02MIJLG - System Identification, Estimation and Filtering Sample examination paper (exam duration: 3 hours)

SURNAME:	NAME:
SUITINAME:	NAME:

Remark: please, write two stand-alone m-files (named es1.m and es2.m) to solve the problems, respectively.

Problem #1: the input-output measurements of a SISO dynamic system S_1 to be modeled have been collected in the MATLAB data1.mat file.

- 1) Identify ARX, OE and NARX models of different orders using part of the experimental data.
- 2) Compare the identified models on a set of data <u>not</u> used for identification. As criterion to assess

the model quality, minimize the Root Mean Square Error $RMSE = \sqrt{\frac{1}{N - N_0} \sum_{t=N_0+1}^{N} \left[y(t) - \hat{y}(t)\right]^2}$,

where y(t) = measured output, $\hat{y}(t)$ = simulated (or predicted) output and N_0 is a suitable time instant after which the transient is past. Choose the best trade-off between RMSE and model order $n = n_a + n_b$ (for ARX and NARX models) or $n = n_f + n_b$ (for OE models).

3) Using all the experimental data, estimate the parameters of an ARX(3,3,1) model by means of the standard Least-Squares algorithm and evaluate the Estimate Uncertainty Intervals EUI^{∞} , assuming that the output measurements are corrupted by a pointwise bounded noise with maximum amplitude 0.1.

Problem #2: consider the following LTI dynamic system S_2 :

$$x(t+1) = Ax(t) + Bu(t) + v_1(t)$$

 $y(t) = Cx(t) + v_2(t)$

where

$$A = \begin{bmatrix} 2.7258 & -1.2424 & 0.7577 \\ 2 & 0 & 0 \\ 0 & 0.5 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0.026 \\ 0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -0.45 & -0.05 \end{bmatrix}$$

 $v_1(t)$ is a white noise with zero mean value and variance $V_1 = B_{v_1} B_{v_1}^T$, $B_{v_1} = 0.05 \begin{bmatrix} 0.026 & 0 & 0 \end{bmatrix}^T$, $v_2(t)$ is a white noise with zero mean value and variance $V_2 = 0.0004$ and u(t) is a suitable input signal whose values have been saved in the MATLAB data2.mat file. The noises $v_1(t)$ and $v_2(t)$ are uncorrelated. Assume that the initial state x(1) is a random vector with zero mean value and variance $P_1 = E\left[x(1)x(1)^T\right] = I_3$. 1) Design the steady-state Kalman filter \mathcal{F}_{∞} and the dynamic Kalman 1-step predictor in predictor-

- corrector form \mathcal{K}_{pc} .
- 2) Compare the state estimates provided by \mathcal{F}_{∞} and \mathcal{K}_{pc} by means of graphical representations and evaluate the Root Mean Square Errors:

$$RMSE_k = \sqrt{\frac{1}{N' - N_0'} \sum_{t=N_0'+1}^{N'} \left[x_k(t) - \hat{x}_k(t) \right]^2}, \quad k = 1, \dots, 3$$

where $\hat{x}_k(t)$ is the estimate of the state $x_k(t)$ and N'_0 is a suitable time instant after which the filter transient is past.