System identification, Estimation and Filtering

Problem 1

Parametric estimation of a resistance from current-voltage data.

Consider a resistor described by the following current-voltage relation:

$$V = Ri + \eta$$

where R is the resistance, i is the current in the resistor, V is the voltage across the resistor terminals, and η is a white noise with zero mean value. Suppose that the following data are available:

• $[i_1 \ i_2 \ \dots \ i_N]^T$: N = 20 current measurements equispaced in the interval [1, 10] Ampere;

• $[V_1 \ V_2 \ \dots \ V_N]^T$: N = 20 noise-corrupted voltage measurements corresponding to the above current values.

Problem: Compute the following estimates of the resistance *R*:

- Sample Mean estimate R_N .
- Least Squares estimate \widehat{R}_{LS} .
- Gauss-Markov estimate \widehat{R}_{GM} .
- Bayesian estimate R_B .

Evaluate the quality of the obtained estimates by comparing on a plot the measured and "predicted" voltage.

Main steps:

(1) Load the data from the file resistor data 1.mat (load Matlab command).

(2) Plot on a figure the measured data (*plot* Matlab command).

(3) Compute the Sample Mean estimate \hat{R}_N . Plot in the figure generated at step (2) the estimated resistor characteristic $\hat{V}_N = \hat{R}_N i$.

(4) Compute the Least Squares estimate \widehat{R}_{LS} (mldivide Matlab command or "\" Matlab command). Plot in the figure generated at step (2) the estimated resistor characteristic $\widehat{V}_{LS} = \widehat{R}_{LS}i$.

(5) Compute the Gauss-Markov estimate \widehat{R}_{GM} considering the disturbance variance matrix $\Sigma_{\eta} = \sigma_{\eta}^2 I_N$, where $\sigma_{\eta} = 5$ Volt and I_N is the identity matrix. Plot in the figure generated at step (2) the estimated resistor characteristic $\widehat{V}_{GM} = \widehat{R}_{GM}i$.

(6) Compute the Bayesian estimate as

$$\widehat{R}_B = \overline{R} + \Sigma_{RV} \Sigma_{VV}^{-1} (V - \overline{V})$$

where:

\$\overline{R} = E[R]\$ is the mean value of \$R\$. This mean value is assumed a priori (try with a value around 3).
\$\overline{V} = \overline{R}i\$.

• $\Sigma_{RR} = E[(R - \overline{R})(R - \overline{R})]$ = variance of R. This variance is assumed a priori (try with the following values: 10, 1, 0.1, 0.01).

• $\Sigma_{RV} = E[(R - \overline{R})(V - \overline{V})^T] = E[(R - \overline{R})(Ri + \eta - \overline{R}i)^T] = E[(R - \overline{R})(Ri - \overline{R}i)^T] = \dots = \Sigma_{RR}i^T.$ • $\Sigma_{VV} = E[(V - \overline{V})(V - \overline{V})^T] = \dots = \Sigma_{RR}ii^T + \Sigma_{\eta}, \text{ where } \Sigma_{\eta} = \sigma_{\eta}^2 I_N.$

Plot in the figure generated at step (2) the estimated resistor characteristic $\hat{V}_B = \hat{R}_B i$.

(7) Repeat the steps (1)-(6) using the data stored in the file resistor_data_2.mat. In steps (5) and (6), use a variance matrix Σ_{η} consistent with the data.

Problem 2

Estimation of the parameters of an auto-regressive system from output data.

Consider the following auto-regressive system:

$$y(t) = a_1 y(t-1) + a_2 y(t-2) + b + \eta(t)$$

where $\eta(t)$ is a white noise with zero mean value and variance $\sigma_{\eta}^2 = 40$. Suppose that a set of L = 500 data has been generated by this system.

Problem: Estimate the parameters a_1, a_2 and b by means of Least Squares. Compare on a plot the measured and predicted output.

Main steps:

- (1) Load the data from the file AR data.mat.
- (2) Define the output vector y and the matrix Φ according to

$$y = \begin{bmatrix} y(3) \\ \vdots \\ y(L) \end{bmatrix} \quad \Phi = \begin{bmatrix} y(2) & y(1) & 1 \\ \vdots & \vdots & \vdots \\ y(L-1) & y(L-2) & 1 \end{bmatrix}.$$

The measurement equation is $y = \Phi \theta + \eta$ where $\theta = [a_1 \ a_2 \ b]^T$.

- (3) Compute the Least Squares estimate $\hat{\theta}_{LS}$ of θ .
- (4) Compute the predicted output as $y_{pred} = \Phi \hat{\theta}_{LS}$. Plot on a figure y and y_{pred} .