbj),3)

show all zeros and poles of three models along with the confidence regions
corresponding to three standard deviations.

See Also th2zp, zpform
4-124

Index
A
adaptive noise cancelling 4-82
Akaike’s Final Prediction Error (FPE) 3-50
AR model 3-23
ARARMAX structure 3-12
ARMAX model 2-22
ARMAX structure 3-11
ARX model 1-6, 2-20, 3-6, 3-10, 3-17, 3-22, 3-29

B
basic tools 3-3
Bode diagram 2-29
Bode plot 1-9
Box-Jenkins (BJ) structure 3-11
Box-Jenkins model 2-22
Burg’s method 3-23

C
canonical forms 3-35
communication window ident 2-2
comparisons using compare 3-48
complex-valued data 3-79
correlation analysis 1-4, 2-14, 3-15, 3-20
covariance function 3-9
covariance method 3-23
creating models from data 2-2
cross correlation function 3-52
cross spectrum 3-16

D
Data Board 2-3
data handling checklist 2-12
data representation 2-7, 3-19
data views 1-4
delays 3-10, 3-31
detrending the data 2-10
disturbance 1-5
drift matrix 3-63
dynamic models, introduction 1-5

E
estimation data 1-4
estimation method

instumental variables 3-17
prediction error approach 2-18, 3-17

estimation methods
direct 2-14
parametric 2-14
subspace method 3-18, 3-25

exporting to the MATLAB workspace 2-32
extended least squares (ELS) 3-66

F
fault detection 3-67
feedback 1-13
freqfunc format 3-20
frequencies 3-28
frequency

function 2-15
functions 3-8, 3-20
plots 3-8
range 3-8
response 2-15
scales 3-8

frequency domain description 3-10
frequency response 1-9
I-125

Index

I-12
G
Gauss-Newton minimization 3-24
geometric lattice method 3-23
graphical user interface (GUI) 2-2
GUI 2-2

topics 2-34

H
Hamming window 3-21

I
ident window 2-34
identification process, basic steps 1-10
importing data into the GUI 2-9
impulse response 1-9, 2-29, 3-8, 3-9, 3-15
Information Theoretic Criterion (AIC) 3-50
initial condition 3-24
initial parameter values 3-37
innovations form 3-13, 3-33
input signals 1-5
instrumental variable 3-17

(IV) method 3-22
technique 3-23

iterations 3-27
iterative search 3-24

K
Kalman-gain matrix 3-33

L
lag widow 3-16
layout 2-35
6

M
main ident window 2-34
maximum likelihood

criterion 3-26
method 3-17

memory horizon 3-63
model

output-error 1-7
properties 1-9
set 1-4
state-space 1-7
structure 2-17, 3-3
structure selection 3-3
structures 3-29
uncertainty 3-53
validation 1-4
view functions 2-27
views 1-4, 1-7, 2-4

Model Board 2-3
multivariable ARX model 3-30
multivariable systems 1-16, 3-23

N
noise 1-5
noise model 1-7
noise source 1-7, 2-31
noise-free simulation 1-8
noise-free simulations 3-53
nonparametric 3-10, 3-19
nonparametric identification 1-4
Normalized Gradient (NG) Approach 3-64
numerical differentiation 3-37

O
offsets 3-58

Index
outliers
signals 1-4

output signals 1-5
Output-Error (OE) structure 3-11
Output-Error model 1-7, 2-22

P
parametric identification 1-4
periodogram 3-21
poles 1-9
prediction

error identification 2-18
error method 3-17

prefiltering 2-11
prefiltering signals 2-11

Q
Quickstart menu item 2-12

R
recursive

identification 3-4, 3-61
least squares 3-64
parameter estimation 3-61

references list 1-19
resampling 2-11
robust estimation techniques 3-27

S
sampling interval 3-30
selecting data ranges 2-11
Sessions 2-5
shift operator 3-8

simulating data 2-12
spectra 3-8, 3-16
spectral analysis 1-4, 3-16, 3-20
spectrum 3-9, 3-20
startup identification procedure 1-12
state vector 3-13
state-space

form 3-13
model 1-7, 2-24
modeling 3-4
models 3-33

step response 1-9, 2-29
structure 1-4
subspace method 3-18, 3-25

T
theta format 3-22, 3-29
time domain description 3-9
time-continuous systems 3-30
transfer function 1-6
transient response 1-9, 2-29

U
Unnormalized Gradient (UG) Approach 3-64

V
validation data 1-4

W
white noise 3-9
window sizes 3-21
Working Data set 2-3
workspace variables 2-6
I-127

Index

I-12
Y
Yule-Walker approach 3-23

Z
zeros 1-9
8

	The System Identification Problem
	What is System Identification?
	How is that done?
	How do you know if the model is any good?
	Can the quality of the model be tested in other wa...
	What models are most common?
	Do you have to assume a model of a particular type...
	What does the System Identification Toolbox contai...
	Isn’t it a big limitation to work only with linear...
	How do I get started?
	Is this really all there is to System Identificati...
	The Signals
	The Basic Dynamic Model
	Variants of Model Descriptions
	How to Interpret the Noise Source
	Terms to Characterize the Model Properties
	Impulse Response
	Step Response
	Frequency Response
	Zeros and Poles
	Model Unstable
	Feedback in Data
	Noise Model
	Model Order
	Additional Inputs
	Nonlinear Effects
	Still Problems?
	Fit Between Simulated and Measured Output
	Residual Analysis Test
	Pole Zero Cancellations
	What Model Structures Should be Tested?

	Multivariable Systems
	Available Models
	Working with Subsets of the Input Output Channels
	Some Practical Advice

	Reading More About System Identification

	The Graphical User Interface
	The Model and Data Boards
	The Working Data
	The Views
	The Validation Data
	The Work Flow
	Management Aspects
	Workspace Variables
	Help Texts
	Data Representation
	Getting Data into the GUI
	Taking a Look at the Data
	Preprocessing Data
	Detrending
	Selecting Data Ranges
	Prefiltering
	Resampling
	Quickstart

	Checklist for Data Handling
	Simulating Data
	The Basics
	Direct Estimation of the Impulse Response
	Direct Estimation of the Frequency Response
	Estimation of Parametric Models
	Estimation Method
	Resulting Models
	How to Know Which Structure and Method to Use

	ARX Models
	The Structure
	Entering the Order Parameters
	Estimating Many Models Simultaneously
	Estimation Methods
	Multi-Output Models

	ARMAX, Output-Error and Box-Jenkins Models
	The General Structure
	The Special Cases
	Entering the Model Structure
	Estimation Method

	State-Space Models
	The Model Structure
	Entering Black-Box State-Space Model Structures
	Estimating Many Models Simultaneously
	Estimation Methods

	User Defined Model Structures
	State-Space Structures
	Any Model Structure

	Views and Models
	The Plot Windows
	File
	Options
	Style
	Channel
	Help

	Frequency Response and Disturbance Spectra
	Transient Response
	Poles and Zeros
	Compare Measured and Model Output
	Residual Analysis
	Text Information
	Present
	Modify

	Further Analysis in the MATLAB Workspace
	Mouse Buttons and Hotkeys
	The Main ident Window
	Plot Windows

	Troubleshooting in Plots
	Layout Questions and idprefs.mat
	Customized Plots
	Import from and Export to Workspace
	What Cannot be Done Using the GUI

	Tutorial
	Layer 1: Basic Tools
	Layer 2: Model Structure Selection
	Layer 3: More Methods To Examine Models and Multi-...
	Layer 4: Recursive Identification
	Layer 5: State-Space Modeling
	Impulse Responses, Frequency Functions, and Spectr...
	Polynomial Representation of Transfer Functions
	State-Space Representation of Transfer Functions
	Continuous-Time State-Space Models
	Estimating Impulse Responses
	Estimating Spectra and Frequency Functions
	Estimating Parametric Models
	Subspace Methods for Estimating State-Space Models...
	Data Representation
	Correlation Analysis
	Spectral Analysis
	ARX Models
	AR Models
	General Polynomial Black-Box Models
	State-Space Models
	Black-box, discrete-time, parametrizations
	Arbitrarily parameterized models in discrete and c...

	Optional Variables
	Polynomial Black-Box Models
	Multivariable ARX Models
	State-Space Models with Free Parameters
	Discrete-Time Innovations Form
	System Dynamics Expressed in Continuous Time
	The Black-Box, Discrete-Time Case
	Example 6.1: A Discrete-Time Structure
	Example 6.2: A Continuous-Time Model Structure

	State-Space Models with Coupled Parameters
	State-Space Structures: Initial Values and Numeric...
	Some Examples of User-Defined Model Structures
	Example 6.3: Heat Diffusion
	Example 6.4: Parametrized Noise Models

	Theta Format: th
	Frequency Function Format: ff
	Zero-Pole Format: zp
	State-Space Format: ss
	Transfer Function Format: tf
	Polynomial Format: poly
	The ARX Format: arx
	Transformations Between Discrete and Continuous Mo...
	Continuous-Time Models
	Discrete-Time Models
	Transformations

	Simulation and Prediction
	Comparing Different Structures
	Checking Pole-Zero Cancellations
	Residual Analysis
	Noise-Free Simulations
	Assessing the Model Uncertainty
	Comparing Different Models
	Conditioning of the Prediction Error Gradient
	Selecting Model Structures for Multivariable Syste...
	Offset Levels
	Outliers
	Filtering Data
	Feedback in Data
	Delays
	The Basic Algorithm
	Choosing an Adaptation Mechanism and Gain
	Available Algorithms
	Segmentation of Data
	Time Series Modeling
	The Sampling Interval
	Out of Memory
	Memory-Speed Trade-Offs
	Regularization
	Local Minima
	Initial Parameter Values
	Linear Regression Models
	Spectrum Normalization and the Sampling Interval
	Interpretation of the Loss Function
	Enumeration of Estimated Parameters
	Complex-Valued Data
	Strange Results

	Command Reference

