02MIJLG - System Identification, Estimation and Filtering Sample examination paper (exam duration: 3 hours)

SURNAME:

\qquad NAME: \qquad

Remark: please, write two stand-alone m-files (named es1.m and es2.m) to solve the problems, respectively.
Problem $\# 1$: the input-output measurements of a SISO dynamic system \mathcal{S}_{1} to be modeled have been collected in the MATLAB data1.mat file.

1) Identify ARX, OE and NARX models of different orders using part of the experimental data.
2) Compare the identified models on a set of data not used for identification. As criterion to assess the model quality, minimize the Root Mean Square Error $R M S E=\sqrt{\frac{1}{N-N_{0}}} \sum_{t=N_{0}+1}^{N}[y(t)-\hat{y}(t)]^{2}$, where $y(t)=$ measured output, $\hat{y}(t)=$ simulated (or predicted) output and N_{0} is a suitable time instant after which the transient is past. Choose the best trade-off between $R M S E$ and model order $n=n_{a}+n_{b}$ (for ARX and NARX models) or $n=n_{f}+n_{b}$ (for OE models).
3) Using all the experimental data, estimate the parameters of an $\operatorname{ARX}(3,3,1)$ model by means of the standard Least-Squares algorithm and evaluate the Estimate Uncertainty Intervals $E U I^{\infty}$, assuming that the output measurements are corrupted by a pointwise bounded noise with maximum amplitude 0.1.

Problem \#2: consider the following LTI dynamic system \mathcal{S}_{2} :

$$
\begin{aligned}
x(t+1) & =A x(t)+B u(t)+v_{1}(t) \\
y(t) & =C x(t)+v_{2}(t)
\end{aligned}
$$

where

$$
A=\left[\begin{array}{ccc}
2.7258 & -1.2424 & 0.7577 \\
2 & 0 & 0 \\
0 & 0.5 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
0.026 \\
0 \\
0
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & -0.45 & -0.05
\end{array}\right]
$$

$v_{1}(t)$ is a white noise with zero mean value and variance $V_{1}=B_{v_{1}} B_{v_{1}}^{T}, B_{v_{1}}=0.05\left[\begin{array}{ccc}0.026 & 0 & 0\end{array}\right]^{T}$, $v_{2}(t)$ is a white noise with zero mean value and variance $V_{2}=0.0004$ and $u(t)$ is a suitable input signal whose values have been saved in the MATLAB data2.mat file. The noises $v_{1}(t)$ and $v_{2}(t)$ are uncorrelated. Assume that the initial state $x(1)$ is a random vector with zero mean value and variance $P_{1}=E\left[x(1) x(1)^{T}\right]=I_{3}$.

1) Design the steady-state Kalman filter \mathcal{F}_{∞} and the dynamic Kalman 1-step predictor in predictorcorrector form $\mathcal{K}_{p c}$.
2) Compare the state estimates provided by \mathcal{F}_{∞} and $\mathcal{K}_{p c}$ by means of graphical representations and evaluate the Root Mean Square Errors:

$$
R M S E_{k}=\sqrt{\frac{1}{N^{\prime}-N_{0}^{\prime}} \sum_{t=N_{0}^{\prime}+1}^{N^{\prime}}\left[x_{k}(t)-\hat{x}_{k}(t)\right]^{2}}, \quad k=1, \ldots, 3
$$

where $\hat{x}_{k}(t)$ is the estimate of the state $x_{k}(t)$ and N_{0}^{\prime} is a suitable time instant after which the filter transient is past.

