System identification, Estimation and Filtering

Consider the following LTI system:

$$
\begin{gather*}
x(t+1)=A x(t)+v_{1}(t) \tag{1}\\
y(t)=C x(t)+v_{2}(t)
\end{gather*}
$$

where

$$
A=\left[\begin{array}{cccc}
0.96 & 0.5 & 0.27 & 0.28 \\
-0.125 & 0.96 & -0.08 & -0.07 \\
0 & 0 & 0.85 & 0.97 \\
0 & 0 & 0 & 0.99
\end{array}\right], \quad C=\left[\begin{array}{llll}
0 & 2 & 0 & 0
\end{array}\right]
$$

$v_{1}(t)$ is a white noise with zero mean value and variance $V_{1}=B_{v} B_{v}^{T}, B_{v}=\sqrt{15}\left[\begin{array}{lll}0.5 & 0 & 0\end{array} 1\right]^{T}$, and $v_{2}(t)$ is a white noise with zero mean value and variance $V_{2}=2000$. The noises $v_{1}(t)$ and $v_{2}(t)$ are uncorrelated. Assume that the initial state $x(1)$ is a random vector with zero mean value and variance $P_{1}=E\left[x(1) x(1)^{T}\right]=0.5 I_{4}$.

Problem: Design the following predictors/filters:

- Dynamic Kalman 1-step predictor.
- Dynamic Kalman filter.
- Steady-state Kalman 1-step predictor.
- Steady-state Kalman filter.
- (Optional) Dynamic Kalman 1-step predictor in predictor/corrector form.

Compare the estimates provided by these predictors/filters by means of graphical representations and evaluation of the Root Mean Square Error (RMSE).

Main steps:

(1) Create a Matlab program for the simulation of the system (1). Use a for loop in order to implement the simulation. In the program, the noise $v_{1}(t)$ can be generated as $v 1(:, t)=B v .{ }^{*} r a n d n(4,1)$; the noise $v_{2}(t)$ can be generated as $v 2(t)=s q r t(V 2){ }^{*}$ randn;
(2) Simulate the system for $t=1,2, \ldots, N, N=2000$ starting from random initial conditions: $x(1)=$ $\sqrt{0.5} \operatorname{randn}(4,1)$. Plot the four state signals $x_{k}(t), k=1, \ldots, 4$ on four different figures.

Dynamic Kalman 1-step predictor (\mathcal{K})
(3) After having verified the system observability, insert in the for loop the predictor \mathcal{K} defined by

$$
\begin{gathered}
K(t)=A P(t) C^{T}\left[C P(t) C^{T}+V_{2}\right]^{-1} \\
P(t+1)=A P(t) A^{T}+V_{1}-K(t)\left[C P(t) C^{T}+V_{2}\right] K(t)^{T} \\
\widehat{y}(t \mid t-1)=C \widehat{x}(t \mid t-1) \\
e(t)=y(t)-\widehat{y}(t \mid t-1) \\
\widehat{x}(t+1 \mid t)=A \widehat{x}(t \mid t-1)+K(t) e(t)
\end{gathered}
$$

Initialize the variables as: $\widehat{x}(1 \mid 0)=0, P(1)=P_{1}$. Perform the simulation and add to the figures generated at step (2) the plots of the predicted states $\widehat{x}_{k}(t \mid t-1), k=1, \ldots, 4$.

Steady-state Kalman filter (\mathcal{F})
(4) Insert in the for loop the filter \mathcal{F} defined by

$$
\begin{gathered}
K_{0}(t)=P(t) C^{T}\left[C P(t) C^{T}+V_{2}\right]^{-1} \\
\widehat{x}(t \mid t)=\widehat{x}(t \mid t-1)+K_{0}(t) e(t)
\end{gathered}
$$

where $P(t), \widehat{x}(t \mid t-1)$ and $e(t)$ are provided by the Kalman 1 -step predictor. Perform the simulation and add to the figures generated at step (2) the plots of the estimated states $\widehat{x}_{k}(t \mid t), k=1, \ldots, 4$.

Steady-state Kalman 1-step predictor (\mathcal{K}_{∞})
(5) Insert in the for loop the predictor \mathcal{K}_{∞} defined by

$$
\begin{gathered}
\widehat{y}(t \mid t-1)=C \widehat{x}(t \mid t-1) \\
e(t)=y(t)-\widehat{y}(t \mid t-1) \\
\widehat{x}(t+1 \mid t)=A \widehat{x}(t \mid t-1)+\bar{K} e(t)
\end{gathered}
$$

where \bar{K} is obtained using the kalman Matlab command (outside the for loop). Perform the simulation and add to the figures generated at step (2) the plots of the predicted states $\widehat{x}_{k}(t \mid t-1), k=1, \ldots, 4$.

Steady-state Kalman filter $\left(\mathcal{F}_{\infty}\right)$
(6) Insert in the for loop the filter \mathcal{F}_{∞} defined by

$$
\widehat{x}(t \mid t)=\widehat{x}(t \mid t-1)+\bar{K}_{0} e(t)
$$

where $\widehat{x}(t \mid t-1)$ is the prediction provided by \mathcal{K}_{∞} and \bar{K}_{0} is obtained using the kalman Matlab command. Perform the simulation and add to the figures generated at step (2) the plots of the estimated states $\widehat{x}_{k}(t \mid t), k=1, \ldots, 4$.
(Optional) Dynamic Kalman 1-step predictor in predictor/corrector form ($\mathcal{K}_{p c}$)
(7) Insert in the for loop the predictor $\mathcal{K}_{p c}$ defined by

$$
\begin{gathered}
K_{0}(t)=P(t) C^{T}\left[C P(t) C^{T}+V_{2}\right]^{-1} \\
P_{0}(t)=\left[I_{n}-K_{0}(t) C\right] P(t) \\
P(t+1)=A P_{0}(t) A^{T}+V_{1} \\
\widehat{y}(t \mid t-1)=C \widehat{x}(t \mid t-1) \\
e(t)=y(t)-\widehat{y}(t \mid t-1) \\
\widehat{x}(t \mid t)=\widehat{x}(t \mid t-1)+K_{0}(t) e(t) \\
\widehat{x}(t+1 \mid t)=A \widehat{x}(t \mid t)
\end{gathered}
$$

Initialize the variables as: $\widehat{x}(1 \mid 0)=0, P(1)=P_{1}$. Perform the simulation and add to the figures generated at step (2) the plots of the predicted states $\widehat{x}_{k}(t \mid t-1), k=1, \ldots, 4$.

RMSE evaluation

The RMSE can be computed as

$$
R M S E=\sqrt{\frac{1}{N-N_{0}} \sum_{t=N_{0}+1}^{N}\left[x_{k}(t)-\widehat{x}_{k}(t)\right]^{2}}
$$

where $\widehat{x}_{k}(t)$ indicates either $\widehat{x}_{k}(t \mid t-1)$ in the case of prediction or $\widehat{x}_{k}(t \mid t)$ in the case of filtering, $k=$ $1, \ldots, 4$, and N_{0} is a time after which the filter transient is past.
(8) Evaluate the $R M S E$ errors obtained by the predictors/filters (try with $N_{0}=1$ and $N_{0}=100$).

