Nonlinear systems identification

Mario Milanese, Carlo Novara

Dipartimento di Automatica e Informatica Politecnico di Torino

The nonlinear system ID problem

■ Data are generated by the nonlinear system f^o :

$$y^{t+1} = f^{o}(w^{t})$$

$$w^{t} = [y^{t} \cdots y^{t-n_{y}} u^{t} \cdots u^{t-n_{u}}]$$

 u^t : known variables

■ The system f^o is unknown, but a finite number of noise corrupted measurements of y^t , w^t are available:

$$\widetilde{y}^{t+1} = f^{o}(\widetilde{w}^{t}) + d^{t}, \quad t = 1, \dots, N$$

 d^t accounts for errors in data \tilde{y}^t, \tilde{w}^t

■ Identification problem: find an estimate $\hat{f} \cong f^o$

The nonlinear system ID problem

- Related problems :
 - > for a given estimate $\hat{f} \cong f^o$ evaluate the identification error $\left\| f^o - \hat{f} \right\|$
 - > find an estimate $\hat{f} \cong f^o$ "minimizing" the identification error
- The identification error cannot be exactly evaluated since f^o and d^t are not known
- Need of prior assumptions on f^o and d^t for deriving finite bounds on the identification error

Typical assumptions in literature:

on system:
$$f^o \in \Psi(\theta) = \left\{ f(w, \theta) = \sum_{i=1}^r \alpha_i \sigma(w, \beta) \right\}$$

- > on noise: iid stochastic
- Functional form of *f* ^o:
 - derived from physical laws
 - $\triangleright \sigma_i$: "basis" function (polynomial, sigmoid,...).
- Parameters θ are estimated by means of the Prediction Error (PE) method.

Predictor:
$$\hat{y}^{t+1} = f(w^t, \theta) = \sum_{i=1}^r \alpha_i \sigma(w^t, \beta_i)$$

■ Given N noise-corrupted measurements of y^t, w^t :

$$y^2 = f(w^1, \theta) + \varepsilon^2$$

$$y^3 = f(w^2, \theta) + \varepsilon^3$$

$$\vdots$$

$$y^{N+1} = f(w^N, \theta) + \varepsilon^{N+1}$$
Measured output
$$y^{N+1} = f(w^N, \theta) + \varepsilon^{N+1}$$
Known function of θ

Given the measurements equation:

$$Y = F(\theta) + D_{\varepsilon}$$

It is possible to estimate θ by means of the Prediction Error (PE) method:

$$\hat{\theta}^{LS} = \arg\min_{\theta} V_N(\theta)$$
$$V_N(\theta) = \frac{1}{N} D_{\varepsilon}^T D_{\varepsilon} = \frac{1}{N} [Y - F(\theta)]^T [Y - F(\theta)]$$

Problem: $V_N(\theta)$ is in general non-convex.

■ If possible, physical laws are used to obtain the parametric representation of $f(w,\theta)$.

When the physical laws are not well known or too complex, black-box parameterizations are used.

Fixed basis
parameterization
Polinomial, trigonometric, etc.

Tunable basis perametrization Neural networks

Fixed basis functions

$$f(w,\theta) = \sum_{i=1}^{r} \alpha_i \sigma_i(w) \qquad \theta = \left[\alpha_1 \cdots \alpha_r\right]^T$$

 $\sigma_i(w)$: Basis functions

Problem: Can σ_i 's be found such that:

$$f(w,\theta) \xrightarrow[r\to\infty]{} f^{o}(w)$$
 ?

Fixed basis functions

■ For continuous f^o , bounded $W \subset \Re^n$ and σ_i polynomial of degree i (Weierstrass):

$$\lim_{r\to\infty} \sup_{w\in W} \left| f^{o}(w) - f(w,\theta) \right| = 0$$

Polynomial models

Fixed basis functions

$$f(w,\theta) = \sum_{i=1}^{r} \alpha_i \sigma_i(w) \qquad \theta = \left[\alpha_1 \cdots \alpha_r\right]^T$$

NARX models: PE estimation of θ is a linear problem:

$$Y = L\theta + D_{\varepsilon}$$

$$L = \begin{bmatrix} \sigma_1(w^1) & \cdots & \sigma_r(w^1) \\ \vdots & \ddots & \vdots \\ \sigma_1(w^N) & \cdots & \sigma_r(w^N) \end{bmatrix} \qquad Y = \begin{bmatrix} y^2 \\ \vdots \\ y^{N+1} \end{bmatrix}$$

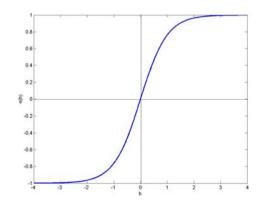
■ Least squares solution:
$$\hat{\theta}^{LS} = (L^T L)^{-1} L^T Y$$

Tunable basis functions

$$f(w,\theta) = \sum_{i=1}^{r} \alpha_{i} \sigma(w, \beta_{i})$$

$$\theta = \left[\alpha_{1} \cdots \alpha_{r} \beta_{11} \cdots \beta_{rq}\right]^{T}, \quad \beta_{i} \in \Re^{q}$$

One of the most common tunable parameterization is the one-hidden layer sigmoidal neural network.



Parametric models

- Model structure choice:
 - Basis functions
 - Number of Basis functions
 - Number of regressors

Problem: curse of dimensionality

The number of parameters needed to obtain "accurate" models may grow exponentially with the dimension n of regressor space.

More relevant in the case of fixed basis functions

Tunable basis functions

Under suitable regularity conditions on the function to approximate, the number of parameters required to obtain "accurate" models grows linearly with n.

Estimation of θ requires to solve a non-convex minimization problem (even for NARX models).

Trapping in local minima

Nonlinear regression systems

Consider a nonlinear system in regression form:

$$y^{t+1} = f(w^t) + d^{t+1}$$

where:

- w^t : regressor. It defines the system structure:

$$w^{t} = \begin{bmatrix} y^{t} & y^{t-1} & \dots & u^{t} & u^{t-1} & \dots \end{bmatrix}^{T} \iff \text{NARX}$$

$$w^{t} = \begin{bmatrix} f(w^{t-1}) f(w^{t-2}) \dots & u^{t} & u^{t-1} & \dots \end{bmatrix}^{T} \iff \text{NOE}$$

$$w^{t} = \begin{bmatrix} y^{t} & y^{t-1} & \dots & u^{t} & u^{t-1} & \dots & u^{t} & u^{t-1} & \dots \end{bmatrix}^{T} \iff \text{NARMAX}$$

- *u* : input signal.
- *d* : noise acting on the system.

Nonlinear regression systems

■ The predictor of system *f* is defined as:

$$\hat{y}^{t+1} = f(w^t)$$

where:

$$w^{t} = \begin{bmatrix} y^{t} & y^{t-1} & \dots & u^{t} & u^{t-1} & \dots \end{bmatrix}^{T} \iff \text{NARX}$$

$$w^{t} = \begin{bmatrix} \hat{y}^{t} & \hat{y}^{t-1} & \dots & u^{t} & u^{t-1} & \dots \end{bmatrix}^{T} \iff \text{NOE}$$

$$w^{t} = \begin{bmatrix} y^{t} & y^{t-1} & \dots & u^{t} & u^{t-1} & \dots & \varepsilon^{t} & \varepsilon^{t-1} & \dots \end{bmatrix}^{T} \Leftrightarrow \text{NARMAX}$$

$$\varepsilon^{t} = y^{t} - \hat{y}^{t} : \text{ prediction error}$$