
www.dbeBooks.com - An Ebook Library

MATLAB® Primer
Seventh Edition

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

MATLAB® Primer
Seventh Edition

Timothy A. Davis
Kermit Sigmon

This book contains information obtained from authentic and highly regarded
sources. Reprinted material is quoted with permission, and sources are indi-
cated. A wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and information, but the author and the publisher
cannot assume responsibility for the validity of all materials or for the con-
sequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, micro-
filming, and recording, or by any information storage or retrieval system,
without prior permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must
be obtained in writing from CRC Press for such copying.

Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton,
Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or reg-
istered trademarks, and are used only for identification and explanation,
without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2005 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-523-8

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

C5238 disclaimer.fm Page 1 Friday, November 12, 2004 1:31 PM

 iii

Preface
Kermit Sigmon, author of the MATLAB® Primer, passed
away in January 1997. Kermit was a friend, colleague,
and fellow avid bicyclist (although I’m a mere 10-mile-a-
day commuter) with whom I shared an appreciation for
the contribution that MATLAB has made to the
mathematics, engineering, and scientific community.
MATLAB is a powerful tool, and my hope is that in
revising our book for MATLAB 7.0, you will be able to
learn how to apply it to solving your own challenging
problems in mathematics, science, and engineering.

A team at The MathWorks, Inc. revised the Fifth Edition
for MATLAB Version 5 in November of 1997. I carried
on Kermit’s work by creating the Sixth Edition of this
book for MATLAB 6.1 in October 2001, and now this
Seventh Edition for MATLAB Version 7.0.

This edition highlights the many new features of
MATLAB 7.0, and includes new chapters on features that
were in prior versions of MATLAB but not in prior
editions of this book. New or revised topics in this
edition include:

• calling Java from MATLAB, and using Java objects
inside the MATLAB workspace

• many more graphics examples, including the seashell
on the cover of the book

• cell publishing for reports in HTML, LaTeX,
Microsoft Word, and Microsoft Powerpoint

• powerful suite of code development tools (such as the
M-Lint code checker, the file dependency and
comparison reports, and a profile coverage report)

 iv

• volume and vector visualization
• calling Fortran code from MATLAB
• parametric curves and surfaces, and polar plots of

symbolic functions
• polynomials, interpolation, and numeric integration
• solving non-linear equations with fzero
• solving ordinary differential equations with ode45
• the revised MATLAB Desktop
• short-circuit logical operators
• integers and single precision floating-point
• more details on the colon operator
• linsolve, for solving specific linear systems
• the new block comment syntax
• function handles (@), which are now simpler to use
• anonymous functions
• image, and a pretty Mandelbrot set example
• the new 4-output sparse lu
• abstract symbolic functions
• nicely-formatted tables using fprintf
• a revised list of all primary functions and operators in

MATLAB.

I would like to thank Penny Anderson at The MathWorks,
Inc. for her detailed review of this book.

Tim Davis
Associate Professor, Department of Computer and
Information Science and Engineering, University of
Florida, http://www.cise.ufl.edu/research/sparse

 v

Introduction
MATLAB®, developed by The MathWorks, Inc.,
integrates computation, visualization, and programming
in a flexible, open environment. It offers engineers,
scientists, and mathematicians an intuitive language for
expressing problems and their solutions mathematically
and graphically. Complex numeric and symbolic
problems can be solved in a fraction of the time required
with a programming language such as C, Fortran, or Java.

How to use this book: The purpose of this Primer is to
help you begin to use MATLAB. It is not intended to be
a substitute for the online help facility or the MATLAB
documentation (such as Getting Started with MATLAB,
available in printed form and online). The Primer can
best be used hands-on. You are encouraged to work at
the computer as you read the Primer and freely
experiment with the examples. This Primer, along with
the online help facility, usually suffices for students in a
class requiring the use of MATLAB.

Start with the examples at the beginning of each chapter.
In this way, you will create all of the matrices and M-files
used in the examples. Some examples depend on code
you write in previous chapters.

Larger examples (M-files and MEX-files) are on the web
at http://www.cise.ufl.edu/research/sparse/MATLAB and
http://www.crcpress.com.

Pull-down menu selections are described using the
following style. Selecting the Desktop menu, and then
the Desktop Layout submenu, and then the Default

 vi

menu item is written as Desktop ► Desktop Layout ►
Default.

You should liberally use the online help facility for more
detailed information. Pressing the F1 key or selecting
Help ► MATLAB Help brings up the Help window. You
can also type help or doc in the Command window. See
Sections 2.1 or 22.26 for more information on how to use
the online help.

How to obtain MATLAB: Version 7.0 (Release 14) of
MATLAB is available for Microsoft Windows (XP, 2000,
and NT 4.0), Unix (Linux, Solaris 2.8 and 2.9, and HP-
UX 11 or 11i), and the Macintosh (OS X 10.3.2 Panther).
A Student Version is available for all but Solaris and HP-
UX; it includes MATLAB, Simulink, and key functions
of the Symbolic Math Toolbox. Everything discussed in
this book can be done in the Student Version of
MATLAB, with the exception of advanced features of the
Symbolic Math Toolbox discussed in Section 16.13.

MATLAB, Simulink, Handle Graphics, StateFlow, and
Real-Time Workshop are registered trademarks of The
MathWorks, Inc. TargetBox is a trademark of The
MathWorks, Inc. For more information on MATLAB,
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Phone: 508–647–7000
Fax: 508–647–7101
Web: http://www.mathworks.com

 vii

Table of Contents

1. Accessing MATLAB.. 1
2. The MATLAB Desktop 1

2.1 Help window... 2
2.2 Start button.. 3
2.3 Command window.. 3
2.4 Workspace window... 7
2.5 Command History window 8
2.6 Array Editor window .. 9
2.7 Current Directory window 9

3. Matrices and Matrix Operations 10
3.1 Referencing individual entries 10
3.2 Matrix operators.. 11
3.3 Matrix division (slash and backslash) 12
3.4 Entry-wise operators ... 13
3.5 Relational operators .. 13
3.6 Complex numbers ... 15
3.7 Strings ... 16
3.8 Other data types .. 16

4. Submatrices and Colon Notation 18
4.1 Generating vectors .. 18
4.2 Accessing submatrices .. 19

5. MATLAB Functions... 21
5.1 Constructing matrices ... 21
5.2 Scalar functions... 23
5.3 Vector functions and data analysis...................... 23
5.4 Matrix functions.. 24
5.5 The linsolve function .. 25
5.6 The find function .. 27

6. Control Flow Statements................................ 29
6.1 The for loop .. 29

 viii

6.2 The while loop .. 31
6.3 The if statement .. 32
6.4 The switch statement... 33
6.5 The try/catch statement 33
6.6 Matrix expressions (if and while) 33
6.7 Infinite loops ... 35

7. M-files... 35
7.1 M-file Editor/Debugger window......................... 35
7.2 Script files ... 36
7.3 Function files .. 40
7.4 Multiple inputs and outputs 41
7.5 Variable arguments ... 42
7.6 Comments and documentation............................ 42
7.7 MATLAB’s path... 43

8. Advanced M-file Features 43
8.1 Function handles and anonymous functions 43
8.2 Name resolution.. 47
8.3 Error and warning messages 48
8.4 User input.. 49
8.5 Performance measures .. 49
8.6 Efficient code.. 51

9. Calling C from MATLAB 53
9.1 A simple example ... 54
9.2 C versus MATLAB arrays 55
9.3 A matrix computation in C 55
9.4 MATLAB mx and mex routines 59
9.5 Online help for MEX routines 60
9.6 Larger examples on the web 60

10. Calling Fortran from MATLAB 61
10.1 Solving a transposed system 61
10.2 A Fortran mexFunction with %val.................... 62
10.3 If you cannot use %val...................................... 64

11. Calling Java from MATLAB.......................... 65
11.1 A simple example ... 65

 ix

11.2 Encryption/decryption....................................... 65
11.3 MATLAB’s Java class path 67
11.4 Calling your own Java methods 67
11.5 Loading a URL as a matrix 69

12. Two-Dimensional Graphics 70
12.1 Planar plots ... 71
12.2 Multiple figures... 72
12.3 Graph of a function ... 72
12.4 Parametrically defined curves........................... 73
12.5 Titles, labels, text in a graph 73
12.6 Control of axes and scaling............................... 74
12.7 Multiple plots.. 75
12.8 Line types, marker types, colors 76
12.9 Subplots and specialized plots 77
12.10 Graphics hard copy ... 77

13. Three-Dimensional Graphics....................... 78
13.1 Curve plots.. 78
13.2 Mesh and surface plots...................................... 79
13.3 Parametrically defined surfaces 80
13.4 Volume and vector visualization....................... 81
13.5 Color shading and color profile 81
13.6 Perspective of view... 82

14. Advanced Graphics 83
14.1 Handle Graphics ... 83
14.2 Graphical user interface 84
14.3 Images... 84

15. Sparse Matrix Computations 85
15.1 Storage modes... 85
15.2 Generating sparse matrices 86
15.3 Computation with sparse matrices 89
15.4 Ordering methods ... 89
15.5 Visualizing matrices.. 91

16. The Symbolic Math Toolbox 91
16.1 Symbolic variables.. 92

 x

16.2 Calculus .. 93
16.3 Variable precision arithmetic 99
16.4 Numeric and symbolic subsitution.................. 100
16.5 Algebraic simplification.................................. 102
16.6 Two-dimensional graphs................................. 103
16.7 Three-dimensional surface graphs 105
16.8 Three-dimensional curves 107
16.9 Symbolic matrix operations 108
16.10 Symbolic linear algebraic functions.............. 110
16.11 Solving algebraic equations 113
16.12 Solving differential equations 116
16.13 Further Maple access 117

17. Polynomials, Interpolation, and
Integration... 118

17.1 Representing polynomials............................... 118
17.2 Evaluating polynomials 119
17.3 Polynomial interpolation................................. 119
17.4 Numeric integration (quadrature).................... 121

18. Solving Equations....................................... 122
18.1 Symbolic equations... 122
18.2 Linear systems of equations............................ 122
18.3 Polynomial roots ... 123
18.4 Nonlinear equations .. 123
18.5 Ordinary differential equations 125
18.6 Other differential equations 127

19. Displaying Results...................................... 128
20. Cell Publishing .. 132
21. Code Development Tools........................... 133

21.1 M-lint code check report 134
21.2 TODO/FIXME report 135
21.3 Help report .. 135
21.4 Contents report.. 137
21.5 Dependency report .. 138
21.6 File comparison report 139

 xi

21.7 Profile and coverage report 139
22. Help Topics.. 141

22.1 General purpose commands 143
22.2 Operators and special characters..................... 146
22.3 Programming language constructs 148
22.4 Elementary matrices and matrix manipulation 150
22.5 Elementary math functions 152
22.6 Specialized math functions 154
22.7 Matrix functions — numerical linear algebra . 156
22.8 Data analysis, Fourier transforms 158
22.9 Interpolation and polynomials 159
22.10 Function functions and ODEs 161
22.11 Sparse matrices ... 163
22.12 Annotation and plot editting 165
22.13 Two-dimensional graphs............................... 165
22.14 Three-dimensional graphs............................. 166
22.15 Specialized graphs .. 169
22.16 Handle Graphics ... 172
22.17 Graphical user interface tools 174
22.18 Character strings ... 177
22.19 Image and scientific data............................... 179
22.20 File input/output.. 180
22.21 Audio and video support 183
22.22 Time and dates .. 184
22.23 Data types and structures 184
22.24 Version control ... 188
22.25 Creating and debugging code........................ 188
22.26 Help commands .. 189
22.27 Microsoft Windows functions....................... 190
22.28 Examples and demonstrations....................... 191
22.29 Preferences.. 191
22.30 Symbolic Math Toolbox 192

 xii

23. Additional Resources 198
Index.. 202

 1

1. Accessing MATLAB
On Unix systems you can enter MATLAB with the
system command matlab and exit MATLAB with the
MATLAB command quit or exit. In Microsoft
Windows and the Macintosh, just double-click on the
MATLAB icon:

2. The MATLAB Desktop
MATLAB has an extensive graphical user interface.
When MATLAB starts, the MATLAB window will
appear, with several subwindows and menu bars.

All of MATLAB’s windows in the default desktop are
docked, which means that they are tiled on the main
MATLAB window. You can undock a window by
selecting the menu item Desktop ► Undock or by
clicking its undock button:

Dock it with Desktop ► Dock... or the dock button:

Close a window by clicking its close button:

Reshape the window tiling by clicking on and dragging
the window edges.

 2

The menu bar at the top of the MATLAB window
contains a set of buttons and pull-down menus for
working with M-files, windows, preferences and other
settings, web resources for MATLAB, and online
MATLAB help. If a window is docked and selected, its
menu bar appears at the top of the MATLAB window.

If you prefer a simpler font than the default one, select
File ► Preferences, and click on Fonts. Select
Lucida Console (on a PC) or DialogInput (on Unix)
in place of the default Monospaced font, and click OK.

2.1 Help window
This window is the most useful window for beginning
MATLAB users, and MATLAB experts continue to use it
heavily. Select Help ► MATLAB Help or type doc. The
Help window has most of the features you would see in
any web browser (clickable links, a back button, and a
search engine, for example). The Help Navigator on the
left shows where you are in the MATLAB online
documentation. Online Help sections are referred to as
Help: MATLAB: Getting Started: Introduction, for
example. Click on the beside MATLAB in the Help
Navigator, and you will see the MATLAB Roadmap (or
Help: MATLAB for short). Printable versions of the
documentation are available under this category (see
Help: MATLAB: Printable Documentation (PDF)).

You can also use the help command, typed in the
Command window. For example, the command help
eig will give information about the eigenvalue function
eig. See the list of functions in Chapter 22 for a brief
summary of help for a function. doc is similar, except
that it displays information in the Help Browser. You can

 3

also preview some of the features of MATLAB by first
entering the command demo or by selecting Help ►
Demos, and then selecting from the options offered.

2.2 Start button
The Start button in the bottom left corner of the
MATLAB Desktop allows you to start up demos, tools,
and other windows not present when you start MATLAB.
Try Start: MATLAB: Demos and run one of the demos
from the MATLAB Demo window.

2.3 Command window
MATLAB expressions and statements are evaluated as
you type them in the Command window, and results of
the computation are displayed there too. Expressions and
statements are also used in M-files (more on this in
Chapter 7). They are usually of the form:

variable = expression

or simply:

expression

Expressions are usually composed from operators,
functions, and variable names. Evaluation of the
expression produces a matrix (or other data type), which
is then displayed on the screen or assigned to a variable
for future use. If the variable name and = sign are
omitted, a variable ans (for answer) is automatically
created to which the result is assigned.

A statement is normally terminated at the end of the line.
However, a statement can be continued to the next line
with three periods (...) at the end of the line. Several

 4

statements can be placed on a single line separated by
commas or semicolons. If the last character of a
statement is a semicolon, display of the result is
suppressed, but the assignment is carried out. This is
essential in suppressing unwanted display of intermediate
results.

Click on the Workspace tab to bring up the Workspace
window (it starts out underneath the Current Directory
window in the default layout) so you can see a list of the
variables you create, and type this command in the
Command window:

A = [1 2 3 ; 4 5 6 ; -1 7 9]

or this one:

A = [
1 2 3
4 5 6
-1 7 9]

in the Command window. Either one creates the obvious
3-by-3 matrix and assigns it to a variable A. Try it. You
will see the array A in your Workspace window.
MATLAB is case-sensitive in the names of commands,
functions, and variables, so A and a are two different
variables. A comma or blank separates the elements
within a row of a matrix (sometimes a comma is
necessary to split the expressions, because a blank can be
ambiguous). A semicolon ends a row. When listing a
number in exponential form (e.g., 2.34e–9), blank
spaces must be avoided in the middle (before the e, for
example). Matrices can also be constructed from other
matrices. If A is the 3-by-3 matrix shown above, then:

 5

C = [A, A' ; [12 13 14], zeros(1,3)]

creates a 4-by-6 matrix. Try it to see what C is. The
quote mark in A' means the transpose of A. Be sure to
use the correct single quote mark (just to the left of the
enter or return key on most keyboards). Since a blank
separates elements in a row, parentheses are sometimes
needed around expressions if they would otherwise be
ambiguous. See Section 5.1 for the zeros function.

When you typed the last two commands, the matrices A
and C were created and displayed in the Workspace
window.

You can save the Command window dialog with the
diary command:

diary filename

This causes what appears subsequently in the Command
window to be written to the named file (if the filename
is omitted, it is written to a default file named diary)
until you type the command diary off; the command
diary on causes writing to the file to resume. When
finished, you can edit the file as desired and print it out.
For hard copy of graphics, see Section 12.10.

The command line in MATLAB can be easily edited in
the Command window. The cursor can be positioned
with the left and right arrows and the Backspace (or
Delete) key used to delete the character to the left of the
cursor.

A convenient feature is use of the up and down arrows to
scroll through the stack of previous commands. You can,

 6

therefore, recall a previous command line, edit it, and
execute the revised line. Try this by first modifying the
matrix A by adding one to each of its elements:

A = A + 1

You can change C to reflect this change in A by retyping
the lengthy command C = … above, but it is easier to hit
the up arrow key until you see the command you want,
and then hit enter.

You can clear the Command window with the clc
command or with Edit ► Clear Command Window.

The format of the displayed output can be controlled by
the following commands:

format short fixed point, 5 digits
format long fixed point, 15 digits
format short e scientific notation, 5 digits
format long e scientific notation, 15 digits
format short g fixed or floating-point, 5 digits
format long g fixed or floating-point, 15 digits
format hex hexadecimal format
format '+' +, -, and blank
format bank dollars and cents
format rat approximate integer ratio

format short is the default. Once invoked, the chosen
format remains in effect until changed. These commands
only modify the display, not the precision of the number
or its computation. Most numeric computations in
MATLAB are done in double precision, which has about
16 digits of accuracy.

 7

The command format compact suppresses most blank
lines, allowing more information to be placed on the
screen or page. The command format loose returns to
the non-compact format. These two commands are
independent of the other format commands.

You can pause the output in the Command window with
the more on command. Type more off to turn this
feature off.

2.4 Workspace window
The Workspace window lists variables that you have
either entered or computed in your MATLAB session.

There are many fundamental data types (or classes) in
MATLAB, each one a multidimensional array. The
classes that we will concern ourselves with most are
rectangular numerical arrays with possibly complex
entries, and possibly sparse. An array of this type is
called a matrix. A matrix with only one row or one
column is called a vector (row vectors and column
vectors behave differently; they are more than mere one-
dimensional arrays). A 1-by-1 matrix is called a scalar.

Arrays can be introduced into MATLAB in several
different ways. They can be entered as an explicit list of
elements (as you did for matrix A), generated by
statements and functions (as you did for matrix C),
created in a file with your favorite text editor, or loaded
from external data files or applications (see Help:
MATLAB: Getting Started: Manipulating
Matrices). You can also write your own functions (M-
files, mexFunctions in C or Fortran, or Java) that create
and operate on matrices. All the matrices and other

 8

variables that you create, except those internal to M-files,
are shown in your Workspace window.

The command who (or whos) lists the variables currently
in the workspace. Try typing whos; you should see a list
of variables including A and C, with their type and size. A
variable or function can be cleared from the workspace
with the command clear variablename or by right-
clicking the variable in the Workspace editor and
selecting Delete. The command clear alone clears all
variables from the workspace.

When you log out or exit MATLAB, all variables are lost.
However, invoking the command save before exiting
causes all variables to be written to a machine-readable
file named matlab.mat in the current working directory.
When you later reenter MATLAB, the command load
will restore the workspace to its former state. Commands
save and load take file names and variable names as
optional arguments (type doc save and doc load). Try
typing the commands save, clear, and then load, and
watch what happens in the Workspace window after each
command.

2.5 Command History window
This window lists the commands typed in so far. You can
re-execute a command from this window by double-
clicking or dragging the command into the Command
window. Try double-clicking on the command:

A = A + 1

 9

shown in your Command History window. For more
options, select and right-click on a line of the Command
window.

2.6 Array Editor window
Once an array exists, it can be modified with the Array
Editor, which acts like a spreadsheet for matrices. Go to
the Workspace window and double-click on the matrix C.
Click on an entry in C and change it, and try changing the
size of C. Go back to the Command window and type:

C

and you will see your new array C. You can also edit the
matrix C by typing the command openvar('C').

2.7 Current Directory window
Your current directory is where MATLAB looks for your
M-files, and for workspace (.mat) files that you load
and save. You can also load and save matrices as ASCII
files and edit them with your favorite text editor. The file
should consist of a rectangular array of just the numeric
matrix entries. Use a text editor to create a file in your
current directory called mymatrix.txt (or type edit
mymatrix.txt) that contains these 2 lines:

22 67
12 33

Type the command load mymatrix.txt, and the file
will be loaded from the current directory to the variable
mymatrix. The file extension (.txt in this example)
can be anything except .mat.

 10

You can use the menus and buttons in the Current
Directory window to peruse your files, or you can use
commands typed in the Command window. The
command pwd returns the name of the current directory,
and cd will change the current directory. The command
dir lists the contents of the working directory, whereas
the command what lists only the MATLAB-specific files
in the directory, grouped by file type. The MATLAB
commands delete and type can be used to delete a file
and display a file in the Command window, respectively.

The Current Directory window includes a suite of useful
code development tools, described in Chapter 21.

3. Matrices and Matrix Operations
You have now seen most of MATLAB’s windows and
what they can do. Now take a look at how you can use
MATLAB to work on matrices and other data types.

3.1 Referencing individual entries
Individual matrix and vector entries can be referenced
with indices inside parentheses. For example, A(2,3)
denotes the entry in the second row, third column of
matrix A. Try:

A = [1 2 3 ; 4 5 6 ; -1 7 9]
A(2,3)

Next, create a column vector, x, with:

x = [3 2 1]'

or equivalently:

x = [3 ; 2 ; 1]

 11

With this vector, x(3) denotes the third coordinate of
vector x, with a value of 1. Higher dimensional arrays
are similarly indexed. An array accepts only positive
integers as indices.

An array with two or more dimensions can be indexed as
if it were a one-dimensional vector. If A is m-by-n, then
A(i,j) is the same as A(i+(j-1)*m). This feature is
most often used with the find function (see Section 5.6).

3.2 Matrix operators
The following matrix operators are available in
MATLAB:

+ addition or unary plus
- subtraction or negation
* multiplication
^ power
' transpose (real) or conjugate transpose (complex)
.' transpose (real or complex)
\ left division (backslash or mldivide)
/ right division (slash or mrdivide)

These matrix operators apply, of course, to scalars (1-by-
1 matrices) as well. If the sizes of the matrices are
incompatible for the matrix operation, an error message
will result, except in the case of scalar-matrix operations
(for addition, subtraction, division, and multiplication, in
which case each entry of the matrix is operated on by the
scalar, as in A=A+1). Not all scalar-matrix operations are
valid. For example, magic(3)/pi is valid but
pi/magic(3) is not. Also try the commands:

A^2
A*x

 12

If x and y are both column vectors, then x'*y is their
inner (or dot) product, and x*y' is their outer (or cross)
product. Try these commands:

y = [1 2 3]'
x'*y
x*y'

3.3 Matrix division (slash and
backslash)
The matrix “division” operations deserve special
comment. If A is an invertible square matrix and b is a
compatible column vector, or respectively a compatible
row vector, then x=A\b is the solution of A*x=b, and
x=b/A is the solution of x*A=b. These are also called the
backslash (\) and slash operators (/); they are also
referred to as the mldivide and mrdivide functions.

If A is square and non-singular, then A\b and b/A are
mathematically the same as inv(A)*b and b*inv(A),
respectively, where inv(A) computes the inverse of A.
The left and right division operators are more accurate
and efficient. In left division, if A is square, then it is
factorized (if necessary), and these factors are used to
solve A*x=b. If A is not square, the under- or over-
determined system is solved in the least squares sense.
Right division is defined in terms of left division by b/A
= (A'\b')'. Try this:

A = [1 2 ; 3 4]
b = [4 10]'
x = A\b

The solution to A*x=b is the column vector x=[2;1].

 13

Backslash is a very powerful general-purpose method for
solving linear systems. Depending on the matrix, it
selects forward or back substitution for triangular
matrices (or permuted triangular matrices), Cholesky
factorization for symmetric matrices, LU factorization for
square matrices, or QR factorization for rectangular
matrices. It has a special solver for Hessenberg matrices.
It can also exploit sparsity, with either sparse versions of
the above list, or special-case solvers when the sparse
matrix is diagonal, tridiagonal, or banded. It selects the
best method automatically (sometimes trying one method
and then another if the first method fails). This can be
overkill if you already know what kind of matrix you
have. It can be much faster to use the linsolve function
described in Section 5.5.

3.4 Entry-wise operators
Matrix addition and subtraction already operate entry-
wise, but the other matrix operations do not. These other
operators (*, ^, \, and /) can be made to operate entry-
wise by preceding them by a period. For example, either:

[1 2 3 4] .* [1 2 3 4]
[1 2 3 4] .^ 2

will yield [1 4 9 16]. Try it. This is particularly
useful when using MATLAB graphics.

Also compare A^2 with A.^2.

3.5 Relational operators
The relational operators in MATLAB are:

 14

< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
~= not equal

They all operate entry-wise. Note that = is used in an
assignment statement whereas == is a relational operator.
Relational operators may be connected by logical
operators:

& and
| or
~ not
&& short-circuit and
|| short-circuit or

The result of a relational operator is of type logical,
and is either true (one) or false (zero). Thus, ~0 is 1,
~3 is 0, and 4 & 5 is 1, for example. When applied to
scalars, the result is a scalar. Try entering 3 < 5, 3 > 5,
3 == 5, and 3 == 3. When applied to matrices of the
same size, the result is a matrix of ones and zeros giving
the value of the expression between corresponding
entries. You can also compare elements of a matrix with
a scalar. Try:

A = [1 2 ; 3 4]
A >= 2
B = [1 3 ; 4 2]
A < B

The short-circuit operator && acts just like its non-short-
circuited counterpart (&), except that it evaluates its left

 15

expression first, and does not evaluate the right
expression if the first expression is false. This is useful
for partially-defined functions. Suppose f(x) returns a
logical value but generates an error if x is zero. The
expression (x~=0) && f(x) returns false if x is zero,
without calling f(x) at all. The short-circuit or (||) acts
similarly. It does not evaluate the right expression if the
left is true. Both && and || require their operands to be
scalar and convertible to logical, while & and | can
operate on arrays.

3.6 Complex numbers
MATLAB allows complex numbers in most of its
operations and functions. Three convenient ways to enter
complex matrices are:

B = [1 2 ; 3 4] + i*[5 6 ; 7 8]
B = [1+5i, 2+6i ; 3+7i, 4+8i]
B = complex([1 2 ; 3 4], [5 6 ; 7 8])

Either i or j may be used as the imaginary unit. If,
however, you use i and j as variables and overwrite their
values, you may generate a new imaginary unit with, say,
ii=sqrt(-1). You can also use 1i or 1j, which cannot
be reassigned and are always equal to the imaginary unit.
Thus,

B = [1 2 ; 3 4] + 1i*[5 6 ; 7 8]

generates the same matrix B, even if i has been
reassigned. See Section 8.2 for how to find out if i has
been reassigned.

 16

3.7 Strings
Enclosing text in single quotes forms strings with the
char data type:

S = 'I love MATLAB'

To include a single quote inside a string, use two of them
together, as in:

S = 'Green''s function'

Strings, numeric matrices, and other data types can be
displayed with the function disp. Try disp(S) and
disp(B).

3.8 Other data types
MATLAB supports many other data types, including
logical variables, integers of various sizes, single-
precision floating-point variables, sparse matrices,
multidimensional arrays, cell arrays, and structures.

The default data type is double, a 64-bit IEEE floating-
point number. The single type is a 32-bit IEEE
floating-point number which should be used only if you
are desperate for memory. A double can represent
integers in the range -253 to 253 without any roundoff
error, and a double holding an integer value is typically
used for loop and array indices. An integer value stored
as a double is nicknamed a flint. Integer types are only
needed in special cases such as signal processing, image
processing, encryption, and bit string manipulation.
Integers come in signed and unsigned flavors, and in sizes
of 8, 16, 32, and 64 bits. Integer arithmetic is not
modular, but saturates on overflow. If you want a

 17

warning to be generated when integers overflow, use
intwarning on. See doc int8 and doc single for
more information.

A sparse matrix is not actually its own data type, but an
attribute of the double and logical matrix types.
Sparse matrices are stored in a special way that does not
require space for zero entries. MATLAB has efficient
methods of operating on sparse matrices. Type doc
sparse, and doc full, look in Help: MATLAB:
Mathematics: Sparse Matrices, or see Chapter 15.
Sparse matrices are allowed as arguments for most, but
not all, MATLAB operators and functions where a
normal matrix is allowed.

D=zeros(3,5,4,2) creates a 4-dimensional array of
size 3-by-5-by-4-by-2. Multidimensional arrays may also
be built up using cat (short for concatenation).

Cell arrays are collections of other arrays or variables of
varying types and are formed using curly braces. For
example,

c = {[3 2 1] ,'I love MATLAB'}

creates a cell array. The expression c{1} is a row vector
of length 3, while c{2} is a string.

A struct is variable with one or more parts, each of
which has its own type. Try, for example,

x.particle = 'electron'
x.position = [2 0 3]
x.spin = 'up'

 18

The variable x describes an object with several
characteristics, each with its own type.

You may create additional data objects and classes using
overloading (see help class or doc class).

4. Submatrices and Colon
Notation
Vectors and submatrices are often used in MATLAB to
achieve fairly complex data manipulation effects. Colon
notation (which is used to both generate vectors and
reference submatrices) and subscripting by integral
vectors are keys to efficient manipulation of these objects.
Creative use of these features minimizes the use of loops
(which can slow MATLAB) and makes code simple and
readable. Special effort should be made to become
familiar with them.

4.1 Generating vectors
The expression 1:5 is the row vector [1 2 3 4 5].
The numbers need not be integers, and the increment need
not be one. For example, 0:0.2:1 gives [0 0.2 0.4
0.6 0.8 1] with an increment of 0.2 and 5:-1:1
gives [5 4 3 2 1] with an increment of -1. These
vectors are commonly used in for loops, described in
Section 6.1. Be careful how you mix the colon operator
with other operators. Compare 1:5-3 with (1:5)-3.

In general, the expression lo:hi is the sequence [lo,
lo+1, lo+2, …, hi] except that the last term in the
sequence is always less than or equal to hi if either one
are not integers. Thus, 1:4.9 is [1 2 3 4] and 1:5.1
is [1 2 3 4 5]. The sequence is empty if lo > hi.

 19

If an increment is provided, as in lo:inc:hi, then the
sequence is [lo, lo+inc, lo+2*inc, …, lo+m*inc]
where m=fix((hi-lo)/inc) and fix is a function that
rounds a real number towards zero. The length of the
sequence is m+1, and the sequence is empty if m<0. Thus,
the sequence 5:-1:1 has m=4 and is of length 5, but
5:1:1 has m=-4 and is thus empty. The default
increment is 1.

If you want specific control over how many terms are in
the sequence, use linspace instead of the colon
operator. The expression linspace(lo,hi) is identical
to lo:inc:hi, except that inc is chosen so that the
vector always has exactly 100 entries (even if lo and hi
are equal). The last entry in the sequence is always hi.
To generate a sequence with n terms instead of the default
of 100, use linspace(lo,hi,n). Compare
linspace(1,5.1,5) with 1:5.1.

4.2 Accessing submatrices
Colon notation can be used to access submatrices of a
matrix. To try this out, first type the two commands:

A = rand(6,6)
B = rand(6,4)

which generate a random 6-by-6 matrix A and a random
6-by-4 matrix B.

A(1:4,3) is the column vector consisting of the first
four entries of the third column of A.

A colon by itself denotes an entire row or column:
A(:,3) is the third column of A, and A(1:4,:) is the
first four rows.

 20

Arbitrary integral vectors can be used as subscripts:
A(:,[2 4]) contains as columns, columns 2 and 4 of A.
Such subscripting can be used on both sides of an
assignment statement:

A(:,[2 4 5]) = B(:,1:3)

replaces columns 2,4,5 of A with the first three columns
of B. Try it. Note that the entire altered matrix A is
displayed and assigned. Columns 2 and 4 of A can be
multiplied on the right by the matrix [1 2 ; 3 4]:

A(:,[2 4]) = A(:,[2 4]) * [1 2 ; 3 4]

Once again, the entire altered matrix is displayed and
assigned. Submatrix operations are a convenient way to
perform many useful computations. For example, a
Givens rotation of rows 3 and 5 of the matrix A to zero
out the A(3,1) entry can be written as:

a = A(5,1)
b = A(3,1)
G = [a b ; -b a] / norm([a b])
A([5 3], :) = G * A([5 3], :)

(assuming norm([a b]) is not zero). You can also
assign a scalar to all entries of a submatrix. Try:

A(:, [2 4]) = 99

You can delete rows or columns of a matrix by assigning
the empty matrix ([]) to them. Try:

A(:, [2 4]) = []

In an array index expression, end denotes the index of the
last element. Try:

 21

x = rand(1,5)
x = x(end:-1:1)

To appreciate the usefulness of these features, compare
these MATLAB statements with a C, Fortran, or Java
routine to do the same operation.

5. MATLAB Functions
MATLAB has a wide assortment of built-in functions.
You have already seen some of them, such as zeros,
rand, and inv. This section describes the more common
matrix manipulation functions. For a more complete list,
see Chapter 22, or Help: MATLAB: Functions --
Categorical List.

5.1 Constructing matrices
Convenient matrix building functions include:

eye identity matrix
zeros matrix of zeros
ones matrix of ones
diag create or extract diagonals
triu upper triangular part of a matrix
tril lower triangular part of a matrix
rand randomly generated matrix
hilb Hilbert matrix
magic magic square
toeplitz Toeplitz matrix
gallery a wide range of interesting matrices

The command rand(n) creates an n-by-n matrix with
randomly generated entries distributed uniformly between
0 and 1 while rand(m,n) creates an m-by-n matrix (m
and n are non-negative integers). Try:

 22

A = rand(3)

rand('state',0) resets the random number generator.
zeros(m,n) produces an m-by-n matrix of zeros, and
zeros(n) produces an n-by-n one. If A is a matrix, then
zeros(size(A)) produces a matrix of zeros having the
same size as A. If x is a vector, diag(x) is the diagonal
matrix with x down the diagonal; if A is a matrix, then
diag(A) is a vector consisting of the diagonal of A. Try:

x = 1:3
diag(x)
diag(A)
diag(diag(A))

Matrices can be built from blocks. Try creating this 5-by-
5 matrix.

B = [A zeros(3,2) ; pi*ones(2,3), eye(2)]

magic(n) creates an n-by-n matrix that is a magic
square (rows, columns, and diagonals have common
sum); hilb(n) creates the n-by-n Hilbert matrix, a very
ill-conditioned matrix. Matrices can also be generated
with a for loop (see Section 6.1). triu and tril extract
upper and lower triangular parts of a matrix. Try:

triu(A)
triu(A) == A

The gallery function can generate a matrix from any
one of over 60 different matrix classes. Many have
interesting eigenvalue or singular value properties,
provide interesting counter-examples, or are difficult
matrices for various linear algebraic methods. The
Rosser matrix challenges many eigenvalue solvers:

 23

A = gallery('rosser')
eig(A)
eigs(A)

The Parter matrix has many singular values close to π:

A = gallery('parter', 6)
svd(A)

The eig, eigs, and svd functions are discussed below.

5.2 Scalar functions
Certain MATLAB functions operate essentially on scalars
but operate entry-wise when applied to a vector or matrix.
Some of the most common such functions are:

abs ceil floor rem sqrt
acos cos log round tan
asin exp log10 sign
atan fix mod sin

The following statements will generate a sine table:

x = (0:0.1:2)'
y = sin(x)
[x y]

Note that because sin operates entry-wise, it produces a
vector y from the vector x.

5.3 Vector functions and data analysis
Other MATLAB functions operate essentially on a vector
(row or column) but act on an m-by-n matrix (m > 2) in a
column-by-column fashion to produce a row vector
containing the results of their application to each column.
Row-by-row action can be obtained by using the
transpose (mean(A')', for example) or by specifying the

 24

dimension along which to operate (mean(A,2), for
example). Most of these functions perform basic
statistical computations (std computes the standard
deviation and prod computes the product of the elements
in the vector, for example). The primary functions are:

max sum median any sort var
min prod mean all std

The maximum entry in a matrix A is given by
max(max(A)) rather than max(A). Try it. The any and
all functions are discussed in Section 6.6.

5.4 Matrix functions
Much of MATLAB’s power comes from its matrix
functions. Here is a partial list of the most common ones:

eig eigenvalues and eigenvectors
eigs like eig, for large sparse matrices
chol Cholesky factorization
svd singular value decomposition
svds like svd, for large sparse matrices
inv inverse
lu LU factorization
qr QR factorization
hess Hessenberg form
schur Schur decomposition
rref reduced row echelon form
expm matrix exponential
sqrtm matrix square root
poly characteristic polynomial
det determinant
size size of an array
length length of a vector

 25

norm 1-norm, 2-norm, Frobenius-norm, ∞-norm
normest 2-norm estimate
cond condition number in the 2-norm
condest condition number estimate
rank rank
kron Kronecker tensor product
find find indices of nonzero entries
linsolve solve a special linear system

MATLAB functions may have single or multiple output
arguments. Square brackets are used to the left of the
equal sign to list the outputs. For example,

y = eig(A)

produces a column vector containing the eigenvalues of
A, whereas:

[V, D] = eig(A)

produces a matrix V whose columns are the eigenvectors
of A and a diagonal matrix D with the eigenvalues of A on
its diagonal. Try it. The matrix A*V-V*D will have small
entries.

5.5 The linsolve function
The matrix divide operators (\ or /) are usually enough
for solving linear systems. They look at the matrix and
try to pick the best method. The linsolve function acts
like \, except that you can tell it about your matrix. Try:

A = [1 2 ; 3 4]
b = [4 10]'
A\b
linsolve(A,b)

 26

In both cases, you get solution x=[2;1] to the linear
system A*x=b.

If A is symmetric and positive definite, one explicit
solution method is to perform a Cholesky factorization,
followed by two solves with triangular matrices. Try:

C = [2 1 ; 1 2]
x = C\b

Here is an equivalent method:

R = chol(C)
y = R'\b
x = R\y

The matrix R is upper triangular, but MATLAB explicitly
transposes R and then determines for itself that R' is
lower triangular. You can save MATLAB some work by
using linsolve with an optional third argument, opts.
Try this:

opts.UT = true
opts.TRANSA = true
y = linsolve(R,b,opts)

which gives the same answer as y=R'\b. The difference
in run time can be high for large matrices (see Chapter 10
for more details). The fields for opts are UT (upper
triangular), LT (lower triangular), UHESS (upper
Hessenberg), SYM (symmetric), POSDEF (positive
definite), RECT (rectangular), and TRANSA (whether to
solve A*x=b or A'*x=b). All opts fields are either true
or false. Not all combinations are supported (type doc
linsolve for a list). linsolve does not work on sparse
matrices.

 27

5.6 The find function
The find function is unlike the other matrix and vector
functions. find(x), where x is a vector, returns an array
of indices of nonzero entries in x. This is often used in
conjunction with relational operators. Suppose you want
a vector y that consists of all the values in x greater than
1. Try:

x = 2*rand(1,5)
y = x(find(x > 1))

With three output arguments, you get more information:

A = rand(3)
[i,j,x] = find(A)

returns three vectors, with one entry in i, j, and x for
each nonzero in A (row index, column index, and
numerical value, respectively). With this matrix A, try:

[i,j,x] = find(A > .5)
[i j x]

and you will see a list of pairs of row and column indices
where A is greater than .5. However, x is a vector of
values from the matrix expression A > .5, not from the
matrix A. Getting the values of A that are larger than .5
without a loop requires one-dimensional array indexing:

k = find(A > .5)
A(k)
A(k) = A(k) + 99

Section 6.1 shows the loop-based version of this code.

 28

Here is a more complex example. A square matrix A is
diagonally dominant if

 ∑
≠

>
ij

ijii aa for each row i.

First, enter a matrix that is not diagonally dominant. Try:

A = [
-1 2 3 -4
 0 2 -1 0
 1 2 9 1
-3 4 1 1]

These statements compute a vector i containing indices
of rows that violate diagonal dominance (rows 1 and 4 for
this matrix A).

d = diag(A)
a = abs(d)
f = sum(abs(A), 2) - a
i = find(f >= a)

Next, modify the diagonal entries to make the matrix just
barely diagonally dominant, while still preserving the sign
of the diagonal:

[m n] = size(A)
k = i + (i-1)*m
tol = 100 * eps
s = 2 * (d(i) >= 0) - 1
A(k) = (1+tol) * s .* max(f(i), tol)

The variable eps (epsilon) gives the smallest value such
that 1+eps > 1, about 10-16 on most computers. It is
useful in specifying tolerances for convergence of
iterative processes and in problems like this one. The

 29

odd-looking statement that computes s is nearly the same
as s=sign(d(i)), except that here we want s to be one
when d(i) is zero. We will come back to this diagonal
dominance problem later on.

6. Control Flow Statements
In their basic forms, these MATLAB flow control
statements operate like those in most computer languages.
Indenting the statements of a loop or conditional
statement is optional, but it helps readability to follow a
standard convention.

6.1 The for loop
This loop:

n = 10
x = []
for i = 1:n
 x = [x, i^2]
end

produces a vector of length 10, and

n = 10
x = []
for i = n:-1:1
 x = [i^2, x]
end

produces the same vector. Try them. The vector x grows
in size at each iteration. Note that a matrix may be empty
(such as x=[]). The statements:

m = 6
n = 4
for i = 1:m
 for j = 1:n

 30

 H(i,j) = 1/(i+j-1) ;
 end
end
H

produce and display in the Command window the 6-by-4
Hilbert matrix. The last H displays the final result. The
semicolon on the inner statement is essential to suppress
the display of unwanted intermediate results. If you leave
off the semicolon, you will see that H grows in size as the
computation proceeds. This can be slow if m and n are
large. It is more efficient to preallocate the matrix H with
the statement H=zeros(m,n) before computing it. Type
the command doc hilb and type hilb to see a more
efficient way to produce a square Hilbert matrix.

Here is the counterpart of the one-dimensional indexing
exercise from Section 5.6. It adds 99 to each entry of the
matrix that is larger than .5, using two for loops instead
of a single find. This method is slower:

A = rand(3)
[m n] = size(A) ;
for j = 1:n
 for i = 1:m
 if (A(i,j) > .5)
 A(i,j) = A(i,j) + 99 ;
 end
 end
end
A

The for statement permits any matrix expression to be
used instead of 1:n. The index variable consecutively
assumes the value of each column of the expression. For
example,

 31

s = 0 ;
for c = H
 s = s + sum(c) ;
end

computes the sum of all entries of the matrix H by adding
its column sums (of course, sum(sum(H)) does it more
efficiently; see Section 5.3). Each iteration of the for
loop assigns a successive column of H to the variable c.
In fact, since 1:n = [1 2 3 ... n], this column-by-
column assignment is what occurs with for i = 1:n.

6.2 The while loop
The general form of a while loop is:

while expression
 statements
end

The statements will be repeatedly executed as long as
the expression remains true. For example, for a given
number a, the following computes and displays the
smallest nonnegative integer n such that 2n > a:

a = 1e9
n = 0
while 2^n <= a
 n = n + 1 ;
end
n

Note that you can compute the same value n more
efficiently by using the log2 function:

[f,n] = log2(a)

You can terminate a for or while loop with the break
statement and skip to the next iteration with the

 32

continue statement. Here is an example for both. It
prints the odd integers from 1 to 7 by skipping over the
even iterations and then terminates the loop when i is 7.

for i = 1:10
 if (mod(i,2) == 0)
 continue
 end
 i
 if (i == 7)
 break
 end
end

6.3 The if statement
The general form of a simple if statement is:

if expression
 statements
end

The statements will be executed only if the
expression is true. Multiple conditions also possible:

for n = -2:5
 if n < 0
 parity = 0 ;
 elseif rem(n,2) == 0
 parity = 2 ;
 else
 parity = 1 ;
 end
 disp([n parity])
end

The else and elseif are optional. If the else part is
used, it must come last.

 33

6.4 The switch statement
The switch statement is just like the if statement. If
you have one expression that you want to compare
against several others, then a switch statement can be
more concise than the corresponding if statement. See
help switch for more information.

6.5 The try/catch statement
Matrix computations can fail because of characteristics of
the matrices that are hard to determine before doing the
computation. If the failure is severe, your script or
function (see Chapter 7) may be terminated. The
try/catch statement allows you to compute
optimistically and then recover if those computations fail.
The general form is:

try
 statements
catch
 statements
end

The first block of statements is executed. If an error
occurs, those statements are terminated, and the second
block of statements is executed. You cannot do this with
an if statement. See doc try. See Section 11.5 for an
example of try and catch.

6.6 Matrix expressions (if and while)
A matrix expression is interpreted by if and while to be
true if every entry of the matrix expression is nonzero.
Enter these two matrices:

A = [1 2 ; 3 4]
B = [2 3 ; 3 5]

 34

If you wish to execute a statement when matrices A and B
are equal, you could type:

if A == B
 disp('A and B are equal')
end

If you wish to execute a statement when A and B are not
equal, you would type:

if any(any(A ~= B))
 disp('A and B are not equal')
end

or, more simply,

if A == B else
 disp('A and B are not equal')
end

Note that the seemingly obvious:

if A ~= B
 disp('not what you think')
end

will not give what is intended because the statement
would execute only if each of the corresponding entries of
A and B differ. The functions any and all can be
creatively used to reduce matrix expressions to vectors or
scalars. Two anys are required above because any is a
vector operator (see Section 5.3). In logical terms, any
and all correspond to the existential (∃) and universal
(∀) quantifiers, respectively, applied to each column of a
matrix or each entry of a row or column vector. Like most
vector functions, any and all can be applied to
dimensions of a matrix other than the columns.

 35

An if statement with a two-dimensional matrix
expression is equivalent to:

if all(all(expression))
 statement
end

6.7 Infinite loops
With loops, it is possible to execute a command that will
never stop. Typing Ctrl-C stops a runaway display or
computation. Try:

i = 1
while i > 0
 i = i + 1
end

then type Ctrl-C to terminate this loop.

7. M-files
MATLAB can execute a sequence of statements stored in
files. These are called M-files because they must have
the file type .m as the last part of their filename.

7.1 M-file Editor/Debugger window
Much of your work with MATLAB will be in creating
and refining M-files. M-files are usually created using
your favorite text editor or with MATLAB’s M-file
Editor/Debugger. See also Help: MATLAB: Desktop
Tools and Development Environment: Editing and
Debugging M-Files.

There are two types of M-files: script files and function
files. In this exercise, you will incrementally develop and
debug a script and then a function for making a matrix

 36

diagonally dominant. Create a new M-file, either with the
edit command, by selecting the File ► New ► M-file
menu item, or by clicking the new-file button:

Type in these lines in the Editor,

f = sum(A, 2) ;
A = A + diag(f) ;

and save the file as ddom.m by clicking:

You have just created a MATLAB script file.1 The
semicolons are there because you normally do not want to
see the results of every line of a script or function.

7.2 Script files
A script file consists of a sequence of normal MATLAB
statements. Typing ddom in the Command window
causes the statements in the script file ddom.m to be
executed. Variables in a script file refer to variables in
the main workspace, so changing them will change your
workspace variables. Type:

A = rand(3)
ddom
A

1 See http://www.cise.ufl.edu/research/sparse/MATLAB or
http://www.crcpress.com for the M-files and MEX-files used in
this book.

 37

in the Command window. It seems to work; the matrix A
is now diagonally dominant. If you type this in the
Command window, though,

A = [1 -2 ; -1 1]
ddom
A

then the diagonal of A just got worse. What happened?
Click on the Editor window and move the mouse to point
to the variable f, anywhere in the script. You will see a
yellow pop-up window with:

f =
 -1
 0

Oops. f is supposed to be a sum of absolute values, so
it cannot be negative. Change the first line of ddom.m to:

f = sum(abs(A), 2) ;

save the file, and run it again on the original matrix A=[1
-2;-1 1]. This time, instead of typing in the command,
try running the script by clicking:

in the Editor window. This is a shortcut to typing ddom
in the Command window. The matrix A is now
diagonally dominant. Run the script again, though, and
you will see that A is modified even if it is already
diagonally dominant. Fix this by modifying only those
rows that violate diagonal dominance.

 38

Set A to [1 -2;-1 1] by clicking on the command in
the Command History window. Modify ddom.m to be:

d = diag(A) ;
a = abs(d) ;
f = sum(abs(A), 2) - a ;
i = find(f >= a) ;
A(i,i) = A(i,i) + diag(f(i)) ;

Save and run the script by clicking:

Run it again; the matrix does not change.

Try it on the matrix A=[-1 2;1 -1]. The result is
wrong. To fix it, try another debugging method: setting
breakpoints. A breakpoint causes the script to pause, and
allows you to enter commands in the Command window,
while the script is paused (it acts just like the keyboard
command).

Click on line 5 and select Debug ► Set/Clear
Breakpoint in the Editor or click:

A red dot appears in a column to the left of line 5. You
can also set and clear breakpoints by clicking on the red
dots or dashes in this column. In the Command window,
type:

clear
A = [-1 2 ; 1 -1]
ddom

 39

A green arrow appears at line 5, and the prompt K>>
appears in the Command window. Execution of the script
has paused, just before line 5 is executed. Look at the
variables A and f. Since the diagonal is negative, and f is
an absolute value, we should subtract f from A to
preserve the sign. Type the command:

A = A - diag(f)

The matrix is now correct, although this works only if all
of the rows need to be fixed and all diagonal entries are
negative. Stop the script by selecting Debug ► Exit
Debug Mode or by clicking:

Clear the breakpoint. Replace line 5 with:

s = sign(d(i)) ;
A(i,i) = A(i,i) + diag(s .* f(i)) ;

Type A=[-1 2;1 -1] and run the script. The script
seems to work, but it modifies A more than is needed. Try
the script on A=zeros(4), and you will see that the
matrix is not modified at all, because sign(0) is zero.
Fix the script so that it looks like this:

d = diag(A) ;
a = abs(d) ;
f = sum(abs(A), 2) - a ;
i = find(f >= a) ;
[m n] = size(A) ;
k = i + (i-1)*m ;
tol = 100 * eps ;
s = 2 * (d(i) >= 0) - 1 ;
A(k) = (1+tol) * s .* max(f(i), tol) ;

 40

which is the code you typed in Section 5.6.

7.3 Function files
Function files provide extensibility to MATLAB. You
can create new functions specific to your problem, which
will then have the same status as other MATLAB
functions. Variables in a function file are by default
local. A variable can, however, be declared global (see
doc global). Use global variables with caution; they
can be a symptom of bad program design and can lead to
hard-to-debug code.

Convert your ddom.m script into a function by adding
these lines at the beginning of ddom.m:

function B = ddom(A)
% B = ddom(A) returns a diagonally
% dominant matrix B by modifying the
% diagonal of A.

and add this line at the end of your new function:

B = A ;

You now have a MATLAB function, with one input
argument and one output argument. To see the difference
between global and local variables as you do this
exercise, type clear. Functions do not modify their
inputs, so:

C = [1 -2 ; -1 1]
D = ddom(C)

returns a matrix D that is diagonally dominant. The
matrix C in the workspace does not change, although a
copy of it local to the ddom function, called A, is modified

 41

as the function executes. Note that the other variables, a,
d, f, i, k and s no longer appear in your main workspace.
Neither do A and B. These are local to the ddom function.

The first line of the function declares the function name,
input arguments, and output arguments; without this line
the file would be a script file. Then a MATLAB
statement D=ddom(C), for example, causes the matrix C
to be passed as the variable A in the function and causes
the output result to be passed out to the variable D. Since
variables in a function file are local, their names are
independent of those in the current MATLAB workspace.
Your workspace will have only the matrices C and D. If
you want to modify C itself, then use C=ddom(C).

Lines that start with % are comments; more on this in
Section 7.6. An optional return statement causes the
function to finish and return its outputs. An M-file can
reference other M-files, including itself recursively.

7.4 Multiple inputs and outputs
A function may also have multiple output arguments.
For example, it would be useful to provide the caller of
the ddom function some control over how strong the
diagonal is to be and to provide more results, such as the
list of rows (the variable i) that violated diagonal
dominance. Try changing the first line to:

function [B,i] = ddom(A, tol)

and add a % at the beginning of the line that computes
tol. Single assignments can also be made with a
function having multiple output arguments. For example,
with this version of ddom, the statement D=ddom(C,0.1)

 42

will assign the modified matrix to the variable D without
returning the vector i. Try it on C=[1 -2 ; -1 1].

7.5 Variable arguments
Not all inputs and outputs of a function need be present
when the function is called. The variables nargin and
nargout can be queried to determine the number of
inputs and outputs present. For example, we could use a
default tolerance if tol is not present. Add these
statements in place of the line that computed tol:

if (nargin == 1)
 tol = 100 * eps ;
end

Section 8.1 gives an example of nargin and nargout.

7.6 Comments and documentation
The % symbol indicates that the rest of the line is a
comment; MATLAB will ignore the rest of the line.
Moreover, the first contiguous comment lines are used to
document the M-file. They are available to the online
help facility and will be displayed if help ddom or doc
ddom are entered. Such documentation should always be
included in a function file. Since you have modified the
function to add new inputs and outputs, edit your script to
describe the variables i and tol. Be sure to state what
the default value of tol is. Next, type help ddom or doc
ddom.

Block comments are useful for lengthy comments or for
disabling code. A block comment starts with a line
containing only %{ and ends with a line containing only
%}. Block comments in an M-file are not printed by the
help or doc commands.

 43

A line starting with two percent signs (%%) denotes the
beginning of a MATLAB code cell. This type of cell has
nothing to do with cell arrays, but defines a section of
code in an M-file. Cells can be executed by themselves,
and cell publishing (discussed in Chapter 20) generates
reports whose sections are defined by an M-file’s cells.

7.7 MATLAB’s path
M-files must be in a directory accessible to MATLAB.
M-files in the current directory are always accessible.
The current list of directories in MATLAB’s search path
is obtained by the command path. This command can
also be used to add or delete directories from the search
path. See doc path. The command which locates
functions and files on the path. For example, type which
hilb. You can modify your MATLAB path with the
command path, or pathtool, which brings up another
window. You can also select File ► Set Path.

8. Advanced M-file Features
This section describes advanced M-file techniques, such
as how to pass a function as an argument to another
function and how to write high-performance code in
MATLAB.

8.1 Function handles and anonymous
functions
A function handle (@) is a reference to a function that can
then be treated as a variable. It can be copied, placed in
cell array, and evaluated just like a regular function. For
example,

 44

f = @sqrt
f(2)
sqrt(2)

The str2func function converts a string to a function
handle. For example,

f = str2func('sqrt')
f(2)

Function handles can refer to built-in MATLAB
functions, to your own function in an M-file, or to
anonymous functions. An anonymous function is defined
with a one-line expression, rather than by an M-file. Try:

g = @(x) x^2-5*x+6-sin(9*x)
g(1)

Some MATLAB functions that operate on function
handles need to evaluate the function on a vector, so it is
often better to define an anonymous function (or M-file)
so that it can operate entry-wise on scalars, vectors, or
matrices. Try this instead:

g = @(x) x.^2-5*x+6-sin(9*x)
g(1)

The general syntax for an anonymous function is

handle = @(arg1, arg2, ...) expression

Here is an example with two input arguments:

norm2 = @(x,y) sqrt(x^2 + y^2)
norm2(4, 5)
norm([4 5])

 45

One advantage of anonymous functions is that they can
implicitly refer to variables in the workspace or the
calling function without having to use the global
statement. Try this example:

A = [3 2 ; 1 3]
b = [3 ; 4]
y = A\b
resid = @(x) A*x-b
resid(y)
A*y-b

In this case, x is an argument, but A and b are defined in
the calling workspace.

To find out what a function handle refers to, use
func2str or functions. Try these examples:

func2str(f)
func2str(g)
func2str(norm2)
func2str(resid)
functions(f)

Cell arrays can contain function handles. They can be
indexed and the function evaluated in a single expression.
Try this:

h{1} = f
h{2} = g
h{1}(2)
f(2)
h{2}(1)
g(1)

Here is a more useful example. The bisect function,
below, solves the nonlinear equation f(x)=0. It takes a
function handle or a string as one of its inputs. If the

 46

function is a string, it is converted to a function handle
with str2func. bisect also gives you an example of
nargin and nargout (see also Section 7.5). Compare
bisect with the built-in fzero discussed in Section
18.4.

function [b, steps] = bisect(f,x,tol)
% BISECT: zero of a function of one
% variable via the bisection method.
% bisect(f,x) returns a zero of the
% function f. f is a function
% handle or a string with the name of a
% function. x is an array of length 2;
% f(x(1)) and f(x(2)) must differ in
% sign.
%
% An optional third input argument sets
% a tolerance for the relative accuracy
% of the result. The default is eps.
% An optional second output argument
% gives a matrix containing a trace of
% the steps; the rows are of the form
% [c f(c)].

if (nargin < 3)
 % default tolerance
 tol = eps ;
end
trace = (nargout == 2) ;
if (ischar(f))
 f = str2func(f) ;
end
a = x(1) ;
b = x(2) ;
fa = f(a) ;
fb = f(b) ;
if (trace)
 steps = [a fa ; b fb] ;
end
% main loop
while (abs(b-a) > 2*tol*max(abs(b),1))
 c = a + (b-a)/2 ;
 fc = f(c) ;
 if (trace)
 steps = [steps ; [c fc]] ;
 end

 47

 if (fb > 0) == (fc > 0)
 b = c ;
 fb = fc ;
 else
 a = c ;
 fa = fc ;
 end
end

Type in bisect.m, and then try:

bisect(@sin, [3 4])
bisect('sin', [3 4])
bisect(g, [0 3])
g(ans)

Some of MATLAB’s functions are built in; others are
distributed as M-files. The actual listing of any M-file,
MATLAB’s or your own, can be viewed with the
MATLAB command type. Try entering type eig,
type vander, and type rank.

8.2 Name resolution
When MATLAB comes upon a new name, it resolves it
into a specific variable or function by checking to see if it
is a variable, a built-in function, a file in the current
directory, or a file in the MATLAB path (in order of the
directories listed in the path). MATLAB uses the first
variable, function, or file it encounters with the specified
name. There are other cases; see Help: MATLAB:
Desktop Tools and Development Environment:
Workspace, Search Path, and File Operations:
Search Path. You can use the command which to find
out what a name is. Try this:

clear
i
which i

 48

i = 3
which i

8.3 Error and warning messages
Error messages are best displayed with the function
error. For example,

A = rand(4,3)
[m n] = size(A) ;
if m ~= n
 error('A must be square') ;
end

aborts execution of an M–file if the matrix A is not
square. This is a useful thing to add to the ddom function
that you developed in Chapter 7, since diagonal
dominance is only defined for square matrices. Try
adding it to ddom (excluding the rand statement, of
course), and see what happens if you call ddom with a
rectangular matrix.

If you want to print a warning, but continue execution,
use the warning statement instead, as in:

warning('A singular; computing anyway')

The warning function can also turn on or off the warnings
that MATLAB provides. If you know that a divide by
zero is safe in your application, use

warning('off', 'MATLAB:divideByZero')

Try computing 1/0 both before and after you type in the
above warning statement. Use 'on' in the first
argument to turn the warning back on for subsequent

 49

division by zero. warning, with no arguments, displays
a list of disabled warnings.

See Section 6.5 (try/catch) for one way to deal with
errors in functions you call.

8.4 User input
In an M-file the user can be prompted to interactively
enter input data, expressions, or commands. When, for
example, the statement:

iter = input('iteration count: ') ;

is encountered, the prompt message is displayed and
execution pauses while the user keys in the input data (or,
in general, any MATLAB expression). Upon pressing the
return or entry key, the data is assigned to the variable
iter and execution resumes. You can also input a string;
see help input.

An M-file can be paused until a return is typed in the
Command window with the pause command. It is a
good idea to display a message, as in:

disp('Hit enter to continue: ') ;
pause

A Ctrl-C will terminate the script or function that is
paused. A more general command, keyboard, allows
you to type any number of MATLAB commands. See
doc keyboard.

8.5 Performance measures
Time and space are the two basic measures of an
algorithm’s efficiency. In MATLAB, this translates into

 50

the number of floating-point operations (flops)
performed, the elapsed time, the CPU time, and the
memory space used. MATLAB no longer provides a flop
count because it uses high-performance block matrix
algorithms that make it difficult to count the actual flops
performed. On current computers with deep memory
hierarchies, flop count is less useful as a performance
predictor than it once was. See help flops.

The elapsed time (in seconds) can be obtained with tic
and toc; tic starts the timer and toc returns the elapsed
time since the last tic. Hence:

tic ; statement ; t = toc

will return the elapsed time t for execution of the
statement. Type it as one line in the Command
window. Otherwise, the timer records the time you took
to type the statement. The elapsed time for solving a
linear system above can be obtained, for example, with:

n = 1000 ;
A = rand(n) ;
b = rand(n,1) ;
tic ; x = A\b ; t = toc
r = norm(A*x-b)
(2/3)*n^3 / t

The norm of the residual is also computed, and the last line
reports the approximate flop rate. You may wish to
compare x=A\b with x=inv(A)*b for solving the linear
system. Try it. You will generally find A\b to be faster
and more accurate.

If there are other programs running at the same time on
your computer, elapsed time will not be an accurate

 51

measure of performance. Try using cputime instead.
See doc cputime.

MATLAB runs faster if you can restructure your
computations to use less memory. Type the following
and select n to be some large integer, such as:

n = 16000 ;
a = rand(n,1) ;
b = rand(1,n) ;
c = rand(n,1) ;

Here are three ways of computing the same vector x. The
first one uses hardly any extra memory, the second and
third use a huge amount. Try them:

x = a*(b*c) ;
x = (a*b)*c ;
x = a*b*c ;

No measure of peak memory usage is provided. You can
find out the total size of your workspace, in bytes, with
the command whos. The total can also be computed:

s = whos
space = sum([s.bytes])

Try it. This does not give the peak memory used while
inside a MATLAB operator or function, though. Type
doc memory for more memory usage options.

8.6 Efficient code
The function ddom.m that you wrote in Chapter 7 and 8
illustrates some of the MATLAB features that can be
used to produce efficient code. All operations are

 52

“vectorized,” and loops are avoided. We could have
written the ddom function using nested for loops:

function B = ddomloops(A,tol)
% B = ddomloops(A) returns a
% diagonally dominant matrix B by modifying
% the diagonal of A.
[m n] = size(A) ;
if (nargin == 1)
 tol = 100 * eps ;
end
for i = 1:n
 d = A(i,i) ;
 a = abs(d) ;
 f = 0 ;
 for j = 1:n
 if (i ~= j)
 f = f + abs(A(i,j)) ;
 end
 end
 if (f >= a)
 aii = (1 + tol) * max(f, tol) ;
 if (d < 0)
 aii = -aii ;
 end
 A(i,i) = aii ;
 end
end
B = A ;

The non-vectorized ddomloops function is only slightly
slower than the vectorized ddom. In earlier versions of
MATLAB, the non-vectorized version would be very
slow. MATLAB 6.5 and subsequent versions include an
accelerator that greatly improves the performance of non-
vectorized code. Try:

A = rand(1000) ;
tic ; B = ddom(A) ; toc
tic ; B = ddomloops(A) ; toc

Only simple for loops can be accelerated. Loops that
operate on sparse matrices are not accelerated, for

 53

example (sparse matrices are discused in Chapter 15).
Try:

A = sparse(A) ;
tic ; B = ddom(A) ; toc
tic ; B = ddomloops(A) ; toc

Since not every loop can be accelerated, writing code that
has no for or while loops is still important. As you
become practiced in writing without loops and reading
loop-free MATLAB code, you will also find that the
loop-free version is often easier to read and understand.

If you cannot vectorize a loop, you can speed it up by
preallocating any vectors or matrices in which output is
stored. For example, by including the second statement
below, which uses the function zeros, space for storing
E in memory is preallocated. Without this, MATLAB
must resize E one column larger in each iteration, slowing
execution.

M = magic(6) ;
E = zeros(6,50) ;
for j = 1:50
 E(:,j) = eig(M^j) ;
end

9. Calling C from MATLAB
There are times when MATLAB itself is not enough.
You may have a large application or library written in
another language that you would like to use from
MATLAB, or it might be that the performance of your M-
file is not what you would like.

MATLAB can call routines written in C, Fortran, or Java.
Similarly, programs written in C and Fortran can call

 54

MATLAB. In this chapter, we will just look at how to
call a C routine from MATLAB. For more information,
see Help: MATLAB: External Interfaces, or see the
online MATLAB documents External Interfaces and
External Interfaces Reference. This discussion assumes
that you already know C.

9.1 A simple example
A routine written in C that can be called from MATLAB
is called a MEX-file. The routine must always have the
name mexFunction, and the arguments to this routine
are always the same. Here is a very simple MEX-file;
type it in as the file hello.c in your favorite text editor.

#include "mex.h"
void mexFunction
(
 int nargout,
 mxArray *pargout [],
 int nargin,
 const mxArray *pargin []
)
{
 mexPrintf ("hello world\n") ;
}

Compile and run it by typing:

mex hello.c
hello

If this is the first time you have compiled a C MEX-file
on a PC with Microsoft Windows, you will be prompted
to select a C compiler. MATLAB for the PC comes with
its own C compiler (lcc). The arguments nargout and
nargin are the number of outputs and inputs to the
function (just as an M-file function), and pargout and
pargin are pointers to the arguments themselves (of type

 55

mxArray). This hello.c MEX-file does not have any
inputs or outputs, though.

The mexPrintf function is just the same as printf.
You can also use printf itself; the mex command
redefines it as mexPrintf when the program is compiled
with a #define. This way, you can write a routine that
can be used from MATLAB or from a stand-alone C
application, without MATLAB.

9.2 C versus MATLAB arrays
MATLAB stores its arrays in column major order, while
the convention for C is to store them in row major order.
Also, the number of columns in an array is not known
until the mexFunction is called. Thus, two-dimensional
arrays in MATLAB must be accessed with one-
dimensional indexing in C (see also Section 5.6). In the
example in the next section, the INDEX macro helps with
this translation.

Array indices also appear differently. MATLAB is
written in C, and it stores all of its arrays internally using
zero-based indexing. An m-by-n matrix has rows 0 to m-
1 and columns 0 to n-1. However, the user interface to
these arrays is always one-based, and index vectors in
MATLAB are always one-based. In the example below,
one is added to the List array returned by diagdom to
account for this difference.

9.3 A matrix computation in C
In Chapters 7 and 8, you wrote the function ddom.m.
Here is the same function written as an ANSI C MEX-
file. Compare the diagdom routine with the loop-based

 56

version ddomloops.m in Section 8.6. MATLAB mx and
mex routines are described in Section 9.4.

#include "mex.h"
#include "matrix.h"
#include <stdlib.h>
#include <float.h>
#define INDEX(i,j,m) ((i)+(j)*(m))
#define ABS(x) ((x) >= 0 ? (x) : -(x))
#define MAX(x,y) (((x)>(y)) ? (x):(y))

void diagdom
(
 double *A, int n, double *B,
 double tol, int *List, int *nList
)
{
 double d, a, f, bij, bii ;
 int i, j, k ;
 for (k = 0 ; k < n*n ; k++)
 {
 B [k] = A [k] ;
 }
 if (tol < 0)
 {
 tol = 100 * DBL_EPSILON ;
 }
 k = 0 ;
 for (i = 0 ; i < n ; i++)
 {
 d = B [INDEX (i,i,n)] ;
 a = ABS (d) ;
 f = 0 ;
 for (j = 0 ; j < n ; j++)
 {
 if (i != j)
 {
 bij = B [INDEX (i,j,n)] ;
 f += ABS (bij) ;
 }
 }
 if (f >= a)
 {
 List [k++] = i ;
 bii = (1 + tol) * MAX (f, tol) ;
 if (d < 0)
 {

 57

 bii = -bii ;
 }
 B [INDEX (i,i,n)] = bii ;
 }
 }
 *nList = k ;
}

void error (char *s)
{
 mexPrintf
 ("Usage: [B,i] = diagdom (A,tol)\n") ;
 mexErrMsgTxt (s) ;
}

void mexFunction
(
 int nargout, mxArray *pargout [],
 int nargin, const mxArray *pargin []
)
{
 double tol, *A, *B, *I ;
 int n, k, *List, nList ;

 /* get inputs A and tol */
 if (nargout > 2 || nargin > 2 || nargin==0)
 {
 error ("Wrong number of arguments") ;
 }
 if (mxIsSparse (pargin [0]))
 {
 error ("A cannot be sparse") ;
 }
 n = mxGetN (pargin [0]) ;
 if (n != mxGetM (pargin [0]))
 {
 error ("A must be square") ;
 }
 A = mxGetPr (pargin [0]) ;
 tol = -1 ;
 if (nargin > 1)
 {
 if (!mxIsEmpty (pargin [1]) &&
 mxIsDouble (pargin [1]) &&
 !mxIsComplex (pargin [1]) &&
 mxIsScalar (pargin [1]))
 {
 tol = mxGetScalar (pargin [1]) ;
 }

 58

 else
 {
 error ("tol must be scalar") ;
 }
 }

 /* create output B */
 pargout [0] =
 mxCreateDoubleMatrix (n, n, mxREAL) ;
 B = mxGetPr (pargout [0]) ;

 /* get temporary workspace */
 List = (int *) mxMalloc (n * sizeof (int)) ;

 /* do the computation */
 diagdom (A, n, B, tol, List, &nList) ;

 /* create output I */
 pargout [1] =
 mxCreateDoubleMatrix (nList, 1, mxREAL);
 I = mxGetPr (pargout [1]) ;
 for (k = 0 ; k < nList ; k++)
 {
 I [k] = (double) (List[k] + 1) ;
 }

 /* free the workspace */
 mxFree (List) ;
}

Type it in as the file diagdom.c (or get it from the web),
and then type:

mex diagdom.c
A = rand(6) ;
B = ddom(A) ;
C = diagdom(A) ;

The matrices B and C will be the same (round-off error
might cause them to differ slightly). The C mexFunction
diagdom is about 3 times faster than the M-file ddom for
large matrices.

 59

9.4 MATLAB mx and mex routines
In the last example, the C routine calls several MATLAB
routines with the prefix mx or mex. Routines with mx
prefixes operate on MATLAB matrices and include:

mxIsEmpty 1 if the matrix is empty, 0 otherwise
mxIsSparse 1 if the matrix is sparse, 0 otherwise
mxGetN number of columns of a matrix
mxGetM number of rows of a matrix
mxGetPr pointer to the real values of a matrix
mxGetScalar the value of a scalar
mxCreateDoubleMatrix create MATLAB matrix
mxMalloc like malloc in ANSI C
mxFree like free in ANSI C

Routines with mex prefixes operate on the MATLAB
environment and include:

mexPrintf like printf in C
mexErrMsgTxt like MATLAB’s error statement
mexFunction the gateway routine from MATLAB

You will note that all of the references to MATLAB’s mx
and mex routines are limited to the mexFunction
gateway routine. This is not required; it is just a good
idea. Many other mx and mex routines are available.

The memory management routines in MATLAB
(mxMalloc, mxFree, and mxCalloc) are much easier to
use than their ANSI C counterparts. If a memory
allocation request fails, the mexFunction terminates and
control is passed backed to MATLAB. Any workspace
allocated by mxMalloc that is not freed when the
mexFunction returns or terminates is automatically

 60

freed by MATLAB. This is why no memory allocation
error checking is included in diagdom.c; it is not
necessary.

9.5 Online help for MEX routines
Create an M-file called diagdom.m, with only this:

function [B,i] = diagdom(A,tol)
%DIAGDOM: modify the matrix A
% [B,i] = diagdom(A,tol) returns a
% diagonally dominant matrix B by
% modifying the diagonal of A. i is a
% list of modified diagonal entries.
error('diagdom mexFunction not found');

Now type help diagdom or doc diagdom. This is a
simple method for providing online help for your own
MEX-files.

If both diagdom.m and the compiled diagdom
mexFunction are in MATLAB’s path, then the diagdom
mexFunction is called. If only the M-file is in the path, it
is called instead; thus the error statement in diagdom.m
above.

9.6 Larger examples on the web
The colamd and symamd routines in MATLAB are C
MEX-files. The source code for these routines is on the
web at http://www.cise.ufl.edu/research/sparse/colamd.
Like the example in the previous section, they are split
into a mexFunction gateway routine and another set of
routines that do not make use of MATLAB. A simpler
example is a sparse LDLT factorization routine that takes
less memory than MATLAB’s chol, at
http://www.cise.ufl.edu/research/sparse/ldl.

 61

10. Calling Fortran from MATLAB
C is a great language for numerical calculations,
particularly if the data structures are complicated.
MATLAB itself is written in C. No single language is
best for all tasks, however, and that holds for C as well.
In this chapter we will look at how to call a Fortran
subroutine from MATLAB. A Fortran subroutine is
accessed via a mexFunction in much the same way as a C
subroutine is called. Normally, the mexFunction acts as a
gateway routine that gets its input arguments from
MATLAB, calls a computational routine, and then returns
its output arguments to MATLAB, just like the C
example in the previous chapter.

10.1 Solving a transposed system
The linsolve function was introduced in Section 5.5.
Here is a Fortran subroutine utsolve that computes
x=A'\b when A is dense, square, real, and upper
triangular. It has no calls to MATLAB-specific mx or
mex routines.

 subroutine utsolve (n, x, A, b)
 integer n
 real*8 x(n), A(n,n), b(n), xi
 integer i, j
 do 1 i = 1,n
 xi = b(i)
 do 2 j = 1,i-1
 xi = xi - A(j,i) * x(j)
2 continue
 x(i) = xi / A(i,i)
1 continue
 return
 end

 62

10.2 A Fortran mexFunction with %val
To call this computational subroutine from MATLAB as
x=utsolve(A,b), we need a gateway routine, the first
lines of which must be:

 subroutine mexFunction
 $ (nargout, pargout, nargin, pargin)
 integer nargout, nargin
 integer pargout (*), pargin (*)

where the $ is in column 6. These lines must be the same
for any Fortran mexFunction (you do not need to split
the first line). Note that pargin and pargout are arrays
of integers. MATLAB passes its inputs and outputs as
pointers to objects of type mxArray, but Fortran cannot
handle pointers. Most Fortran compilers can convert
integer “pointers” to references to Fortran arrays via the
non-standard %val construct. We will use this in our
gateway routine. The next two lines of the gateway
routine declare some MATLAB mx-routines.

 integer mxGetN, mxGetPr
 integer mxCreateDoubleMatrix

This is required because Fortran has no include-file
mechanism. The next lines determine the size of the
input matrix and create the n-by-1 output vector x.

 integer n
 n = mxGetN (pargin (1))
 pargout (1) =
 $ mxCreateDoubleMatrix (n, 1, 0)

We can now convert “pointers” into Fortran array
references and call the computational routine.

 63

 call utsolve (n,
$ %val (mxGetPr (pargout (1))),
$ %val (mxGetPr (pargin (1))),
$ %val (mxGetPr (pargin (2))))
 return
 end

The arrays in both MATLAB and Fortran are column-
oriented and one-based, so translation is not necessary as
it was in the C mexFunction.

Combine the two routines into a single file called
utsolve.f and type:

mex utsolve.f

in the MATLAB command window. Error checking
could be added to ensure that the two input arguments are
of the correct size and type. The code would look much
like the C example in Chapter 9, so it is not included.
Test this routine on as large a matrix that your computer
can handle.

n = 5000
A = triu(rand(n,n)) ;
b = rand(n,1) ;
tic ; x = A'\b ; toc
opts.UT = true
opts.TRANSA = true
tic ; x2 = linsolve(A,b,opts) ; toc
tic ; x3 = utsolve(A,b) ; toc
norm(x-x2)
norm(x-x3)

The solutions should agree quite closely. On a Pentium 4,
both linsolve and utsolve are about 15 times faster
than x=A'\b. They require less memory, as well, since
they do not have to construct A'.

 64

10.3 If you cannot use %val
If your Fortran compiler does not support the %val
construct, then you will need to call MATLAB mx-
routines to copy the MATLAB arrays into Fortran arrays,
and vice versa. The GNU f77 compiler supports %val,
but issues a warning that you can safely ignore.

In this utsolve example, add this to your mexFunction
gateway routine:

 integer nmax
 parameter (nmax = 5000)
 real*8 A(nmax,nmax), x(nmax), b(nmax)

where nmax is the largest dimension you want your
function to handle. Unless you want to live dangerously,
you should check n to make sure it is not too big:

 if (n .gt. nmax) then
 call mexErrMsgTxt ("n too big")
 endif

Replace the call to utsolve with this code.

 call mxCopyPtrToReal8
 $ (mxGetPr (pargin (1)), A, n**2)
 call mxCopyPtrToReal8
 $ (mxGetPr (pargin (2)), b, n)
 call lsolve (n, x, A, b)
 call mxCopyReal8ToPtr
 $ (x, mxGetPr (pargout (1)), n)

This copies the input MATLAB arrays A and b to their
Fortran counterparts, calls the utsolve routine, and then
copies the solution x to its MATLAB counterpart.
Although this is more portable, it takes more memory and
is significantly slower. If possible, use %val.

 65

11. Calling Java from MATLAB
While C and Fortran excel at numerical computations,
Java is well-suited to web-related applications and
graphical user interfaces. MATLAB can handle native
Java objects in its workspace and can directly call Java
methods on those objects. No mexFunction is required.

11.1 A simple example
Try this in the MATLAB Command window

t = 'hello world'
s = java.lang.String(t)
s.indexOf('w') + 1
find(s == 'w')
whos

You have just created a Java string in the MATLAB
workspace, and determined that the character 'w' appears
as the seventh entry in the string using both the indexOf
Java method and the find MATLAB function.

11.2 Encryption/decryption
MATLAB can handle strings on its own, without help
from Java, of course. Here is a more interesting example.
Type in the following as the M-file getkey.m.

function key = getkey(password)
%GETKEY: key = getkey(password)
% Converts a string into a key for use
% in the encrypt and decrypt functions.
% Uses triple DES.
import javax.crypto.spec.*
b = int8(password) ;
n = length(b) ;
b((n+1):24) = 0 ;
b = b(1:24) ;
key = SecretKeySpec(b, 'DESede') ;

 66

The getkey routine takes a password string and converts
it into a 24-byte triple DES key using the javax.crypto
package. You can then encrypt a string with the
encrypt function:

function e = encrypt(t, key)
%ENCRYPT: e = encrypt(t, key)
% Encrypt the plaintext string t into
% the encrypted byte array e using a key
% from getkey.
import javax.crypto.*
cipher = Cipher.getInstance('DESede') ;
cipher.init(Cipher.ENCRYPT_MODE, key) ;
e = cipher.doFinal(int8(t))' ;

Except for the function statement and the comments, this
looks almost exactly the same as the equivalent Java
code. This is not a Java program, however, but a
MATLAB M-file that uses Java objects and methods.
Finally, the decrypt function undoes the encryption: .

function t = decrypt(e, key)
%DECRYPT: t = decrypt(e, key)
% Decrypt the encrypted byte array e
% into to plaintext string t using a key
% from getkey.
import javax.crypto.*
cipher = Cipher.getInstance('DESede') ;
cipher.init(Cipher.DECRYPT_MODE, key) ;
t = char(cipher.doFinal(e))' ;

With these three functions in place, try:

k = getkey('this is a secret password')
e = encrypt('a hidden message',k)
decrypt(e,k)

Now you encrypt and decrypt strings in MATLAB.

 67

11.3 MATLAB’s Java class path
If you define your own Java classes that you want to use
within MATLAB, you need to modify your Java class
path. This path is different than the path used to find M-
files. You can add directories to the static Java path by
editing the file classpath.txt, or you can add them to
your dynamic Java path with the command

javaaddpath directory

where directory is the name of a directory containing
compiled Java classes. javaclasspath lists the
directories where MATLAB looks for Java classes.

If you do not have write permission to classpath.txt,
you need to type the javaaddpath command every time
you start MATLAB. You can do this automatically by
creating an M-file script called startup.m and placing
in it the javaaddpath command. Place this file in one
of the directories in your MATLAB path, or in the
directory in which you launch MATLAB, and it will be
executed whenever MATLAB starts.

11.4 Calling your own Java methods
To write your own Java classes that you can call from
MATLAB, you must first download and install the Java 2
SDK (Software Development Kit) Version 1.4 (or later)
from java.sun.com. Edit your operating system’s PATH
variable so that you can type the command javac in your
operating system command prompt.

MATLAB includes two M-files that can download a web
page into either a string (urlread) or a file (urlwrite).
Try:

 68

s = urlread('http://www.mathworks.com')

The urlread function is an M-file. You can take a look
at it with the command edit urlread. It uses a Java
package from The MathWorks called
mlwidgets.io.InterruptibleStreamCopier, but
only the compiled class file is distributed, not the Java
source file. Create your own URL reader, a purely Java
program, and put it in a file called myreader.java:

import java.io.* ;
import java.net.* ;
public class myreader
{
 public static void main (String [] args)
 {
 geturl (args [0], args [1]) ;
 }
 public static void geturl (String u, String f)
 {
 try
 {
 URL url = new URL (u) ;
 InputStream i = url.openStream ();
 OutputStream o = new FileOutputStream (f);
 byte [] s = new byte [4096] ;
 int b ;
 while ((b = i.read (s)) != -1)
 {
 o.write (s, 0, b) ;
 }
 i.close () ;
 o.close () ;
 }
 catch (Exception e)
 {
 System.out.println (e) ;
 }
 }
}

The geturl method opens the URL given by the string
u, and copies it into a file whose name is given by the

 69

string f. In either Linux/Unix or Windows, you can
compile this Java program and run it by typing these
commands at your operating system command prompt:

javac myreader.java
java myreader http://www.google.com my.txt

The second command copies Google’s home page into
your own file called my.txt. You can also type the
commands in the MATLAB Command window, as in:

!javac myreader.java

Now that you have your own Java method, you can call it
from MATLAB just as the java.lang.String and
javax.crypto.* methods. In the MATLAB command
window, type (as one line):

myreader.geturl
('http://www.google.com','my.txt')

11.5 Loading a URL as a matrix
An even more interesting use of the myreader.geturl
method is to load a MAT-file or ASCII file from a web
page directly into the MATLAB workspace as a matrix.
Here is a simple loadurl M-file that does just that. It
can read compressed files; the Java method uncompresses
the URL automatically if it is compressed.

function result = loadurl(url)
% result = loadurl(url)
% Reads the URL given by the input
% string, url, into a temporary file
% using myread.java, loads it into a
% MATLAB variable, and returns the
% result. The URL can contain a MATLAB-
% readable text file, or a MAT-file.
t = tempname ;

 70

myreader.geturl(url, t) ;
% load the temporary file, if it exists
try
 % try loading as an ascii file first
 result = load(t) ;
catch
 % try as a MAT file if ascii fails
 try
 result = load('-mat', t) ;
 catch
 result = [] ;
 end
end
% delete the temporary file
if (exist(t, 'file'))
 delete(t) ;
end

Try it with a simple text file (type this in as one line):

w = loadurl('http://www.cise.ufl.edu/
research/sparse/MATLAB/w')

which loads in a 2-by-2 matrix. Also try it with this
rather lengthy URL (type the string on one line):

s = loadurl('http://www.cise.ufl.edu/
research/sparse/mat/HB/west0479.mat.gz')
prob = s.Problem
spy(prob.A)
title([prob.name ': ' prob.title])

MATLAB 7.0 can create compressed MAT-files, so in
the future you may need to exclude the .gz extension in
this URL. spy plots a sparse matrix (see Section 15.5).

12. Two-Dimensional Graphics
MATLAB can produce two-dimensional plots. The
primary command for this is plot. Chapter 13 discusses
three-dimensional graphics. To preview some of these
capabilities, enter the command demo and select some of

 71

the visualization and graphics demos. See Chapter 16 for
a discussion of how to plot symbolic functions. Just like
any other window, a Figure window can be docked in the
main MATLAB window (except on the Macintosh).

12.1 Planar plots
The plot command creates linear x–y plots; if x and y
are vectors of the same length, the command plot(x,y)
opens a graphics window and draws an x–y plot of the
elements of y versus the elements of x. You can, for
example, draw the graph of the sine function over the
interval -4 to 4 with the following commands:

x = -4:0.01:4 ;
y = sin(x) ;
plot(x, y) ;

Try it. The vector x is a partition of the domain with
mesh size 0.01, and y is a vector giving the values of
sine at the nodes of this partition (recall that sin operates
entry-wise). When plotting a curve, the plot routine is
actually connecting consecutive points induced by the
partition with line segments. Thus, the mesh size should
be chosen sufficiently small to render the appearance of a
smooth curve.

The next example draws the graph of y = e−x
2
 over the

interval -3 to 3. Note that you must precede ^ by a
period to ensure that it operates entry-wise:

x = -3:.01:3 ;
y = exp(-x.^2) ;
plot(x, y) ;

 72

Select Tools ► Zoom In or Tools ► Zoom Out in the
Figure window to zoom in or out, or click these buttons
(or see the zoom command):

12.2 Multiple figures
You can have several concurrent Figure windows, one of
which will at any time be the designated current figure in
which graphs from subsequent plotting commands will be
placed. If, for example, Figure 1 is the current figure,
then the command figure(2) (or simply figure) will
open a second figure (if necessary) and make it the
current figure. The command figure(1) will then
expose Figure 1 and make it again the current figure. The
command gcf returns the current figure number, and
figure(gcf) brings the current figure window up.

MATLAB does not draw a plot right away. It waits until
all computations are finished, until a figure command is
encountered, or until the script or function requests user
input (see Section 8.4). To force MATLAB to draw a
plot right away, use the command drawnow. This does
not change the current figure.

12.3 Graph of a function
MATLAB supplies a function fplot to plot the graph of
a function. For example, to plot the graph of the function
above, you can first define the function in an M-file
called, say, expnormal.m containing:

function y = expnormal(x)
y = exp(-x.^2) ;

 73

Then:

fplot(@expnormal, [-3 3])

will produce the graph over the indicated x-domain.

Using an anonymous function gives the same result
without creating expnormal.m:

f = @(x) exp(-x.^2)
fplot(f, [-3 3])

12.4 Parametrically defined curves
Plots of parametrically defined curves can also be made:

t = 0:.001:2*pi ;
x = cos(3*t) ;
y = sin(2*t) ;
plot(x, y) ;

12.5 Titles, labels, text in a graph
The graphs can be given titles, axes labeled, and text
placed within the graph with the following commands,
which take a string as an argument.

title graph title
xlabel x-axis label
ylabel y-axis label
gtext place text on graph using the mouse
text position text at specified coordinates

For example, the command:

title('A parametric cos/sin curve')

 74

gives a graph a title. The command gtext('The
Spot') lets you interactively place the designated text on
the current graph by placing the mouse crosshair at the
desired position and clicking the mouse. It is a good idea
to prompt the user before using gtext. To place text in a
graph at designated coordinates, use the command text
(see doc text). These commands are also in the Insert
menu in the Figure window. Select Insert ► TextBox,
click on the figure, type something, and then click
somewhere else to finish entering the text. If the edit-

figure button is depressed (or select Tools ► Edit
Plot), you can right-click on anything in the figure and
see a pop-up menu that gives you options to modify the
item you just clicked. You can click and drag objects on
the figure. Selecting Edit ► Axes Properties brings
up a window with many more options. For example,
clicking the boxes adds grid lines
(as does the grid command).

12.6 Control of axes and scaling
By default, MATLAB scales the axes itself (auto-
scaling). This can be overridden by the command axis
or by selecting Edit ► Axes Properties. Some
features of the axis command are:

axis([xmin xmax ymin ymax])
 sets the axes
axis manual freezes the current axes for
 new plots
axis auto returns to auto-scaling
v = axis vector v shows current scaling
axis square axes same size (but not scale)
axis equal same scale and tic marks on axes

 75

axis off removes the axes
axis on restores the axes

The axis command should be given after the plot
command. Try axis([-2 2 -3 3]) with the current
figure. You will note that text entered on the figure using
the text or gtext moves as the scaling changes (think
of it as attached to the data you plotted). Text entered via
Insert ► TextBox stays put.

12.7 Multiple plots
Here is one way to make multiple plots on a single graph:

x = 0:.01:2*pi;
y1 = sin(x) ;
y2 = sin(2*x) ;
y3 = sin(4*x) ;
plot(x, y1, x, y2, x, y3)

Another method uses a matrix Y containing the functional
values as columns:

x = (0:.01:2*pi)' ;
y = [sin(x), sin(2*x), sin(4*x)] ;
plot(x, y)

The x and y pairs must have the same length, but each
pair can have different lengths. Try:

plot(x, y, [0 2*pi], [0 0])

The command hold on freezes the current graphics
screen so that subsequent plots are superimposed on it.
The axes may, however, become rescaled. Entering hold
off releases the hold. clf clears the figure. legend

 76

places a legend in the current figure to identify the
different graphs. See doc legend.

12.8 Line types, marker types, colors
You can override the default line types, marker types, and
colors. For example,

x = 0:.01:2*pi ;
y1 = sin(x) ;
y2 = sin(2*x) ;
y3 = sin(4*x) ;
plot(x,y1, '--', x,y2, ':', x,y3, 'o')

renders a dashed line and dotted line for the first two
graphs, whereas for the third the symbol o is placed at
each node. The line types are:

'-' solid ':' dotted
'--' dashed '-.' dashdot

and the marker types are:

'.' point 'o' circle
'x' x-mark '+' plus
'*' star 's' square
'd' diamond 'v' triangle-down
'^' triangle-up '<' triangle-left
'>' triangle-right 'p' pentagram
'h' hexagram

Colors can be specified for the line and marker types:

'y' yellow 'm' magenta
'c' cyan 'r' red
'g' green 'b' blue
'w' white 'k' black

 77

Thus, plot(x,y1,'r--') plots a red dashed line.

12.9 Subplots and specialized plots
The command subplot(m,n,p) partitions a single
figure into an m-by-n array of panes, and makes pane p
the current plot. The panes are numbered left to right. A
subplot can span multiple panes by specifying a vector p.
Here the last example, with each data set plotted in a
separate subplot:

subplot(2,2,1)
plot(x,y1, '--')
subplot(2,2,2)
plot(x,y2, ':')
subplot(2,2,[3 4])
plot(x,y3, 'o')

Other specialized planar plotting functions you may wish
to explore via help are:

bar fill quiver
compass hist rose
feather polar stairs

12.10 Graphics hard copy
Select File ► Print or click the print button

in the Figure window to send a copy of your figure to
your default printer. Layout options and selecting a
printer can be done with File ► Page Setup and File ►
Print Setup.

You can save the figure as a file for later use in a
MATLAB Figure window. Try the save button

 78

or File ► Save. This saves the figure as a .fig file,
which can be later opened in the Figure window with the
open button

or with File ► Open. Selecting File ► Export Setup
or File ► Save As allows you to convert your figure to
many other formats.

13. Three-Dimensional Graphics
MATLAB’s primary commands for creating three-
dimensional graphics of numerically-defined functions
are plot3, mesh, surf, and light. Plotting of
symbolic functions is discussed in Chapter 16. The menu
options and commands for setting axes, scaling, and
placing text, labels, and legends on a graph also apply for
3-D graphs. A zlabel can be added. The axis
command requires a vector of length 6 with a 3-D graph.

13.1 Curve plots
Completely analogous to plot in two dimensions, the
command plot3 produces curves in three-dimensional
space. If x, y, and z are three vectors of the same size,
then the command plot3(x,y,z) produces a
perspective plot of the piecewise linear curve in three-
space passing through the points whose coordinates are
the respective elements of x, y, and z. These vectors are
usually defined parametrically. For example,

t = .01:.01:20*pi ;
x = cos(t) ;

 79

y = sin(t) ;
z = t.^3 ;
plot3(x, y, z)

produces a helix that is compressed near the x-y plane (a
“slinky”). Try it.

13.2 Mesh and surface plots
The mesh command draws three-dimensional wire mesh
surface plots. The command mesh(z) creates a three-
dimensional perspective plot of the elements of the matrix
z. The mesh surface is defined by the z-coordinates of
points above a rectangular grid in the x-y plane. Try
mesh(eye(20)).

Similarly, three-dimensional faceted surface plots are
drawn with the command surf. Try surf(eye(20)).

To draw the graph of a function z = f (x, y) over a
rectangle, first define vectors xx and yy, which give
partitions of the sides of the rectangle. The function
[x,y]=meshgrid(xx,yy) then creates a matrix x, each
row of which equals xx (whose column length is the
length of yy) and similarly a matrix y, each column of
which equals yy. A matrix z, to which mesh or surf can
be applied, is then computed by evaluating the function f
entry-wise over the matrices x and y.

You can, for example, draw the graph of z = e−x2−y2
 over

the square [-2, 2] x [-2, 2] as follows:

xx = -2:.2:2 ;
yy = xx ;
[x, y] = meshgrid(xx, yy) ;
z = exp(-x.^2 - y.^2) ;
mesh(z)

 80

Try this plot with surf instead of mesh. Note that you
must use x.^2 and y.^2 instead of x^2 and y^2 to
ensure that the function acts entry-wise on x and y.

13.3 Parametrically defined surfaces
Plots of parametrically defined surfaces can also be made.
See the MATLAB functions sphere and cylinder for
example. The next example displays the cover of this
book, with lighting, color, and viewpoint defined in
Section 13.6. First, start a figure and set up the mesh:

figure(1) ; clf
t = linspace(0, 2*pi, 512) ;
[u,v] = meshgrid(t) ;

Next, define the surface:2

a = -0.2 ; b = .5 ; c = .1 ;
n = 2 ;
x = (a*(1-v/(2*pi)).*(1+cos(u)) + c) ...
 .* cos(n*v) ;
y = (a*(1-v/(2*pi)).*(1+cos(u)) + c) ...
 .* sin(n*v) ;
z = b*v/(2*pi) + ...
 a*(1-v/(2*pi)) .* sin(u) ;

Plot the surface, using y to define the color, and turn off
the mesh lines on the surface:

surf(x,y,z,y)
shading interp

Also try a=-0.5, which gives the back cover.

2 von Seggern, CRC Standard Curves and Surfaces, 2nd ed.,
CRC Press, 1993, pp. 306-307.

 81

Other three-dimensional plotting functions you may wish
to explore via help or doc are meshz, surfc, surfl,
contour, and pcolor. For plotting symbolically
defined parametric surfaces (including the same seashell
you plotted above), see Section 16.7.

13.4 Volume and vector visualization
MATLAB has an extensive suite of volume and vector
visualization tools. The following example evaluates a
function of three variables, v=f(x,y,z), that represents a
fluid flow problem. It returns both v and the coordinates
(x, y, and z) at which the function was evaluated.

[x,y,z,v] = flow ;

Now try visualizing it. The first method plots the surface
at which v is -3; the second plots slices of the data:

figure(1) ; clf
isosurface(x, y, z, v, -3)
figure(2) ; clf
slice(x, y, z, v, [3 8], 0, 0)

Type doc specgraph for more volume and vector
visualization tools.

13.5 Color shading and color profile
The color shading of surfaces is set by the shading
command. There are three settings for shading: faceted
(default), interpolated, and flat. These are set by
the commands:

shading faceted
shading interp
shading flat

 82

Note that on surfaces produced by surf, the settings
interpolated and flat remove the superimposed
mesh lines. Experiment with various shadings on the
surface produced above. The command shading (as
well as colormap and view described below) should be
entered after the surf command.

The color profile of a surface is controlled by the
colormap command. Available predefined color maps
include hsv (the default), hot, cool, jet, pink,
copper, flag, gray, bone, prism, and white. The
command colormap(cool), for example, sets a certain
color profile for the current figure. Experiment with
various color maps on the surface produced above. See
also help colorbar.

13.6 Perspective of view
The Figure window provides a wide range of controls for
viewing the figure. Select View ► Camera Toolbar to
see these controls, or pull down the Tools menu. Try,
for example, selecting Tools ► Rotate 3D, and then
click the mouse in the Figure window and drag it to rotate
the object. Some of these options can be controlled by
the view and rotate3d commands, respectively.

The MATLAB function peaks generates an interesting
surface on which to experiment with shading,
colormap, and view. Type peaks, select Tools ►
Rotate 3D, and click and drag the figure to rotate it.

In MATLAB, light sources and camera position can be
set. Taking the peaks surface from the example above,
select Insert ► Light, or type light to add a light

 83

source. See the online document Using MATLAB
Graphics for camera and lighting help.

This example defines the color, shading, lighting, surface
material, and viewpoint for the cover of the book:

axis off
axis equal
colormap(hsv(1024))
shading interp
material shiny
lighting gouraud
lightangle(80, -40)
lightangle(-90, 60)
view([-150 10])

14. Advanced Graphics
MATLAB possesses a number of other advanced
graphics capabilities. Significant ones are bitmapped
images, object-based graphics, called Handle Graphics®,
and Graphical User Interface (GUI) tools.

14.1 Handle Graphics
Beyond those just described, MATLAB’s graphics
system provides low-level functions that let you control
virtually all aspects of the graphics environment to
produce sophisticated plots. The commands set and get
allow access to all the properties of your plots. Try
set(gcf) to see some of the properties of a figure that
you can control. set(gca) lists the properties of the
current axes (see Section 14.3 for an example). This
system is called Handle Graphics. See Using MATLAB
Graphics for more information.

 84

14.2 Graphical user interface
MATLAB’s graphics system also provides the ability to
add sliders, push-buttons, menus, and other user interface
controls to your own figures. For information on creating
user interface controls, try doc uicontrol. This allows
you to create interactive graphical-based applications.
Try guide (short for Graphic User Interface
Development Environment). This brings up MATLAB’s
Layout Editor window that you can use to interactively
design a graphic user interface. Also see the online
document Creating Graphical User Interfaces.

14.3 Images
The image function plots a matrix, where each entry in
the matrix defines the color of a single pixel or block of
pixels in the figure. image(K) paints the (i,j)th block of
the figure with color K(i,j) taken from the colormap.
Here is an example of the Mandelbrot set. The bottom
left corner is defined as (x0,y0), and the upper right
corner is (x0+d,y0+d). Try changing x0, y0, and d to
explore other regions of the set (x0=-.38, y0=.64,
d=.03 is also very pretty). This is also a good example
of one-dimensional indexing:

x0 = -2 ; y0 = -1.5 ; d = 3 ; n = 512 ;
maxit = 256 ;

x = linspace(x0, x0+d, n) ;
y = linspace(y0, y0+d, n) ;
[x,y] = meshgrid(x, y) ;
C = x + y*1i ;
Z = C ;
K = ones(n, n) ;
for k = 1:maxit
 a = find((real(Z).^2 + imag(Z).^2) < 4);
 Z(a) = (Z(a)).^2 + C(a) ;
 K(a) = k ;

 85

end
figure(1) ; clf
colormap(jet(maxit)) ;
image(x0 + [0 d], y0 + [0 d], K) ;
set(gca, 'YDir', 'normal') ;
axis equal
axis tight

image, by default, reverses the y direction and plots the
K(1,1) entry at the top left of the figure (just like the
spy function described in Section 15.5). The set
function resets this to the normal direction, so that
K(1,1) is plotted in the bottom left corner.

Try replacing the fourth argument in surf, for the
seashell example, with K, to paint the seashell surface
with the Mandelbrot set.

15. Sparse Matrix Computations
A sparse matrix is one with mostly zero entries.
MATLAB provides the capability to take advantage of
the sparsity of matrices.

15.1 Storage modes
MATLAB has two storage modes, full and sparse, with
full the default. Currently, only double or logical
vectors or two-dimensional arrays can be stored in the
sparse mode. The functions full and sparse convert
between the two modes. Nearly all MATLAB operators
and functions operate seamlessly on both full and sparse
matrices. For a matrix A, full or sparse, nnz(A) returns
the number of nonzero elements in A. An m-by-n sparse
matrix is stored in three or four one-dimensional arrays.
For a real sparse matrix, numerical values and their row
indices are stored in two arrays of size nnzmax(A) each,
but only the first nnz(A) entries are used (complex

 86

matrices use three arrays). All entries in any given
column are stored contiguously and in sorted order. A
third array of size n+1 holds the positions in the other two
arrays of the first nonzero entry in each column. Thus, if
A is sparse, then x=A(9,:) takes much more time than
x=A(:,9), and s=A(4,5) is also slow. To get high
performance when dealing with sparse matrices, use
matrix expressions instead of for loops and vector or
scalar expressions. If you must operate on the rows of a
sparse matrix A, work with the columns of A' instead.

If a full tridiagonal matrix F is created via, say,

F = floor(10 * rand(6))
F = triu(tril(F,1), -1)

then the statement S=sparse(F) will convert F to sparse
mode. Try it. Note that the output lists the nonzero
entries in column major order along with their row and
column indices because of how sparse matrices are
stored. The statement F=full(S) returns F in full
storage mode. You can check the storage mode of a
matrix A with the command issparse(A).

15.2 Generating sparse matrices
A sparse matrix is usually generated directly rather than
by applying the function sparse to a full matrix. A
sparse banded matrix can be easily created via the
function spdiags by specifying diagonals. For example,
a familiar sparse tridiagonal matrix is created by:

m = 6 ;
n = 6 ;
e = ones(n,1) ;
d = -2*e ;
T = spdiags([e d e], [-1 0 1], m, n)

 87

Try it. The integral vector [-1 0 1] specifies in which
diagonals the columns of [e d e] should be placed (use
full(T) to see the full matrix T and spy(T) to view T
graphically). Experiment with other values of m and n
and, say, [-3 0 2] instead of [-1 0 1]. See doc
spdiags for further features of spdiags.

The sparse analogs of eye, zeros, and rand for full
matrices are, respectively, speye, sparse, and sprand.
The spones and sprand functions take a matrix
argument and replace only the nonzero entries with ones
and uniformly distributed random numbers, respectively.
sparse(m,n) creates a sparse zero matrix. sprand also
permits the sparsity structure to be randomized. This is a
useful method for generating simple sparse test matrices,
but be careful. Random sparse matrices are not truly
“sparse” because they experience catastrophic fill-in
when factorized. Sparse matrices arising in real
applications typically do not share this characteristic.3

The versatile function sparse also permits creation of a
sparse matrix via listing its nonzero entries:

i = [1 2 3 4 4 4] ;
j = [1 2 3 1 2 3] ;
s = [5 6 7 8 9 10] ;
S = sparse(i, j, s, 4, 3)
full(S)

The last two arguments to sparse in the example above
are optional. They tell sparse the dimensions of the
matrix; if not present, then S will be max(i) by max(j).
If there are repeated entries in [i j], then the entries are

3 http://www.cise.ufl.edu/research/sparse/matrices.

 88

added together. The commands below create a matrix
whose diagonal entries are 2, 1, and 1.

i = [1 2 3 1] ;
j = [1 2 3 1] ;
s = [1 1 1 1] ;
S = sparse(i, j, s)
full(S)

The entries in i, j, and s can be in any order (the same
order for all three arrays, of course), but sparse(i,j,s)
is faster if the entries are sorted in column-major order
(ascending column index j, and entries in each column
with ascending row index i) and with no duplicate
entries. In general, if the vector s lists the nonzero entries
of S and the integral vectors i and j list their
corresponding row and column indices, then
sparse(i,j,s,m,n) will create the desired sparse m-
by-n matrix S. As another example try:

n = 6 ;
e = floor(10 * rand(n-1,1)) ;
E = sparse(2:n, 1:n-1, e, n, n)

Creating a sparse matrix by assigning values to it one at a
time is exceedingly slow; never do it. The next example
constructs the same matrix as A=sparse(i,j,s,m,n)
(except for handling duplicate entries), but it should never
be used:

A = sparse(m,n) ;
for k = 1:length(s)
 A(i(k),j(k)) = s(k) ;
end

 89

15.3 Computation with sparse matrices
The arithmetic operations and most MATLAB functions
can be applied independent of storage mode. The storage
mode of the result depends on the storage mode of the
operands or input arguments. Operations on full matrices
always give full results. If F is a full matrix, S and Z are
sparse matrices, and n is a scalar, then these operations
give sparse results:

S+S S*S S.*S S.*F
S-S S^n S.^n S\Z
-S S' S.' S/Z
inv(S) chol(S) lu(S)
diag(S) max(S) sum(S)

These give full results:

S+F F\S S/F
S*F S\F F/S

except if F is a scalar, S*F, F\S, and S/F are sparse.

A matrix built from blocks, such as [A, B; C, D], is
stored in sparse mode if any constituent block is sparse.
To compute the eigenvalues or singular values of a sparse
matrix S, you must convert S to a full matrix and then use
eig or svd, as eig(full(S)) or svd(full(S)). If S
is a large sparse matrix and you wish only to compute
some of the eigenvalues or singular values, then you can
use the eigs or svds functions (eigs(S) or svds(S)).

15.4 Ordering methods
When MATLAB solves a sparse linear system (x=A\b), it
typically starts by computing the LU, QR, or Cholesky
factorization of A. This usually leads to fill-in, or the

 90

creation of new nonzeros in the factors that do not appear
in A. MATLAB provides several methods that attempt to
reduce fill-in by reordering the rows and columns of A,
Finding the best ordering is impossible in general, so fast
non-optimal heuristics are used:

q=colamd(A) column approximate min. degree
q=colperm(A) sort columns by number of nonzeros
p=symamd(A) symmetric approximate min. degree
p=symrcm(A) reverse Cuthill-McKee
[L,U,P,Q]=lu(A) UMFPACK’s internal ordering

The first two find a column ordering of A and are best
used for lu or qr of A(:,q). The next two are primarily
used for chol(A(p,p)). Each method returns a
permutation vector. The sparse lu function4 can find its
own sparsity-preserving orderings, returning them as
permutation matrices P and Q (where L*U=P*A*Q). Its
ordering method is based on colamd, but it also permutes
P for both sparsity and numerical robustness. Try this
example west0479, a chemical engineering matrix:

load west0479
A = west0479 ;
spy(A)
[L,U,P] = lu(A) ;
spy(L|U)
[L,U,P] = lu(A(:,colperm(A))) ;
spy(L|U)
[L,U,P] = lu(A(:,colamd(A))) ;
spy(L|U)
[L,U,P,Q] = lu(A) ;
spy(L|U)

4 http://www.cise.ufl.edu/research/sparse/umfpack. MATLAB
7.0 uses UMFPACK 4.0. UMFPACK 4.3 includes multiple
ordering strategies and selects among them automatically.

 91

15.5 Visualizing matrices
The spy function introduced in the last section plots the
nonzero pattern of a sparse matrix. spy can also be used
on full matrices. It is useful for matrix expressions
coming from relational operators. Try this example (see
Chapter 7 for the ddom function):

A = [
-1 2 3 -4
 0 2 -1 0
 1 2 9 1
-3 4 1 1]
C = ddom(A)
figure(2)
spy(A ~= C)
spy(A > 2)

What you see is a picture of where A and C differ, and
another picture of which entries of A are greater than 2.

16. The Symbolic Math Toolbox
The Symbolic Math Toolbox, which utilizes the Maple
kernel as its computer algebra engine, lets you perform
symbolic computation from within MATLAB. Under
this configuration, MATLAB’s numeric and graphic
environment is merged with Maple’s symbolic
computation capabilities. The toolbox M-files that access
these symbolic capabilities have names and syntax that
will be natural for the MATLAB user. Key features of the
Symbolic Math Toolbox are included in the Student
Version of MATLAB. Since the Symbolic Math Toolbox
is not part of the Professional Version of MATLAB (by
default), it may not be installed on your system, in which
case this chapter will not apply.

 92

Many of the functions in the Symbolic Math Toolbox
have the same names as their numeric counterparts.
MATLAB selects the correct one depending on the type
of inputs to the function. Typing doc eig and doc
symbolic/eig displays the help for the numeric
eigenvalue function and its symbolic counterpart,
respectively.

16.1 Symbolic variables
You can declare a variable as symbolic with the syms
statement. For example,

syms x

creates a symbolic variable x. The statement:

syms x real

declares to Maple that x is a symbolic variable with no
imaginary part. Maple has its own workspace. The
statements clear or clear x do not undo this
declaration, because it clears MATLAB’s variable x but
not Maple’s variable s. Use syms x unreal, which
declares to Maple that x may now have a nonzero
imaginary part. The clear all statement clears all
variables in both MATLAB and Maple, and thus also
resets the real or unreal status of x. You can also
assert to Maple that x is always positive, with syms x
positive.

Symbolic variables can be constructed from existing
numeric variables using the sym function. Try:

z = 1/10
a = sym(z)

 93

y = rand(1)
b = sym(y, 'd')

although better ways to create a include:

a = sym('1/10')
a = 1 / sym(10)

If you want to ensure a precise symbolic expression, you
must avoid numeric computations. Compare these three
expressions. The first is only accurate to MATLAB’s
double-precision numeric computation (about 16 digits).
The second and third avoid numeric computation
completely.

sym(log(2))
sym('log(2)')
log(sym(2))

You can create a symbolic abstract function. This
example declares f(x) as some unknown function of x:

syms x
f = sym('f(x)')

The syms command and sym function have many more
options. See doc syms and doc sym.

16.2 Calculus
The function diff computes the symbolic derivative of a
function defined by a symbolic expression. First, to
define a symbolic expression, you should create symbolic
variables and then proceed to build an expression as you
would mathematically. For example,

 94

syms x
f = x^2 * exp(x)
diff(f)

creates a symbolic variable x, builds the symbolic
expression f = x2 ex, and returns the symbolic derivative of
f with respect to x: 2*x*exp(x)+x^2*exp(x) in
MATLAB notation. Try it. Next,

syms t
diff(sin(pi*t))

returns the derivative of sin(πt), as a function of t.

Here are examples of taking the derivative of an abstract
function, illustrating the product, quotient, and reciprocal
rules of calculus, and a special case of the chain rule. The
function pretty displays a symbolic expression in an
easier-to-read form resembling typeset mathematics. See
Section 16.5 for simple.

syms x n
f = sym('f(x)')
g = sym('g(x)')
pretty(diff(f*g))
pretty(diff(f/g))
pretty(diff(1/f))
pretty(simple(diff(f^n)))

Formats in addition to pretty include latex, ccode, and
fortran. Try, for example,

syms x a b
f = x/(a*x+b)
pretty(f)
g = int(f)
pretty(g)
latex(g)
ccode(g)

 95

fortran(g)
int(g)
pretty(ans)

Partial derivatives can also be computed. Try:

syms x y
g = x*y + x^2
diff(g) % computes ∂g/∂x
diff(g, x) % also ∂g/∂x
diff(g, y) % ∂g/∂y

To permit omission of the second argument for functions
such as the above, MATLAB chooses a default symbolic
variable for the symbolic expression. The findsym
function returns MATLAB’s choice. Its rule is, roughly,
to choose that lower case letter, other than i and j,
nearest x in the alphabet. The status of a variable (real,
unreal, positive) affects its order in the list returned
by findsym. You can, of course, override the default
choice as shown above. Try, for example,

syms x x1 x2 theta
F = x * (x1*x2 + x1 - 2)
findsym(F,1)
diff(F, x) % ∂F/∂x
diff(F, x1) % ∂F/∂x1
diff(F, x2) % ∂F/∂x2
G = cos(theta*x)
diff(G, theta) % ∂G/∂theta

diff can compute second or higher-order derivatives.
The second derivative of sin(2x) is given by either of the
following two examples:

diff(sin(2*x), 2)
diff(sin(2*x), x, 2)

 96

With a numeric argument, diff is the difference operator
of basic MATLAB, which can be used to numerically
approximate the derivative of a function. See doc diff
or help diff for the numeric function, and doc
symbolic/diff or help sym/diff for the symbolic
derivative function.

The function int attempts to compute the indefinite
integral (antiderivative) of a function defined by a
symbolic expression. Try, for example,

syms a b t x y z theta
int(sin(a*t + b))
int(sin(a*theta + b), theta)
int(x*y^2 + y*z, y)
int(x^2 * sin(x))

Note that, as with diff, when the second argument of
int is omitted, the default symbolic variable (as selected
by findsym) is chosen as the variable of integration.

In some instances, int will be unable to give a result in
terms of elementary functions. Consider, for example,

int(exp(-x^2))
int(sqrt(1 + x^3))

In the first case the result is given in terms of the error
function erf, whereas in the second, the result is given in
terms of EllipticF, a function defined by an integral.

Here is a basic integral rule with an abstract function:

f = sym('f(x)')
int(diff(f) / f)

 97

Definite integrals can also be computed by using
additional input arguments. Try, for example,

int(sin(x), 0, pi)
int(sin(theta), theta, 0, pi)

In the first case, the default symbolic variable x was used
as the variable of integration to compute:

∫
π

0

sin xdx

whereas in the second theta was chosen. Other definite
integrals you can try are:

int(x^5, 1, 2)
int(log(x), 1, 4)
int(x * exp(x), 0, 2)
int(exp(-x^2), 0, inf)

It is important to realize that the results returned are
symbolic expressions, not numeric ones. The function
double will convert these into MATLAB floating-point
numbers, if desired. For example, the result returned by
the first integral above is 21/2. Entering double(ans)
then returns the MATLAB numeric result 10.5000.

Alternatively, you can use the function vpa (variable
precision arithmetic; see Section 16.3) to convert the
expression into a symbolic number of arbitrary precision.
For example,

int(exp(-x^2), 0, inf)

gives the result:

 98

1/2*pi^(1/2)

Then the statement:

vpa(ans, 25)

symbolically gives the result to 25 significant digits:

.8862269254527580136490835

You may wish to contrast these techniques with the
MATLAB numerical integration functions quad and
quadl (see Section 17.4).

The limit function is used to compute the symbolic
limits of various expressions. For example,

syms h n x
limit((1 + x/n)^n, n, inf)

computes the limit of (1 + x/n)n as n→∞. You should
also try:

limit(sin(x), x, 0)
limit((sin(x+h)-sin(x))/h, h, 0)

The taylor function computes the Maclaurin and Taylor
series of symbolic expressions. For example,

taylor(cos(x) + sin(x))

returns the fifth order Maclaurin polynomial
approximating cos(x) + sin(x). This returns the eighth
degree Taylor approximation to cos(x2) centered at the
point x0 = π:

taylor(cos(x^2), 8, x, pi)

 99

16.3 Variable precision arithmetic
Three kinds of arithmetic operations are available:

numeric MATLAB’s floating-point arithmetic
rational Maple’s exact symbolic arithmetic
VPA Maple’s variable precision arithmetic

One can obtain exact rational results with, for example,

s = simple(sym('13/17 + 17/23'))

You are already familiar with numeric computations. For
example, with format long,

pi*log(2)

gives the numeric result 2.17758609030360.

MATLAB’s numeric computations are done in
approximately 16 decimal digit floating-point arithmetic.
With vpa, you can obtain results to arbitrary precision,
within the limitations of time and memory. Try:

vpa('pi * log(2)')
vpa(sym(pi) * log(sym(2)))
vpa('pi * log(2)', 50)

The default precision for vpa is 32. Hence, the two
results are accurate to 32 digits, whereas the third is
accurate to the specified 50 digits. Ludolf van Ceulen
(1540-1610) calculated π to 36 digits. The Symbolic
Math Toolbox can quite easily compute π to 10,000 digits
or more. Try:

 pretty(vpa('pi', 10000))

 100

The default precision can be changed with the function
digits. While the rational and VPA computations can
be more accurate, they are in general slower than numeric
computations. If you pass a numeric expression to vpa,
MATLAB will evaluate it numerically first, so use a
symbolic expression or place the expression in quotes.
Compare your results, above, with:

vpa(pi * log(2))

which is accurate to only about 16 digits (even though 32
digits are displayed). This is a common mistake with the
use of vpa and the Symbolic Math Toolbox in general.

16.4 Numeric and symbolic subsitution
Once you have a symbolic expression, you can modify it
or evaluate it numerically with the subs function. The
function subs replaces all occurrences of the symbolic
variable in an expression by a specified second
expression. This corresponds to composition of two
functions. Try, for example,

syms x s t
subs(sin(x), x, pi/3)
subs(sin(x), x, sym(pi)/3)
double(ans)
subs(g*t^2/2, t, sqrt(2*s))
subs(sqrt(1-x^2), x, cos(x))
subs(sqrt(1-x^2), 1-x^2, cos(x))

The general idea is that in the statement
subs(expr,old,new) the third argument (new)
replaces the second argument (old) in the first argument
(expr). Compare the first two examples above. The
result is numeric if all variables in the expression are
substituted with numeric values, or symbolic otherwise.

 101

You can substitute multiple symbolic expressions,
numeric expressions, or any combination, using cell
arrays of symbolic or numeric values. Try:

syms x y
S = x^y
subs(S, x, 3)
subs(S, {x y}, {3 2})
subs(S, {x y}, {3 x+1})

You perform multiple substitutions for any one symbolic
variable, which returns a matrix of symbolic expressions
or numeric values. Try this, which constructs a function
F, finds its derivative G, and evaluates G at x=0:.1:1.

syms x
F = x^2 * sin(x)
G = diff(F)
subs(G, x, 0:.1:1)

Also try:

a = subs(S, y, 1:9)
a(3)
a = subs(S, {x y},{2*ones(9,1) (1:9)'})

The first expression returns a row vector containing the
symbolic expressions x, x^2, ... x^9. The second
substitution returns a numeric column vector containing
the powers of 2 from 2 to 512. Each entry in the cell
array must be of the same size.

Substitution acts just like composition in calculus.
Taking the derivative of function composition illustrates
the chain rule of calculus:

f = sym('f(x)')
g = sym('g(x)')

 102

diff(subs(f, g))
pretty(ans)

16.5 Algebraic simplification
Convenient algebraic manipulations of symbolic
expressions are available.

The function expand distributes products over sums and
applies other identities, whereas factor attempts to do
the reverse. The function collect views a symbolic
expression as a polynomial in its symbolic variable
(which may be specified) and collects all terms with the
same power of the variable. To explore these capabilities,
try the following:

syms a b x y z
expand((a + b)^5)
factor(ans)
expand(exp(x + y))
expand(sin(x + 2*y))
factor(x^6 - 1)
collect(x * (x * (x + 3) + 5) + 1)
horner(ans)
collect((x + y + z)*(x - y - z))
collect((x + y + z)*(x - y - z), y)
collect((x + y + z)*(x - y - z), z)
diff(x^3 * exp(x))
factor(ans)

The powerful function simplify applies many identities
in an attempt to reduce a symbolic expression to a simple
form. Try, for example,

simplify(sin(x)^2 + cos(x)^2)
simplify(exp(5*log(x) + 1))
d = diff((x^2 + 1)/(x^2 - 1))
simplify(d)

 103

The alternate function simple computes several
simplifications and chooses the shortest of them. It often
gives better results on expressions involving
trigonometric functions. Try the following commands:

simplify(cos(x) + (-sin(x)^2)^(1/2))
simple (cos(x) + (-sin(x)^2)^(1/2))
simplify((1/x^3+6/x^2+12/x+8)^(1/3))
simple ((1/x^3+6/x^2+12/x+8)^(1/3))

The function factor can also be applied to an integer
argument to compute the prime factorization of the
integer. Try, for example,

factor(sym('4248'))
factor(sym('4549319348693'))
factor(sym('4549319348597'))

16.6 Two-dimensional graphs
The MATLAB function fplot (see Section 12.3)
provides a tool to conveniently plot the graph of a
function. Since it is, however, the name or handle of the
function to be plotted that is passed to fplot, the
function must first be defined in an M-file (or else be a
built-in function or anonymous function).

In the Symbolic Math Toolbox, ezplot lets you plot the
graph of a function directly from its defining symbolic
expression. For example, to plot a function of one
variable try:

syms t x y
ezplot(sin(2*x))
ezplot(t + 3*sin(t))
ezplot(2*x/(x^2 - 1))
ezplot(1/(1 + 30*exp(-x)))

 104

By default, the x-domain is [-2*pi, 2*pi]. This can
be overridden by a second input variable, as with:

ezplot(x*sin(1/x), [-.2 .2])

You will often need to specify the x-domain and y-
domain to zoom in on the relevant portion of the graph.
Compare, for example,

ezplot(x*exp(-x))
ezplot(x*exp(-x), [-1 4])

ezplot attempts to make a reasonable choice for the y-
axis. With the last figure, select Edit ► Axes
Properties in the Figure window and modify the y-axis
to start at -3, and hit enter. Changing the x-axis in the
Property Editor does not cause the function to be
reevaluated, however.

To plot an implicitly defined function of two variables:

ezplot(x^2 + y^2 - 1)

which plots the unit circle over the default x-domain and
y-domain of [-2*pi, 2*pi]. Since this is too large for
the unit circle, try this instead:

ezplot(x^2 + y^2 - 1, [-1 1 -1 1])

The first two entries in the second argument define the x-
domain. The second two define the y-domain. If the y-
domain is the same as the x-domain, then you only need
to specify the x-domain (see the next example).

 105

In both of the previous examples, you plotted a circle but
it looks like an ellipse. This is because with auto-scaling,
the x and y axes are not equal. Fix this by typing:

axis equal

To plot a parameterized function, provide two function
arguments. Try this, which plots a cycloid over the
domain -4π to 4π.

x = t-sin(t)
y = 1-cos(t)
ezplot(x,y, [-4*pi 4*pi])

The ezpolar function creates polar plots. Try creating a
three-leaf rose and a hyperbolic spiral:

ezpolar(sin(3*t))
ezpolar(1/t, [1 10*pi])

Entering the command funtool (no input arguments)
brings up three graphic figures, two of which will display
graphs of functions and one containing a control panel.
This function calculator lets you manipulate functions and
their graphs for pedagogical demonstrations. Type doc
funtool for details.

16.7 Three-dimensional surface graphs
MATLAB has several easy-to-use functions for creating
three-dimensional surface graphs.

ezcontour 3-D contour plot
ezcontourf 3-D filled contour plot
ezmesh 3-D mesh plot
ezmeshc 3-D mesh and contour plot

 106

ezsurf 3-D surface plot
ezsurfc 3-D surface and contour plot

Here is an interesting function to try:

syms x y
f = sin((x^2+y)/2)/(x^2-x+2)
ezsurfc(f)

Try each of these plotting functions with this function f.
For this function, ezcontourf gives more information
than ezcontour because the function fluctuates across a
single contour in several regions. The default domain for
x and y is -2π to 2π. You can change this with an
optional second parameter. Try:

ezsurf(f, [-4 4 -pi pi])

which defines the x-domain as -4 to 4, and the y-domain
as -π to π. The appearance of the plots can be modified
by the shading command after the figure is plotted (see
Section 13.5).

Functions with discontinuities or singularities can cause
difficulty for these graphing functions. Here is an
example that is similar to the function f above,

f = sin(abs(sqrt(x^2+y)))/(x^2-x+2)
ezsurf(f)

Click the rotate button

in the figure window, then click and drag the graph itself.
The function touches the z=0 plane along the curve

 107

defined by y = -x2, but the graph does not capture this
property very well because the gradient is not defined
along that curve. To plot this function accurately, you
would need to define your own mesh points, compute the
function numerically, and use surf or another numerical
graphing function instead.

The four mesh and surface functions listed above can also
plot parameterized surface functions. The first three
arguments are the x(s,t), y(s,t), and z(s,t) functions, and
the last (optional) argument defines the domain. To
create a symbolic seashell, start a new figure and define
your symbolic variables:

figure(1) ; clf
syms u v x y z

Next, define x, y, and z, just as you did for the numeric
seashell in Section 13.3. The MATLAB statements are
the same, except that now these variables are defined
symbolically, not numerically. Plot the symbolic surface:

ezsurfc(x,y,z,[0 2*pi])

Turn off the axis and set the shading, material, lighting,
and viewpoint, just as you did in Section 13.3 and 13.6.
You cannot change the ezsurfc color.

16.8 Three-dimensional curves
Parameterized 3-D curves are plotted with ezplot3. Try
this example, which combines a folium of Descartes in
the x-y plane with a sinusoid in the z direction:

syms x y z t
x = 3*t / (1+t^3)
y = 3*t^2 / (1+t^3)

 108

z = sin(t)
ezplot3(x,y,z)

The default domain for t is 0 to 2π. Here is an example
of how to change it:

ezplot3(x,y,z,[-.9 10])

The ezplot3 function can animate the plot so that you
can observe how x, y, and z depend on t. Try both of
these examples. The ball moves quickly over the first
half of the curve but more slowly over the second half:

ezplot3(x,y,z,'animate')
ezplot3(x,y,z, [-.9 10], 'animate')

The 2-D curve plotting function ezplot cannot animate
its plot, but you can do the same with ezplot3. Just give
it a z argument of zero. Try:

syms z
z = 0
ezplot3(x,y,z,'animate')

and then rotate the graph so that you are viewing the x-y
plane. Click the rotate button and drag the graph, or
right-click the graph and select Go to X-Y view. Then
click the Repeat button in the bottom left corner.

16.9 Symbolic matrix operations
This toolbox lets you represent matrices in symbolic form
as well as MATLAB’s numeric form. Given numeric
matrix a, sym(a) converts a to a symbolic matrix. Try:

a = magic(3)
A = sym(a)

 109

The function double(A) converts the symbolic matrix
back to a numeric one.

Symbolic matrices can also be generated. Try, for
example,

syms a b s
K = [a + b, a - b ; b - a, a + b]
G = [cos(s), sin(s); -sin(s), cos(s)]

Here G is a symbolic Givens rotation matrix.

Algebraic matrix operations with symbolic matrices are
computed as you would in MATLAB:

K+G matrix addition
K-G matrix subtraction
K*G matrix multiplication
inv(G) matrix inversion
K\G left matrix division
K/G right matrix division
G^2 power
G.' transpose
G' conjugate transpose (Hermitian)

These operations are illustrated by the following, which
use the matrices K and G generated above. The last
expression demonstrates that G is orthogonal.

L = K^2
collect(L)
factor(L)
diff(L, a)
int(K, a)
J = K/G
simplify(J*G)
simplify(G*(G.'))

 110

The initial result of the basic operations may not be in the
form desired for your application; so it may require
further processing with simplify, collect, factor, or
expand. These functions, as well as diff and int, act
entry-wise on a symbolic matrix.

16.10 Symbolic linear algebraic
functions
The primary symbolic matrix functions are:

det determinant
.' transpose
' Hermitian (conjugate transpose)
inv inverse
null basis for nullspace
colspace basis for column space
eig eigenvalues and eigenvectors
poly characteristic polynomial
svd singular value decomposition
jordan Jordan canonical form

These functions will take either symbolic or numeric
arguments. Computations with symbolic rational
matrices can be carried out exactly. Try, for example,

c = floor(10*rand(4))
D = sym(c)
A = inv(D)
inv(A)
inv(A) * A
det(A)
b = ones(1,4)
x = b/A
x*A
A^3

 111

These functions can, of course, be applied to general
symbolic matrices. For the matrices K and G defined in
the previous section, try:

inv(K)
simplify(inv(G))
p = poly(G)
simplify(p)
factor(p)
X = solve(p)
for j = 1:4
 X = simple(X)
end
pretty(X)
e = eig(G)
for j = 1:4
 e = simple(e)
end
pretty(e)
y = svd(G)
for j = 1:4
 y = simple(y)
end
pretty(y)
syms s real
r = svd(G)
r = simple(r)
pretty(r)
syms s unreal

The simple function had to be repeated several times for
some of the examples to get the simplest possible result.

Compare y and r. If you do not declare s as real, the
svd of the 2-by-2 Givens rotation matrix does not
demonstrate that the singular values are all equal to one.

A typical exercise in a linear algebra course is to
determine those values of t so that, say,

A = [t 1 0 ; 1 t 1 ; 0 1 t]

 112

is singular. The following simple computation:

syms t
A = [t 1 0 ; 1 t 1 ; 0 1 t]
p = det(A)
solve(p)

shows that this occurs for t = 0, √2, and √−2. See Section
16.11 for the solve function.

The function eig attempts to compute the eigenvalues
and eigenvectors in an exact closed form. Try, for
example,

for n = 4:6
 A = sym(magic(n))
 [V, D] = eig(A)
end

Except in special cases, however, the result is usually too
complicated to be useful. Try, for example, executing:

A = sym(floor(10 * rand(3)))
[V, D] = eig(A)
pretty(V)

a few times. The eigenvectors V are not very pretty. For
this reason, it is usually more efficient to do the
computation in variable-precision arithmetic, as is
illustrated by:

A = vpa(floor(10 * rand(3)))
[V, D] = eig(A)

The comments above regarding eig apply as well to the
computation of the singular values of a matrix by svd, as
can be observed by repeating some of the computations
above using svd instead of eig.

 113

16.11 Solving algebraic equations
For a symbolic expression S, the statement solve(S)
will attempt to find the values of the symbolic variable for
which the symbolic expression is zero. The solve
function cannot solve all equations. It does well with
polynomial equations, but can have difficulty with
trigonometric or other transcendental equations. If an
exact symbolic solution is indeed found, you can convert
it to a floating-point solution, if desired. If an exact
symbolic solution cannot be found, then a variable
precision one is computed. Here are three similar
equations. The first returns a symbolic result, the second
a numeric result, and the last one fails.

syms x b
solve(2^x - b)
solve(2^x + 3^x - 1)
solve(2^x + 3^x - b)

If you have an expression that contains several symbolic
variables, you can solve for a particular variable by
including it as an input argument in solve. The default
variable solved for is x, or the one closest (alphabetically)
to x if x is not a variable in the equation.

Try this example; note that X contains four solutions:

syms x y z
f = cos(x) + tan(x)
X = solve(f)
pretty(X)
double(X)
vpa(X)
for i = 1:4
 s = simple(subs(f, x, X(i)))
end

 114

Here are some more examples:

Y = solve(cos(x) - x)
Z = solve(x^2 + 2*x - 1)
pretty(Z)
a = solve(x^2 + y^2 + z^2 + x*y*z)
pretty(a)
b = solve(x^2 + y^2 + z^2 + x*y*z, y)
pretty(b)

a is a solution in the variable x, and b is a solution in y.

The inputs to solve can be quoted strings or symbolic
expressions. To solve an equation whose right-hand side
is not zero, use a quoted string or rearrange the equation:

X = solve('log(x) = x - 2')
X = solve(log(x) - x + 2)
vpa(X)
X = solve('2^x = x + 2')
X = solve(2^x - x - 2)
vpa(X)

This solves for the variable a:

solve('1 + (a+b)/(a-b) = b', 'a')

This solves the same for b, finding two solutions:

solve('1 + (a+b)/(a-b) = b', 'b')

The solution to the next example should be familiar. Try:

syms a b c x
solve(a*x^2 + b*x + c, x)
pretty(ans)

The function solve can also compute solutions of
systems of general algebraic equations. To solve, for

 115

example, the nonlinear system below, it is convenient to
first express the equations as strings.

S1 = 'x^2 + y^2 + z^2 = 2'
S2 = 'x + y = 1'
S3 = 'y + z = 1'

The solutions are then computed by:

[X, Y, Z] = solve(S1, S2, S3)

If you request the set of solutions in a single output with
multiple unknowns, a struct is returned. Try

a = solve(S1, S2, S3)
a.x
a.y
a.z

If you alter S2 to:

S2 = 'x + y + z = 1'

then the solution computed by:

[X, Y, Z] = solve(S1, S2, S3)

will be given in terms of square roots. If you prefer
solving symbolic expressions instead of strings, try

syms x y z
S1 = x^2 + y^2 + z^2 - 2
S2 = x + y - 1
S3 = y + z - 1
a = solve(S1, S2, S3)

The output of solve is in alphabetical order. For
example, if you changed the name of z to w in these three

 116

equations the results would be returned in the order
[W,X,Y]. The solve function can take quoted strings or
symbolic expressions as input arguments, but you cannot
mix the two types of inputs.

16.12 Solving differential equations
The function dsolve solves ordinary differential
equations. The symbolic differential operator is D:

Y = dsolve('Dy = x^2*y', 'x')

produces the solution C1*exp(1/3*x^3) to the
differential equation y' = x2 y. The solution to an initial
value problem can be computed by adding a second
symbolic expression giving the initial condition.

Y = dsolve('Dy = x^2*y', 'y(0)=4', 'x')

Notice that in both examples above, the final input
argument, 'x', is the independent variable of the
differential equation. If no independent variable is
supplied to dsolve, then it is assumed to be t. The
higher order symbolic differential operators D2, D3, …
can be used to solve higher order equations. Try:

dsolve('D2y + y = 0')
dsolve('D2y + y = x^2', 'x')
dsolve('D2y + y = x^2', ...
 'y(0) = 4', 'Dy(0) = 1', 'x')
dsolve('D2y - Dy = 2*y')
dsolve('D2y + 6*Dy = 13*y')
dsolve('D3y - 3*Dy = 2*y')
pretty(ans)

Systems of differential equations can also be solved:

 117

E1 = 'Dx = -2*x + y'
E2 = 'Dy = x - 2*y + z'
E3 = 'Dz = y - 2*z'

The solutions are then computed with:

[x, y, z] = dsolve(E1, E2, E3)
pretty(x)
pretty(y)
pretty(z)

You can explore further details with doc dsolve.

16.13 Further Maple access
The following features are not available in the Student
Version of MATLAB.

Over 50 special functions of classical applied
mathematics are available in the Symbolic Math Toolbox.
Enter doc mfunlist to see a list of them. These
functions can be accessed with the function mfun, for
which you are referred to doc mfun for further details.
The maple function allows you to use expressions and
programming constructs in Maple’s native language,
which gives you full access to Maple’s functionality. See
doc maple, or mhelp topic, which displays Maple’s
help text for the specified topic. The Extended Symbolic
Math Toolbox provides access to a number of Maple’s
specialized libraries of procedures. It also provides for
use of Maple programming features.

 118

17. Polynomials, Interpolation,
and Integration
Polynomial functions are frequently used by numerical
methods, and thus MATLAB provides several routines
that operate on polynomials and piece-wise polynomials.

17.1 Representing polynomials
Polynomials are represented as vectors of their
coefficients, so f(x)=x3-15x2-24x+360 is simply

p = [1 -15 -24 360]

The roots of this polynomial (15, √24, and -√24):

r = roots(p)

Given a vector of roots r, poly(r) constructs the
coefficients of the polynomial with those roots. With a
little bit of roundoff error, you should see the original
polynomial. Try it.

The poly function also computes the characteristic
polynomial of a matrix whose roots are the eigenvalues of
the matrix. The polynomial f(x) was chosen as the
characteristic equation of the magic(3) matrix. Try:

A = magic(3)
s = poly(A)
roots(s)
eig(A)
f = poly(sym(A))
solve(f)
eig(sym(A))

 119

17.2 Evaluating polynomials
You can evaluate a polynomial at one or more points with
the polyval function.

x = -1:2 ;
y = polyval(p,x)

Compare y with x.^3-15*x.^2-24*x+360. You can
construct a symbolic polynomial from the coefficient
vector p and back again:

syms x
f = poly2sym(p)
sym2poly(f)

17.3 Polynomial interpolation
Polynomials are useful as easier-to-compute
approximations of more complicated functions, via a
Taylor series expansion or by a low-degree best-fit
polynomial using the polyfit function. The statement:

p = polyfit(x, y, n)

finds the best-fit n-degree polynomial that approximates
the data points x and y. Try this example:

x = 0:.1:pi ;
y = sin(x) ;
p = polyfit(x, y, 5)
figure(1) ; clf
ezplot(@sin, [0 pi])
hold on
xx = 0:.001:pi ;
plot(xx, polyval(p,xx), 'r-')

Piecewise-polynomial interpolation is typically better
than a single high-degree polynomial. Try this example:

 120

n = 10
x = -5:.1:5 ;
y = 1 ./ (x.^2+1) ;
p = polyfit(x, y, n)
figure(2) ; clf
ezplot(@(x) 1/(x^2+1))
hold on
xx = -5:.01:5 ;
plot(xx, polyval(p,xx), 'r-')

As n increases, the error in the center improves but
increases dramatically near the endpoints. The spline
and pchip functions compute piecewise-cubic
polynomials which are better for this problem. Try:

figure(3) ; clf
yy = spline(x, y, xx) ;
plot(xx, yy, 'g')

Alternatively, with two inputs, spline and pchip return
a struct that contains the piecewise polynomial, which
can be later evaluated with ppval. Try:

figure(4) ; clf
pp = spline(x, y)
yy = ppval(pp, xx) ;
plot(xx, yy, 'c')

The spline function computes the conventional cubic
spline, with a continuous second derivative. In contrast,
pchip returns a piecewise polynomial with a
discontinuous second derivative, but it preserves the
shape of the function better than spline.

Polynomial multiplication and division (convolution and
deconvolution) are performed by the conv and deconv
functions. MATLAB also has a built-in fast Fourier
transform function, fft.

 121

17.4 Numeric integration (quadrature)
The quad and quadl functions are the numeric
equivalent of the symbolic int function, for computing a
definite integral. Both rely on polynomial
approximations of subintervals of the function being
integrated. quadl is a higher-order method that can be
more accurate. The syntax quad(@f,a,b) computes an
approximate of the definite integral,

∫
b

a
dxxf)(

Compare these examples:

quad(@(x) x.^5, 1, 2)
quad(@log, 1, 4)
quad(@(x) x .* exp(x), 0, 2)
quad(@(x) exp(-x.^2), 0, 1e6)
quad(@(x) sqrt(1 + x.^3), -1, 2)
quad(@(x) real(airy(x)), -3, 3)

with the same results from the Symbolic Toolbox:

int('x^5', 1, 2)
int('log(x)', 1, 4)
int('x * exp(x)', 0, 2)
int('exp(-x^2)', 0, inf)
int('sqrt(1 + x^3)', -1, 2)
int('real(airy(x))', -3, 3)

Symbolic integration (int) can find a simple closed-form
solution to the first four examples, above. The next is not
in closed form, and the last example cannot be solved by
int at all. It can only be computed numerically, with
quad.

 122

The function f provided to quad and quadl must operate
on a vector x and return f(x) for each component of the
vector. An optional fourth argument to quad and quadl
modifies the error tolerance. Double and triple integrals
are evaluated by dblquad and triplequad. Array-
valued functions are integrated with quadv.

18. Solving Equations
Solving equations is at the core of what MATLAB does.
Let us look back at what kinds of equations you have seen
so far in the book. Next, in this chapter you will learn
how MATLAB finds numerical solutions to nonlinear
equations and systems of differential equations.

18.1 Symbolic equations
The Symbolic Toolbox can solve symbolic linear systems
of equations using backslash (Section 16.9), nonlinear
systems of equations using the solve function (Section
16.11), and systems of differential equations using
dsolve (Section 16.12). The rest of MATLAB focuses
on finding numeric solutions to equations, not symbolic.

18.2 Linear systems of equations
The pervasive and powerful backslash operator solves
linear systems of equations of the form A*x=b (Sections
3.3, 15.3, and 16.9). The expression x=A\b handles the
case when A is square or rectangular (under- or over-
determined), full-rank or rank-deficient, full or sparse,
numeric or symbolic, symmetric or unsymmetric, real or
complex, and all but one reasonable combination of this
extensive list (backslash does not work with complex
rectangular sparse matrices). It efficiently handles
triangular, permuted triangular, symmetric positive-

 123

definite, and Hessenberg matrices. Further details for the
case when A is sparse are discussed in Chapter 15. When
the matrix has specific known properties, the linsolve
function can be faster (see Section 5.5, and a related
Fortran code in Chapter 10).

18.3 Polynomial roots
Solving the function f(x)=0 for the special case when f is
a polynomial and x is a scalar is discussed in Section
17.1. The more general case is discussed below.

18.4 Nonlinear equations
The fzero function finds a numerical solution to f(x)=0
when f is a real function over the real domain (both x and
f(x) must be real scalars). This is useful when an analytic
solution is not possible. You must supply either an initial
guess, or two values of x for which the function differs in
sign. Here is a simple example that computes √2.

fzero(@(x) x^2-2, 1)

The fzero function can only find an x for which f(x)
crosses the x-axis. If the sign of f(x) does not differ on
either side of x, the zero point x will not be found. Try
this example. Create two anonymous functions (regular
M-files can also be used):

fa = @(x) (x-2)^2
fb = @(x) (x-2)^2 - 1e-12

The zero of fa cannot be found, and neither can a zero of
fb be found if your initial guess is too far from the
solution. Both of these examples will fail:

 124

fzero(fa, 1)
fzero(fb, 3)

Both functions can be easily solved with the Symbolic
Toolbox. Note that solve correctly reports that 2 is a
double root of (x-2)^2. Try:

syms x
solve((x-2)^2)
s = solve((x-2)^2-1e-12)
fb(s(1))
fb(s(2))

The zeros of fb can be found numerically only if you
guess close enough, or if you provide two initial values of
x for which fb differs in sign:

fzero(fb, 2)
format long
fzero(fb, [2 3])
fzero(fb, [1 2])

All of the functions used in the examples so far can be
solved analytically. Here is one that cannot (also plot the
function so that you can see where it crosses the x-axis):

f = @(x) real(airy(x))
figure(1) ; clf
ezplot(f)
solve('real(airy(x))')

The first zero is easy to compute numerically:

s = fzero(f, 0)
hold on
plot(s, f(s), 'ro')

 125

The fminbnd function finds a local minimum of a
function, given a fixed interval. This example looks for a
minimum in the range -4 to 0.

xmin = fminbnd(f, -4, 0)
plot(xmin, f(xmin), 'ko')

To find a local maximum, simply find the minimum of -f.

g = @(x) -real(airy(x))
xmax = fminbnd(g, -5, -4)
plot(xmax, f(xmax), 'ko')

Now find the zero between these two values of x:

s = fzero(f, [xmax xmin])
plot(s, f(s), 'ro')

The fminbnd function can only find minima of real-
valued functions of a real scalar. To find a local
minimum of a scalar function of a real vector x, use
fminsearch instead. It takes an initial guess for x rather
than an interval.

18.5 Ordinary differential equations
The symbolic solution to the ordinary differential
equation y'=t2y appears in Section 16.12. Here is the
same ODE, with a specific initial value of y(0)=1, along
with its symbolic solution.

syms t y
Y = dsolve('Dy = t^2*y', 'y(0)=1', 't')

Not all ODEs can be solved analytically, so MATLAB
provides a suite of numerical methods. The primary
method for initial value problems is ode45. For an ODE
of the form y' = f(t,y), the basic usage is:

 126

[tt,yy] = ode45(@f, tspan, y0)

where @f is a handle for a function yprime=f(t,y) that
computes the derivative of y, tspan is the time span to
compute the solution (a 2-element vector), and y0 is the
initial value of y. The variable t is a scalar, but y can be
a vector. The solution is a column vector tt and a matrix
yy. At time tt(i) the numerical approximation to y is
yy(i,:).

To solve this ODE numerically, create an anonymous
function:

f1 = @(t,y) t^2 * y

Now you can compute the numeric solution:

[tr,yr] = ode45(f1, [0 2], 1) ;

Compare it with the symbolic solution:

ts = 0:.05:2 ;
ys = subs(Y, t, ts) ;
figure(2) ; clf
plot(ts,ys, 'r-', tr,yr, 'bx') ;
legend('symbolic', 'numeric')
ys = subs(Y, t, tr) ;
[tr ys yr ys-yr]
err = norm(ys-yr) / norm(ys)

To solve higher-order ODEs, you need to convert your
ODE into a first-order system of ODEs. Let us start with
the ODE y''+y=t2 with initial values y(0)=1 and y'(1)=0.
The symbolic solution to this ODE appears in Section
16.12, but here is the solution with initial values
specified:

 127

Y = dsolve('D2y + y = t^2', ...
 'y(0)=1', 'Dy(0)=0', 't')

Define y1=y and y2=y'. The new system is y2'=t2-y1 and
y1'=y2. Create an anonymous function:

f2 = @(t,y) [y(2) ; t^2-y(1)]

The function f2 returns a 2-element column vector. The
first entry is y1' and the second is y2'. We can now solve
this ODE numerically:

[tr,yy] = ode45(f2, [0 2], [1 0]') ;
yr = yy(:,1) ;

Note that ode45 returns a 61-by-2 solution yy. Row i of
yy contains the numerical approximation to y1 and y2 at
time tr(i). Compare the symbolic and numeric
solutions using the same code for the previous ODE.

MATLAB’s ode45 can return a structure s=ode45(...)
which can be used by deval to evaluate the numerical
solution at any time t that you specify. There are seven
other ODE solvers, able to handle stiff ODEs and for
differential algebraic equations. Some can be more
efficient, depending on the type of ODE you are trying to
solve. Type doc ode45 for more information.

18.6 Other differential equations
Delay differential equations (DDEs) are solved by
dde23. The function bvp4c solves boundary value ODE
problems. Finally, partial differential equations are
solved with pdepe and pdeval. See the online help
facility for more information on these ODE, DDE, and
PDE solvers.

 128

19. Displaying Results
The format command provides basic control over how
your results are printed in the Command window. For
example, if you want a trigonometric table with just a few
digits of precision, you could do:

warning('off','MATLAB:divideByZero')
format short
x = [0:.1:pi]' ;
f = {@sin, @cos, @tan, @cot} ;
y = x ;
for i = 1:length(f)
 y = [y f{i}(x)] ;
end
disp(y)

The cell array f is used in the next example; otherwise a
simpler way to construct y would be:

y = [x sin(x) cos(x) tan(x) cot(x)] ;

You can increase the number of digits printed with
format long, but that does not allow you to define how
many digits are printed. If you tried to add pi/2 to the
table, the tan column would contain a huge (erroneous)
value causes the rest of the digits in the table to be
obscured. Try adding the statement x=[x ; pi/2] after
x is first defined.

This problem is where fprintf is useful. If you know
C, it acts just like the standard C fprintf, except that
the reference to the file is optional in the MATLAB
fprintf, and MATLAB’s fprintf can print arrays.

The basic syntax (like printf in C) is:

 129

fprintf(format_string, arg1, arg2, ...)

The format string tells MATLAB how to print each
argument (arg1, arg2, ...). It contains plain text, which
is printed verbatim, plus special conversion codes that
start with '%' (to print an argument) or '\' (to print a
special character such as a newline, tab, or backslash).

The basic syntax for a conversion code is %W.Pc, where W
is the optional field width (the total number of characters
used to represent the number), P is the optional precision
(the number of digits to the right of the decimal point),
and c is the conversion type. Both W and P are fixed
integers. The dot before the P field is required only if P is
specified. The most common conversion types are:

d decimal (integer)
e exponential notation (as in 2.3e+002)
f fixed-point notation
g e or f, whichever is more compact
s string

Special characters include \n for newline, \t for tab, and
\\ for backslash itself. A single quote is either \'' or
two single quotes ('').

Here is a simple example that prints pi with 8 digits past
the decimal point, in a space of 12 characters:

fprintf('pi is %12.8f\n', pi)

Try changing the 12 to 14, and you will see how fprintf
pads the string for pi to make it 14 characters wide. Note
the last character is '\n', which is a newline. If this
were excluded, the next line of output would start at the

 130

end of this line. Sometimes that is what you want (see
below for an example).

Unlike printf or fprintf in the C language,
MATLAB’s fprintf can print arrays. It accesses an
array column by column, and reuses the format string as
needed. This simple example prints the magic(3) array.
It also gives you an example of how to print a backslash
and a single quote:

A = magic(3)
fprintf('%4.2f %4.2f %4.2f\n', A')
b = (1:3)' ;
fprintf('A\\b is [%g %g %g]''\n', A\b);

The array A is transposed in the first fprintf, because
fprintf cycles through its data column by column, but
each use of the format string prints a single line of text as
one row of characters on the Command window.
Fortunately it makes no difference for vectors:

fprintf('x is %d\n', 1:5)
fprintf('x is %d\n', (1:5)')

Here is a way of adding extra information to your display:

fprintf(...
'row %d is %4.2f %4.2f %4.2f\n', ...
[(1:3)' A]')

Here is a revised trigonometric table using fprintf
instead. A header has been added as well:

x = [0:.1:pi]' ;
f = {@sin, @cos, @tan, @cot} ;
y = x ;
fprintf(' x') ;
for i = 1:length(f)

 131

 fprintf(' %s(x)',func2str(f{i}));
 y = [y f{i}(x)] ;
end
fprintf('\n') ;
fprintf(...
'%3.2f %9.4f %9.4f %9.4f %9.4f\n',y');

fprintf, by default, prints to the Command window.
You can instead open a file, write to it with fprintf, and
close the file. Add:

fid = fopen('mytable.txt', 'w') ;

to the beginning of the example. Add fid as the first
argument to each fprintf. Finally, close the file at the
end with the statement:

fclose(fid) ;

Your table is now in the file mytable.txt.

The sprintf function is just like fprintf, except that it
sends its output to a string instead of the Command
window or a file. It is useful for plot titles and other
annotation, as in:

title(sprintf('The result is %g', pi))

You cannot control the field width or precision with a
variable as you can in the C printf or fprintf, but
string concatenation along with sprintf or num2str
can help here. Try:

for n = 1:16
 s = num2str(n) ;
 s = ['%2d digits: %.' s 'g\n'] ;
 fprintf(s, n, pi) ;
end

 132

20. Cell Publishing
Cell publishing creates nicely formatted reports of
MATLAB code, command window text output, figures,
and graphics in HTML, LaTeX, XML, Microsoft Word,
or Microsoft Powerpoint.

The term cell publishing has nothing to do with the cell
array data type. In this context, a cell is a section of an
M-file that corresponds to a section of your report. A cell
starts with a cell divider, which is a comment with two
percent signs at the beginning of a line, and ends either at
the start of the next cell, or the end of the M-file. Cell
publishing is normally done via scripts, not functions.

Create a new M-file, and select the Editor menu item
Cell ► Enable Cell Mode. Try this 2-cell example:

%% Integrate a function
syms x
f = x^2
e = int(f)

%% Plot the results
figure(1)
ezplot(e)

Now publish the report to HTML, by selecting File ►
Save and Publish to HMTL (or just File ► Publish
to HMTL if you have already saved the M-file), or by
clicking the publish button:

The M-file is evaluated and the report is presented in
HTML form in a new window. The report is also saved

 133

to a file with the same name as your M-file but with an
html file type. It includes the cell titles (the text after the
double %%), the code itself, the output of the code, and
any figures generated. You can change this default
behavior in the File ► Preferences menu, under the
Editor/Debugger: Publishing section.

To run the M-file without publishing the results, simply
click the run button, as usual, or select Cell ► Evaluate
Entire Cell. Individual cells can also be evaluated.

Additional descriptive text can be added as plain
comments (one %) after the cell divider but before any
commands. The text can be marked in various styles
(bold, monospaced, TeX equations, and bullet lists, for
example). See the Cell ► Insert Text Markup ► ...
menu for a complete list.

To add descriptive text without starting a new report
section, start with a cell divider that has no title (a line
containing just %%). This creates a new cell, but it appears
in the same section of the report as the cell before it.

21. Code Development Tools
The Current Directory window provides a pull-down
menu with seven different reports that it can generate.
These tools are described in the seven sections of this
chapter, below.

The Current Directory window has two modes of display,
the classic view and the visual directory view. In the
visual directory view, you can click on a filename in the
Current Directory window to edit it. If cell publishing
has been used to publish the results of an M-file to an

 134

HTML file, a link to the published report will appear next
to the filename. A one-line description of each M-file is
listed.

21.1 M-lint code check report
Navigate to the directory where you created the
ddomloops M-file (see Chapter 8). On Microsoft
Windows, this is your work directory by default. In the
Current Directory window, select the M-Lint Code Check
Report. The report examines all M-files in the directory
and checks them for suspicious constructs. Scroll down
to the report on ddomloops.m, and note that one warning
is listed:

5: The value assigned here to variable 'm'
is never used.

Click on the underlined 5:. The Editor window opens
the ddomloops.m file and highlights line 5:

[m n] = size(A) ;

The variable m is assigned by this statement, but not used.
This is not an error, just a warning. It does remind you
that ddomloops is only intended for square matrices,
however. This is a good reminder, because no test is
made to ensure the matrix is square. Try:

ddomloops(ones(2,3))

An obscure error occurs because the non-existent entry
A(3,3) is referenced. This is not a reliable function.

 135

Save a copy of your original ddomloops.m file, and call
it ddomloops_orig.m. You will need it for the example
in Section 21.6.

Add the following code to ddomloops just after line 5:

if (m ~= n)
 error('A must be square') ;
end

Rerun the M-lint report by clicking the Refresh button:

The warning has gone away, and your code is more
reliable. Try ddomloops(ones(2,3)) again. It
correctly reports an error that A must be square.

21.2 TODO/FIXME report
The TODO/FIXME Report lists all lines in an M-file
containing the words TODO, FIXME, or NOTE, along with
the line numbers in which they appear. Clicking the line
number brings up the editor at that line. This is useful
during incremental development of a large project.

21.3 Help report
The Help Report examines each M-file in the current
directory for the comment lines that appear when you
type help or doc followed by the M-file name. Here is
its report on ddomloops:

 136

B = ddomloops(A) returns a diagonally

 B = ddomloops(A) returns a diagonally
 dominant matrix B by modifying the
 diagonal of A.

No example
No see-also line
No copyright line

The first line in the report is the description line, which is
the first line after the function statement itself (if the
line is a comment line). The MATLAB convention is for
the first comment line to be a stand-alone one-line
description of the function, starting with the name of the
function in all capital letters. Edit ddomloops and add a
new description line, as the second line in the file:

%DDOMLOOPS make matrix diagonally dominant

The Help Report also complains that there is no example,
no see-also line, and no copyright line. An example starts
with a comment line that starts with the word example or
Example and ends at the next blank comment line. The
see-also line is a comment line that starts with the words
See also. The copyright line is a comment that starts
with the word Copyright. All of these constructs are
optional, of course, but adding them to the M-file makes
the code easier to use. After the last comment line, add
the following comments:

%
% Example
% A = [1 0 ; 4 1]
% B = ddomloops(A)
% B is the same as A, except B(2,2)
% is slightly greater than 4.

 137

%
% See also DDOM, DIAGDOM.

Finally, add a blank line (not a comment), and then the
line:

% Copyright 2004, Me.

The function names DDOM and DIAGDOM appear in upper
case, so that they can be recognized as function names.
Rerun the Help Report. You will see all of these
constructs listed in the report. Type help ddomloops or
doc ddomloops in the Command Window. You should
see ddom and diagdom underlined and in blue as active
links. Click on them, and you will see the corresponding
help or doc for those functions (assuming you created
them in Chapters 7 and 8).

21.4 Contents report
The Contents Report generates a special file called
Contents.m that summarizes all of the M-files in the
current directory. Select it from the menu, and scroll
down until you see your modified ddomloops function.
Its name is followed by its one-line description, generated
automatically from the description line in ddomloops.m.
You can edit the Contents.m file to add more
description, and then click the refresh button to generate a
new Contents Report. Any discrepancies are reported to
you. For example, if you edit the one-line description in
Contents.m, but not in the corresponding M-file, a
warning will appear and you will have the opportunity to
fix the discrepancy.

Type the command help directory where directory
is the name of the current directory. This use of the help

 138

command prints the Contents.m listing, and highlights
the name of each function. Click on ddomloops in the
list, and the help ddomloops information will appear.
Many of MATLAB’s functions are implemented as M-
files and are documented in the same way that you have
documented your current directory. For example, help
general lists the Contents.m file of the directory
MATLAB/toolbox/matlab/general (where MATLAB is
the directory in which MATLAB is installed).

Create a directory entitled diagonal_dominance and
place all of the related M-files and mexFunctions in this
directory. Add the diagonal_dominance directory to
your path (see Section 7.7). Now, whatever your current
directory is help diagonal_dominance will list these
files, and the ddom, ddomloops, and diagdom functions
will always be available to you.

21.5 Dependency report
For each M-file in the current directory, the Dependency
Report lists the M-files and mexFunctions that it relies
on, and which M-files rely on it. Create an M-file script
in the diagonal_dominance directory called
simple.m:

A = [1 2 ; 3 0]
B = ddomloops(A)
C = diagdom(A)

Run the dependency report. simple is listed as a parent
of its child function ddomloops. The mexFunction
diagdom is listed as a child of simple. diagdom itself
does not appear in the list because it is not an M-file.

 139

21.6 File comparison report
The File Comparison Report is very useful in tracking
changes to your code as you develop it. Select this report,
and scroll down until you see your original
ddomloops_orig file. Click <file 1>. Next, find your
new ddomloops and click <file 2>. A color-coded
side-by-side display of these two functions is displayed.
Plain gray text is code that is identical between the two
files. Pink highlighting denotes lines that differ between
the two files. Green highlighting denotes lines that
appear in one file but not the other.

21.7 Profile and coverage report
MATLAB provides an M-file profiler that lets you see
how much computation time each line of an M-file uses.
Select Desktop ► Profiler or type profile viewer.
Try this example. Type in a M-file script, ddomtest.m:

A = rand(1000) ;
B = ddomloops(A) ;

Type ddomtest in the text window entitled Run this
code and hit enter. A short table appears with the
number of calls and time spent in each function. Most of
the time is spent in ddomloops. Click on the function
name and you are provided a lengthy description of the
time spent in ddomloops. This report is useful for
improving code performance and for debugging.
Untested lines of code could harbor a bug.

The Coverage Report provides a short overview of the
profile coverage of each file in a directory. Selecting it
shows that ddomtest was fully exercised (100%
coverage), but a few lines of code in ddomloops were

 140

not tested. The code you added to check for rectangular
matrices was not tested, and the case when the diagonal
entry A(i,i) is negative was not tested.

 141

22. Help Topics
There are many MATLAB functions and features that
cannot be included in this Primer. Listed in the following
tables are some of the MATLAB functions and operators,
grouped by subject area. You can browse through these
lists and use the online help facility, or consult the online
documents for more detailed information on the
functions, operators, and special characters. Open the
Help Browser to Help: MATLAB: Functions --
Categorical List.

The help command lists help information in the
MATLAB Command window. The tables are derived
from the MATLAB 7 (R14) help command. Typing
help alone will provide a listing of the major MATLAB
directories, similar to the following table. Typing help
topic, where topic is an entry in the left column of the
table, will display a description of the topic. For
example, help general will display on your Command
window a plain text version of Section 22.1. Typing
help ops will display Section 22.2, starting on page 144,
and so on.

The doc command opens the MATLAB help browser. It
display the M-file help, just as the help command, if the
command has no HTML reference page. Try doc
general or doc ops.

Each topic is discussed in a single subsection. The page
number for each subsection is also listed in the following
table.

 142

Help topics page
general General purpose commands 142
ops Operators and special characters 144
lang Programming language constructs 147

elmat
Elementary matrices and matrix
manipulation

149

elfun Elementary math functions 151
specfun Specialized math functions 153
matfun Matrix functions - linear algebra 155
datafun Data analysis & Fourier transforms 157
polyfun Interpolation and polynomials 158
funfun Function functions & ODE solvers 160
sparfun Sparse matrices 162
scribe Annotation and plot editing 164
graph2d Two-dimensional graphs 164
graph3d Three-dimensional graphs 165
specgraph Specialized graphs 168
graphics Handle Graphics 171
uitools Graphical user interface tools 173
strfun Character strings 176
imagesci Image, scientific data input/output 178
iofun File input/output 179
audiovideo Audio and video support 182
timefun Time and dates 183
datatypes Data types and structures 183
verctrl Version control 187
codetools Creating and debugging code 187
helptools Help commands 188
winfun Microsoft Windows functions 189
demos Examples and demonstrations 190
local Preferences 190
symbolic Symbolic Math Toolbox 191

 143

22.1 General purpose commands
help general

General information
syntax Help on MATLAB command syntax
demo Run demonstrations
ver MATLAB, Simulink, & toolbox version
version MATLAB version information

Managing the workspace
who List current variables
whos List current variables, long form
clear Clear variables, functions from memory
pack Consolidate workspace memory
load Load variables from MAT- or ASCII file
save Save variables to MAT- or ASCII file
saveas Save figure or model to file
memory Help for memory limitations
recycle Recycle folder option for deleted files
quit Quit MATLAB session
exit Exit from MATLAB

Managing commands and functions
what List MATLAB-specific files in directory
type List M-file
open Open files by extension
which Locate functions and files
pcode Create pre-parsed P-file
mex Compile MEX-function
inmem List functions in memory
namelengthmax Max length of function or variable name

 144

Managing the search path
path Get/set search path
addpath Add directory to search path
rmpath Remove directory from search path
rehash Refresh function and file system caches
import Import Java packages into current scope
finfo Identify file type
genpath Generate recursive toolbox path
savepath Save MATLAB path in pathdef.m file

Managing the Java search path
javaaddpath Add directories to the dynamic Java path
javaclasspath Get and set Java path
javarmpath Remove dynamic Java path directory

Controlling the Command window
echo Echo commands in M-files
more Paged output in command window
diary Save text of MATLAB session
format Set output format
beep Produce beep sound
desktop Start and query the MATLAB Desktop
preferences MATLAB user preferences dialog

Debugging
debug List debugging commands

Locate dependent functions of an M-file
depfun Find dependent functions of M- or P-file
depdir Find dependent directories of M or P-file

 145

Operating system commands
cd Change current working directory
copyfile Copy file or directory
movefile Move file or directory
delete Delete file or graphics object
pwd Show (print) current working directory
dir List directory
ls List directory
fileattrib Set/get attributes of files and directories
isdir True if argument is a directory
mkdir Make new directory
rmdir Remove directory
getenv Get environment variable
! Execute operating system command
dos Execute DOS command and return result
unix Execute Unix command and return result
system Execute system command, return result
perl Execute Perl command and return result
computer Computer type
isunix True for Unix version of MATLAB
ispc True for Windows version of MATLAB

Loading and calling shared libraries
calllib Call a function in an external library
libpointer Create pointer for external libraries
libstruct Create structure ptr. for external libraries
libisloaded True if specified shared library is loaded
loadlibrary Load a shared library into MATLAB
libfunctions Info. on functions in external library
libfunctionsview View functions in external library
unloadlibrary Unload a shared library
java Using Java from within MATLAB
usejava True if Java feature supported

 146

22.2 Operators and special characters
help ops

Arithmetic operators (help arith, help slash)
plus Plus +

uplus Unary plus +

minus Minus -

uminus Unary minus -

mtimes Matrix multiply *

times Array multiply .*

mpower Matrix power ^

power Array power .^

mldivide Backslash or left matrix divide \

mrdivide Slash or right matrix divide /

ldivide Left array divide .\

rdivide Right array divide ./

kron Kronecker tensor product kron

Relational operators (help relop)
eq Equal ==

ne Not equal ~=

lt Less than <

gt Greater than >

le Less than or equal <=

ge Greater than or equal >=

Logical operators
 Short-circuit logical AND &&

 Short-circuit logical OR ||

and Logical AND &

or Logical OR |

not Logical NOT ~

xor Logical EXCLUSIVE OR
any True if any element of vector is nonzero
all True if all elements of vector are nonzero

 147

Special characters
colon Colon :

paren Parentheses and subscripting ()

paren Brackets []

paren Braces and subscripting { }

punct Function handle creation @

punct Decimal point .

punct Structure field access .

punct Parent directory ..

punct Continuation ...

punct Separator ,

punct Semicolon ;

punct Comment %

punct Operating system command !

punct Assignment =

punct Quote '

transpose Transpose .'

ctranspose Complex conjugate transpose '

horzcat Horizontal concatenation [,]

vertcat Vertical concatenation [;]

subsasgn Subscripted assignment () { }

subsref Subscripted reference () { }

subsindex Subscript index

Bitwise operators
bitand Bit-wise AND
bitcmp Complement bits
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitxor Bit-wise EXCLUSIVE OR
bitset Set bit
bitget Get bit
bitshift Bit-wise shift

 148

Set operators
union Set union
unique Set unique
intersect Set intersection
setdiff Set difference
setxor Set exclusive-or
ismember True for set member

22.3 Programming language constructs
help lang

Control flow
if Conditionally execute statements
else When if condition fails
elseif When if failed and condition is true
end Scope of for, while, switch, try, if
for Repeat specific number of times
while Repeat an indefinite number of times
break Terminate of while or for loop
continue Pass control to next iteration of a loop
switch Switch among several cases
case switch statement case
otherwise Default switch statement case
try Begin try block
catch Begin catch block
return Return to invoking function
error Display mesage and abort function
rethrow Reissue error

Evaluation and execution
eval Execute MATLAB expression in string
evalc eval with capture
feval Execute function specified by string
evalin Evaluate expression in workspace
builtin Execute built-in function
assignin Assign variable in workspace
run Run script

 149

Scripts, functions, and variables
script About MATLAB scripts and M-files
function Add new function
global Define global variable
persistent Define persistent variable
mfilename Name of currently executing M-file
lists Comma separated lists
exist Check if variables or functions defined
isglobal True for global variables (obsolete)
mlock Prevent M-file from being cleared
munlock Allow M-file to be cleared
mislocked True if M-file cannot be cleared
precedence Operator precedence in MATLAB
isvarname Check for a valid variable name
iskeyword Check if input is a keyword
javachk Validate level of Java support
genvarname MATLAB variable name from string

Argument handling
nargchk Validate number of input arguments
nargoutchk Validate number of output arguments
nargin Number of function input arguments
nargout Number of function output arguments
varargin Variable length input argument list
varargout Variable length output argument list
inputname Input argument name

Message display and interactive input
warning Display warning message
lasterr Last error message
lastwarn Last warning message
disp Display array
display Display array
intwarning Controls state of the 4 integer warnings
input Prompt for user input
keyboard Invoke keyboard from M-file

 150

22.4 Elementary matrices and matrix
manipulation
help elmat

Elementary matrices
zeros Zeros array
ones Ones array
eye Identity matrix
repmat Replicate and tile array
rand Uniformly distributed random numbers
randn Normally distributed random numbers
linspace Linearly spaced vector
logspace Logarithmically spaced vector

freqspace
Frequency spacing for frequency
response

meshgrid x and y arrays for 3-D plots
accumarray Construct an array with accumulation
: Regularly spaced vector and array index

Basic array information
size Size of matrix
length Length of vector
ndims Number of dimensions
numel Number of elements
disp Display matrix or text
isempty True for empty matrix
isequal True if arrays are numerically equal

isequalwithequalnans
True if arrays are numerically
equal (assuming nan==nan)

Array utility functions
isscalar True for scalar
isvector True for vector

 151

Matrix manipulation
cat Concatenate arrays
reshape Change size
diag Diagonal matrices; diagonals of matrix
blkdiag Block diagonal concatenation
tril Extract lower triangular part
triu Extract upper triangular part
fliplr Flip matrix in left/right direction
flipud Flip matrix in up/down direction
flipdim Flip matrix along specified dimension
rot90 Rotate matrix 90 degrees
: Regularly spaced vector and array index
find Find indices of nonzero elements
end Last index
sub2ind Linear index from multiple subscripts
ind2sub Multiple subscripts from linear index
ndgrid Arrays of N-D functions & interpolation
permute Permute array dimensions
ipermute Inverse permute array dimensions
shiftdim Shift dimensions
circshift Shift array circularly
squeeze Remove singleton dimensions

Special variables and constants
ans Most recent answer
eps Floating-point relative accuracy
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
pi 3.1415926535897...
i, j Imaginary unit
inf Infinity
nan Not-a-Number
isnan True for Not-a-Number
isinf True for infinite elements
isfinite True for finite elements

 152

Specialized matrices
compan Companion matrix
gallery Higham test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Symmetric eigenvalue test problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

22.5 Elementary math functions
help elfun

Trigonometric (also continued on next page)
sin Sine
sind Sine of argument in degrees
sinh Hyperbolic sine
asin Inverse sine
asind Inverse sine, result in degrees
asinh Inverse hyperbolic sine
cos Cosine
cosd Cosine of argument in degrees
cosh Hyperbolic cosine
acos Inverse cosine
acosd Inverse cosine, result in degrees
acosh Inverse hyperbolic cosine
tan Tangent
tand Tangent of argument in degrees
tanh Hyperbolic tangent
atan Inverse tangent
atand Inverse tangent, result in degrees
atan2 Four quadrant inverse tangent

 153

Trigonometric (continued)
atanh Inverse hyperbolic tangent
sec Secant
secd Secant of argument in degrees
sech Hyperbolic secant
asec Inverse secant
asecd Inverse secant, result in degrees
asech Inverse hyperbolic secant
csc Cosecant
cscd Cosecant of argument in degrees
csch Hyperbolic cosecant
acsc Inverse cosecant
acscd Inverse cosecant, result in degrees
acsch Inverse hyperbolic cosecant
cot Cotangent
cotd Cotangent of argument in degrees
coth Hyperbolic cotangent
acot Inverse cotangent
acotd Inverse cotangent, result in degrees
acoth Inverse hyperbolic cotangent

Exponential
exp Exponential
expm1 Compute exp(x)-1 accurately
log Natural logarithm
log1p Compute log(1+x) accurately
log10 Common (base 10) logarithm
log2 Base 2 logarithm, dissect floating-point
pow2 Base 2 power, scale floating-point
realpow Array power with real result (or error)
reallog Natural logarithm of real number
realsqrt Square root of number ≥ 0
sqrt Square root
nthroot Real nth root of real numbers
nextpow2 Next higher power of 2

 154

Complex
abs Absolute value
angle Phase angle
complex Complex from real and imaginary parts
conj Complex conjugate
imag Complex imaginary part
real Complex real part
unwrap Unwrap phase angle
isreal True for real array
cplxpair Sort into complex conjugate pairs

Rounding and remainder
fix Round towards zero
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus (remainder after division)
rem Remainder after division
sign Signum

22.6 Specialized math functions
help specfun

Number theoretic functions
factor Prime factors
isprime True for prime numbers
primes Generate list of prime numbers
gcd Greatest common divisor
lcm Least common multiple
rat Rational approximation
rats Rational output
perms All possible permutations
nchoosek All combinations of N choose K
factorial Factorial function

 155

Specialized math functions
airy Airy functions
besselj Bessel function of the first kind
bessely Bessel function of the second kind

besselh
Bessel function of 3rd kind (Hankel
function)

besseli Modified Bessel function of the 1st kind
besselk Modified Bessel function of the 2nd kind
beta Beta function
betainc Incomplete beta function
betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integral
erf Error function
erfc Complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral function
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
psi Psi (polygamma) function
legendre Associated Legendre function
cross Vector cross product
dot Vector dot product

Coordinate transforms
cart2sph Cartesian to spherical coordinates
cart2pol Cartesian to polar coordinates
pol2cart Polar to Cartesian coordinates
sph2cart Spherical to Cartesian coordinates
hsv2rgb Convert HSV colors to RGB
rgb2hsv Convert RGB colors to HSV

 156

22.7 Matrix functions — numerical
linear algebra
help matfun

Matrix analysis
norm Matrix or vector norm
normest Estimate the matrix 2-norm
rank Matrix rank
det Determinant
trace Sum of diagonal elements
null Null space
orth Orthogonalization
rref Reduced row echelon form
subspace Angle between two subspaces

Linear equations
\ and / Linear equation solution (help slash)
linsolve Linear equation solution, extra control
inv Matrix inverse
rcond LAPACK reciprocal condition estimator
cond Condition number
condest 1-norm condition number estimate
normest1 1-norm estimate
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
lu LU factorization
luinc Incomplete LU factorization
qr Orthogonal-triangular decomposition
lsqnonneg Linear least squares (≥ 0 constraints)
pinv Pseudoinverse
lscov Least squares with known covariance

 157

Eigenvalues and singular values
eig Eigenvalues and eigenvectors
svd Singular value decomposition
gsvd Generalized singular value decomp.
eigs A few eigenvalues
svds A few singular values
poly Characteristic polynomial
polyeig Polynomial eigenvalue problem
condeig Condition number of eigenvalues
hess Hessenberg form
qz QZ factoriz. for generalized eigenvalues
ordqz Reordering of eigenvalues in QZ
schur Schur decomposition
ordschur Sort eigenvalues in Schur decomposition

Matrix functions
expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root
funm Evaluate general matrix function

Factorization utilities
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization
rsf2csf Real block diagonal to complex diagonal
cdf2rdf Complex diagonal to real block diagonal
balance Diagonal scaling for eigenvalue accuracy
planerot Givens plane rotation
cholupdate rank 1 update to Cholesky factorization
qrupdate rank 1 update to QR factorization

 158

22.8 Data analysis, Fourier transforms
help datafun

Basic operations
max Largest component
min Smallest component
mean Average or mean value
median Median value
std Standard deviation
var Variance
sort Sort in ascending order
sortrows Sort rows in ascending order
sum Sum of elements
prod Product of elements
hist Histogram
histc Histogram count
trapz Trapezoidal numerical integration
cumsum Cumulative sum of elements
cumprod Cumulative product of elements
cumtrapz Cumulative trapezoidal num. integration

Finite differences
diff Difference and approximate derivative
gradient Approximate gradient
del2 Discrete Laplacian

Correlation
corrcoef Correlation coefficients
cov Covariance matrix
subspace Angle between subspaces

 159

Filtering and convolution
filter One-dimensional digital filter
filter2 Two-dimensional digital filter
conv Convolution, polynomial multiplication
conv2 Two-dimensional convolution
convn N-dimensional convolution
deconv Deconvolution and polynomial division
detrend Linear trend removal

Fourier transforms
fft Discrete Fourier transform
fft2 2-D discrete Fourier transform
fftn N-D discrete Fourier transform
ifft Inverse discrete Fourier transform
ifft2 2-D inverse discrete Fourier transform
ifftn N-D inverse discrete Fourier transform
fftshift Shift zero-freq. component to center
ifftshift Inverse fftshift

22.9 Interpolation and polynomials
help polyfun

Data interpolation
pchip Piecewise cubic Hermite interpol. poly.
interp1 1-D interpolation (table lookup)
interp1q Quick 1-D linear interpolation
interpft 1-D interpolation using FFT method
interp2 2-D interpolation (table lookup)
interp3 3-D interpolation (table lookup)
interpn N-D interpolation (table lookup)
griddata 2-D data gridding and surface fitting
griddata3 3-D data gridding & hypersurface fitting
griddatan N-D data gridding &hypersurface fitting

 160

Spline interpolation
spline Cubic spline interpolation
ppval Evaluate piecewise polynomial

Geometric analysis
delaunay Delaunay triangulation
delaunay3 3-D Delaunay tessellation
delaunayn N-D Delaunay tessellation
dsearch Search Delaunay triangulation
dsearchn Search N-D Delaunay tessellation
tsearch Closest triangle search
tsearchn N-D closest triangle search
convhull Convex hull
convhulln N-D convex hull
voronoi Voronoi diagram
voronoin N-D Voronoi diagram
inpolygon True for points inside polygonal region
rectint Rectangle intersection area
polyarea Area of polygon

Polynomials
roots Find polynomial roots
poly Convert roots to polynomial
polyval Evaluate polynomial
polyvalm Evaluate polynomial (matrix argument)
residue Partial-fraction expansion (residues)
polyfit Fit polynomial to data
polyder Differentiate polynomial
polyint Integrate polynomial analytically
conv Multiply polynomials
deconv Divide polynomials

 161

22.10 Function functions and ODEs
help funfun

Optimization and root finding
fminbnd Scalar bounded nonlinear minimization

fminsearch
Multidimensional unconstrained
nonlinear minimization (Nelder-Mead)

fzero Scalar nonlinear zero finding

Optimization option handling
optimset Set optimization options structure
optimget Get optimization parameters

Numerical integration (quadrature)
quad Numerical integration, low order method

quadl
Numerical integration, high order
method

dblquad Numerically evaluate double integral
triplequad Numerically evaluate triple integral
quadv Vectorized quad

Plotting
ezplot Easy-to-use function plotter
ezplot3 Easy-to-use 3-D parametric curve plotter
ezpolar Easy-to-use polar coordinate plotter
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
ezmesh Easy-to-use 3-D mesh plotter
ezmeshc Easy-to-use mesh/contour plotter
ezsurf Easy-to-use 3-D colored surface plotter
ezsurfc Easy-to-use surf/contour plotter
fplot Plot function

Inline function object
inline Construct inline function object
argnames Argument names
formula Function formula
char Convert inline object to char array

 162

Initial value problem solvers for ODEs

ode45
Solve non-stiff differential equations,
medium order method (Try this first)

ode23 Solve non-stiff ODEs low order method
ode113 Solve non-stiff ODEs, variable order

ode23t
Solve moderately stiff ODEs and DAEs
Index 1, trapezoidal rule

ode15s
Solve stiff ODEs and DAEs Index 1,
variable order method

ode23s Solve stiff ODEs, low order method
ode23tb Solve stiff ODEs, low order method

Initial value problem, fully implicit ODEs/DAEs
decic Compute consistent initial conditions
ode15i Solve implicit ODEs or DAEs Index 1

Initial value problem solvers for DDEs
dde23 Solve delay differential equations

Boundary value problem solver for ODEs
bvp4c Solve two-point boundary value ODEs

1-D Partial differential equation solver
pdepe Solve initial-boundary value PDEs

ODE, DDE, BVP option handling
odeset Create/alter ODE options structure
odeget Get ODE options parameters
ddeset Create/alter DDE options structure
ddeget Get DDE options parameters
bvpset Create/alter BVP options structure
bvpget Get BVP options parameters

 163

ODE, DAE, DDE, PDE input & output functions
deval Evaluate solution of differential equation
odextend Extend solutions of differential equation
odeplot Time series ODE output function
odephas2 2-D phase plane ODE output function
odephas3 3-D phase plane ODE output function
odeprint ODE output function
bvpinit Forms the initial guess for bvp4c
pdeval Evaluates solution computed by pdepe

22.11 Sparse matrices
help sparfun

Elementary sparse matrices
speye Sparse identity matrix
sprand Uniformly distributed random matrix
sprandn Normally distributed random matrix
sprandsym Sparse random symmetric matrix
spdiags Sparse matrix formed from diagonals

Full to sparse conversion
sparse Create sparse matrix
full Convert sparse matrix to full matrix
find Find indices of nonzero elements
spconvert Create sparse matrix from triplets

Working with sparse matrices
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Space allocated for nonzero elements
spones Replace nonzero elements with ones
spalloc Allocate space for sparse matrix
issparse True for sparse matrix
spfun Apply function to nonzero elements
spy Visualize sparsity pattern

 164

Reordering algorithms
colamd Column approximate minimum degree
symamd Approximate minimum degree
symrcm Symmetric reverse Cuthill-McKee
colperm Column permutation
randperm Random permutation
dmperm Dulmage-Mendelsohn permutation
lu UMFPACK reordering (with 4 outputs)

Linear algebra
eigs A few eigenvalues, using ARPACK
svds A few singular values, using eigs
luinc Incomplete LU factorization
cholinc Incomplete Cholesky factorization
normest Estimate the matrix 2-norm
condest 1-norm condition number estimate
sprank Structural rank

Linear equations (iterative methods)
pcg Preconditioned conjugate gradients
bicg Biconjugate gradients method
bicgstab Biconjugate gradients stabilized method
cgs Conjugate gradients squared method
gmres Generalized minimum residual method
lsqr Conjugate gradients on normal equations
minres Minimum residual method
qmr Quasi-minimal residual method
symmlq Symmetric LQ method

Operations on graphs (trees)
treelayout Lay out tree or forest
treeplot Plot picture of tree
etree Elimination tree
etreeplot Plot elimination tree
gplot Plot graph, as in “graph theory”

 165

Miscellaneous
symbfact Symbolic factorization analysis
spparms Set parameters for sparse matrix routines
spaugment Form least squares augmented system

22.12 Annotation and plot editting
help scribe

Graph annotation
annotation Create annotation objects for figures
colorbar Display coloar bar (color scale)
legend Graph legend

22.13 Two-dimensional graphs
help graph2d

Elementary x-y graphs
plot Linear plot
loglog Log-log scale plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
polar Polar coordinate plot
plotyy Graphs with y tick labels on left & right

Axis control
axis Control axis scaling and appearance
zoom Zoom in and out on a 2-D plot
grid Grid lines
box Axis box
hold Hold current graph
axes Create axes in arbitrary positions
subplot Create axes in tiled positions

Hard copy and printing
print Print graph, Simulink sys.; save to M-file
printopt Printer defaults
orient Set paper orientation

 166

Graph annotation
plotedit Tools for editing and annotating plots
title Graph title
xlabel x-axis label
ylabel y-axis label
texlabel TeX format from string
text Text annotation
gtext Place text with mouse

22.14 Three-dimensional graphs
help graph3d

Elementary 3-D plots
plot3 Plot lines and points in 3-D space
mesh 3-D mesh surface
surf 3-D colored surface
fill3 Filled 3-D polygons

Color control
colormap Color look-up table
caxis Pseudocolor axis scaling
shading Color shading mode
hidden Mesh hidden line removal mode
brighten Brighten or darken color map
colordef Set color defaults
graymon Graphics defaults for grayscale monitors

Lighting
surfl 3-D shaded surface with lighting
lighting Lighting mode
material Material reflectance mode
specular Specular reflectance
diffuse Diffuse reflectance
surfnorm Surface normals

 167

Color maps
hsv Hue-saturation-value color map
hot Black-red-yellow-white color map
gray Linear grayscale color map
bone Grayscale with tinge of blue color map
copper Linear copper-tone color map
pink Pastel shades of pink color map
white All-white color map
flag Alternating red, white, blue, and black
lines Color map with the line colors
colorcube Enhanced color-cube color map
vga Windows colormap for 16 colors
jet Variant of HSV
prism Prism color map
cool Shades of cyan and magenta color map
autumn Shades of red and yellow color map
spring Shades of magenta and yellow color map
winter Shades of blue and green color map
summer Shades of green and yellow color map

Axis control
axis Control axis scaling and appearance
zoom Zoom in and out on a 2-D plot
grid Grid lines
box Axis box
hold Hold current graph
axes Create axes in arbitrary positions
subplot Create axes in tiled positions
daspect Data aspect ratio
pbaspect Plot box aspect ratio
xlim x limits
ylim y limits
zlim z limits

 168

Transparency
alpha Transparency (alpha) mode
alphamap Transparency (alpha) look-up table
alim Transparency (alpha) scaling

Viewpoint control
view 3-D graph viewpoint specification
viewmtx View transformation matrix
rotate3d Interactively rotate view of 3-D plot

Camera control
campos Camera position
camtarget Camera target
camva Camera view angle
camup Camera up vector
camproj Camera projection

High-level camera control
camorbit Orbit camera
campan Pan camera
camdolly Dolly camera
camzoom Zoom camera
camroll Roll camera
camlookat Move camera and target to view objects
cameratoolbar Interactively manipulate camera

High-level light control
camlight Creates or sets position of a light
lightangle Spherical position of a light

Hard copy and printing
print Print graph, Simulink sys.; save to M-file
printopt Printer defaults
orient Set paper orientation
vrml Save graphics to VRML 2.0 file

 169

Graph annotation
title Graph title
xlabel x-axis label
ylabel y-axis label
zlabel z-axis label
text Text annotation
gtext Mouse placement of text
plotedit Graph editing and annotation tools

22.15 Specialized graphs
help specgraph

Specialized 2-D graphs
area Filled area plot
bar Bar graph
barh Horizontal bar graph
comet Comet-like trajectory
compass Compass plot
errorbar Error bar plot
ezplot Easy-to-use function plotter
ezpolar Easy-to-use polar coordinate plotter
feather Feather plot
fill Filled 2-D polygons
fplot Plot function
hist Histogram
pareto Pareto chart
pie Pie chart
plotmatrix Scatter plot matrix
rose Angle histogram plot
scatter Scatter plot
stem Discrete sequence or “stem” plot
stairs Stairstep plot

 170

Contour and 2½-D graphs
contour Contour plot
contourf Filled contour plot
contour3 3-D contour plot
clabel Contour plot elevation labels
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
pcolor Pseudocolor (checkerboard) plot
voronoi Voronoi diagram

Specialized 3-D graphs
bar3 3-D bar graph
bar3h Horizontal 3-D bar graph
comet3 3-D comet-like trajectories
ezgraph3 General-purpose surface plotter
ezmesh Easy-to-use 3-D mesh plotter
ezmeshc Easy-to-use mesh/contour plotter
ezplot3 Easy-to-use 3-D parametric curve plotter
ezsurf Easy-to-use 3-D colored surface plotter
ezsurfc Easy-to-use surf/contour plotter
meshc Combination mesh/contour plot
meshz 3-D mesh with curtain
pie3 3-D pie chart
ribbon Draw 2-D lines as ribbons in 3-D
scatter3 3-D scatter plot
stem3 3-D stem plot
surfc Combination surf/contour plot
trisurf Triangular surface plot
trimesh Triangular mesh plot
waterfall Waterfall plot

Color-related functions
spinmap Spin color map
rgbplot Plot color map
colstyle Parse color and style from string
ind2rgb Convert indexed image to RGB image

 171

Volume and vector visualization
vissuite Visualization suite
isosurface Isosurface extractor
isonormals Isosurface normals
isocaps Isosurface end caps
isocolors Isosurface and patch colors
contourslice Contours in slice planes
slice Volumetric slice plot
streamline Streamlines from 2-D or 3-D vector data
stream3 3-D streamlines
stream2 2-D streamlines
quiver3 3-D quiver plot
quiver 2-D quiver plot
divergence Divergence of a vector field
curl Curl and angular velocity of vector field
coneplot 3-D cone plot
streamtube 3-D stream tube
streamribbon 3-D stream ribbon
streamslice Streamlines in slice planes
streamparticles Display stream particles
interpstreamspeed Interpolate streamlines from speed
subvolume Extract subset of volume dataset
reducevolume Reduce volume dataset
volumebounds Returns x,y,z, & color limits for volume
smooth3 Smooth 3-D data
reducepatch Reduce number of patch faces
shrinkfaces Reduce size of patch faces

Movies and animation
moviein Initialize movie frame memory
getframe Get movie frame
movie Play recorded movie frames
rotate Rotate about specified orgin & direction
frame2im Convert movie frame to indexed image
im2frame Convert index image into movie format

 172

Image display and file I/O
image Display image
imagesc Scale data and display as image
colormap Color look-up table
gray Linear grayscale color map
contrast Grayscale color map to enhance contrast
brighten Brighten or darken color map
colorbar Display color bar (color scale)
imread Read image from graphics file
imwrite Write image to graphics file
imfinfo Information about graphics file
im2java Convert image to Java image

Solid modeling
cylinder Generate cylinder
sphere Generate sphere
ellipsoid Generate ellipsoid
patch Create patch
surf2patch Convert surface data to patch data

22.16 Handle Graphics
help graphics

Figure window creation and control
figure Create figure window
gcf Get handle to current figure
clf Clear current figure
shg Show graph window
close Close figure
refresh Refresh figure
refreshdata Refresh data plotted in figure
openfig Open new or raise copy of saved figure

 173

Axis creation and control
subplot Create axes in tiled positions
axes Create axes in arbitrary positions
gca Get handle to current axes
cla Clear current axes
axis Control axis scaling and appearance
box Axis box
caxis Control pseudocolor axis scaling
hold Hold current graph
ishold Return hold state

Handle Graphics objects
figure Create figure window
axes Create axes
line Create line
text Create text
patch Create patch
rectangle Create rectangle or ellipse
surface Create surface
image Create image
light Create light
uicontrol Create user interface control
uimenu Create user interface menu
uicontextmenu Create user interface context menu

Hard copy and printing
print Print graph, Simulink sys.; save to M-file
printopt Printer defaults
orient Set paper orientation

Utilities
closereq Figure close request function
newplot M-file preamble for NextPlot property
ishandle True for graphics handles

 174

Handle Graphics operations
set Set object properties
get Get object properties
reset Reset object properties
delete Delete object
gco Get handle to current object
gcbo Get handle to current callback object
gcbf Get handle to current callback figure
drawnow Flush pending graphics events
findobj Find objects w/ specified property values
copyobj Copy graphics object and its children
isappdata Check if application-defined data exists
getappdata Get value of application-defined data
setappdata Set application-defined data
rmappdata Remove application-defined data

22.17 Graphical user interface tools
help uitools

GUI functions
uicontrol Create user interface control
uimenu Create user interface menu
ginput Graphical input from mouse
dragrect Drag XOR rectangles with mouse
rbbox Rubberband box
selectmoveresize Select, move, resize, copy objects
waitforbuttonpress Wait for key/buttonpress
waitfor Block execution and wait for event
uiwait Block execution and wait for resume
uiresume Resume execution of blocked M-file
uistack Control stacking order of objects
uisuspend Suspend the interactive state of a figure
uirestore Restore the interactive state of a figure

 175

GUI design tools
guide Design GUI
inspect Inspect object properties
align Align uicontrols and axes
propedit Edit property

Dialog boxes
axlimdlg Axes limits dialog box
dialog Create dialog figure
errordlg Error dialog box
helpdlg Help dialog box
imageview Show image preview in a figure window
inputdlg Input dialog box
listdlg List selection dialog box
menu Generate menu of choices for user input
movieview Show movie in figure with replay button
msgbox Message box
pagedlg Page position dialog box
pagesetupdlg Page setup dialog
printdlg Print dialog box
printpreview Display preview of figure to be printed
questdlg Question dialog box
soundview Show sound in figure and play
uigetpref Question dialog box with preference
uigetfile Standard open file dialog box
uiputfile Standard save file dialog box
uigetdir Standard open directory dialog box
uisetcolor Color selection dialog box
uisetfont Font selection dialog box
uiopen Show open file dialog and call open
uisave Show open file dialog and call save
uiload Show open file dialog and call load
waitbar Display wait bar
warndlg Warning dialog box

 176

Menu utilities
makemenu Create menu structure
menubar Default setting for MenuBar property
umtoggle Toggle checked status of uimenu object
winmenu Create submenu for Window menu item

Toolbar button group utilities
btngroup Create toolbar button group
btnresize Resize button group
btnstate Query state of toolbar button group
btnpress Button press manager
btndown Depress button in toolbar button group
btnup Raise button in toolbar button group

Miscellaneous utilities
allchild Get all object children
clipboard Copy/paste to/from system clipboard
edtext Interactive editing of axes text objects
findall Find all objects
findfigs Find figures positioned off screen
getptr Get figure pointer
getstatus Get status text string in figure
hidegui Hide/unhide GUI
listfonts Get list of available system fonts
movegui Move GUI to specified part of screen
guihandles Return a structure of handles
guidata Store or retrieve application data
overobj Get handle of object the pointer is over
popupstr Get popup menu selection string
remapfig Transform figure objects’ positions
setptr Set figure pointer
setstatus Set status text string in figure
uiclearmode Clears currently active interactive mode

 177

Preferences
addpref Add preference
getpref Get preference
rmpref Remove preference
setpref Set preference
ispref Test for existence of preference

22.18 Character strings
help strfun

General
char Create character array (string)
strings Help for strings
cellstr Cell array of strings from char array
blanks String of blanks
deblank Remove trailing blanks

String tests
iscellstr True for cell array of strings
ischar True for character array (string)
isspace True for white space characters
isstrprop Check category of string elements

Character set conversion
native2unicode Convert bytes to Unicode characters
unicode2native Convert Unicode characters to bytes

String to number conversion
num2str Convert number to string
int2str Convert integer to string
mat2str Convert matrix to eval’able string
str2double Convert string to double-precision value
str2num Convert string matrix to numeric array
sprintf Write formatted data to string
sscanf Read string under format control

 178

String operations
regexp Match regular expression
regexpi Match regular expression, ignoring case
regexprep Replace string using regular expression
strcat Concatenate strings
strvcat Vertically concatenate strings
strcmp Compare strings
strncmp Compare first N characters of strings
strcmpi Compare strings ignoring case
strncmpi Compare first N characters, ignore case
strread Read formatted data from string
strtrim Remove insignificant whitespace
findstr Find one string within another
strfind Find one string within another
strjust Justify character array
strmatch Find possible matches for string
strrep Replace string with another
strtok Find token in string
upper Convert string to uppercase
lower Convert string to lowercase

Base number conversion
hex2num IEEE hexadecimal to double-precision
hex2dec hexadecimal string to decimal integer
dec2hex decimal integer to hexadecimal string
bin2dec Convert binary string to decimal integer
dec2bin Convert decimal integer to binary string
base2dec Convert base B string to decimal integer
dec2base Convert decimal integer to base B string
num2hex single and double to IEEE hexadecimal

 179

22.19 Image and scientific data
help imagesci

Image file import/export
imformats List details about supported file formats
imfinfo Return information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file
im2java Convert image to Java image
multibandread Read band-interleaved data from a file
multibandwrite Write multiband data to a file

CDF file handling
cdfread Read data from a CDF file
cdfinfo Get information from a CDF file
cdfwrite Write data to a CDF file
cdfepoch Construct cdfepoch object

FITS file handling
fitsinfo Get information from a FITS file
fitsread Read data from a FITS file

HDF version 4 file handling
hdfinfo Get information about an HDF4 file
hdfread Read HDF4 file
hdftool Browse/import HDF4 or HDF-EOS files

HDF version 5 file handling
hdf5info Get information about an HDF5 file
hdf5read Read data and attributes from HDF5 file
hdf5write Write data and attributes to HDF5 file

HDF version 5 data objects
hdf5.h5array Construct HDF5 array
hdf5.h5compound Construct HDF5 compound object
hdf5.h5enum Construct HDF5 enumeration object
hdf5.h5string Construct HDF5 string
hdf5.h5vlen Construct HDF5 variable length array

 180

HDF version 4 library interface
hdf MEX-file interface to the HDF library
hdfan HDF multifile annotation interface
hdfdf24 HDF raster image interface
hdfdfr8 HDF 8-bit raster image interface
hdfh HDF H interface
hdfhe HDF HE interface
hdfhx HDF HX interface
hdfml MATLAB-HDF gateway utilities
hdfsd HDF multifile scientific dataset interface
hdfv HDF V (Vgroup) interface
hdfvf HDF VF (Vdata) interface
hdfvh HDF VH (Vdata) interface
hdfvs HDF VS (Vdata) interface

HDF-EOS library interface help
hdfgd HDF-EOS grid interface
hdfpt HDF-EOS point interface
hdfsw HDF-EOS swath interface

22.20 File input/output
help iofun

File import/export functions
dlmread Read ASCII delimited text file
dlmwrite Write ASCII delimited text file
importdata Load data from a file into MATLAB
daqread Read Data Acquisition Toolbox daq file
matfinfo Text description of MAT-file contents

Internet resource
urlread Read URL contents as a string
urlwrite Save URL contents to a file
ftp Create an ftp object
sendmail Send e-mail

 181

Spreadsheet support
xlsread Read Excel (xls) workbook
xlswrite Write to Excel (xls) workbook
xlsfinfo Check if file contains Excel workbook
wk1read Read Lotus spreadsheet (wk1) file
wk1write Write Lotus spreadsheet (wk1) file
wk1finfo Check if file contains Lotus worksheet
str2rng Convert range string to numeric array
wk1wrec Write a Lotus worksheet record header

Zip file access
zip Compress files in a zip file
unzip Extract contents of a zip file

Formatted file I/O
fgetl Read line from file, discard newline char
fgets Read line from file, keep newline char.
fprintf Write formatted data to file
fscanf Read formatted data from text file
textscan Read formatted data from text file
textread Read formatted data from text file

File opening and closing
fopen Open file
fclose Close file

Binary file I/O
fread Read binary data from file
fwrite Write binary data to file

File positioning
feof Test for end-of-file
ferror Inquire file error status
frewind Rewind file
fseek Set file position indicator
ftell Get file position indicator

 182

File name handling
fileparts Filename parts
filesep Directory separator for this platform
fullfile Build full filename from parts
matlabroot Root directory of MATLAB installation
mexext MEX filename extension
partialpath Partial pathnames
pathsep Path separator for this platform
prefdir Preference directory name
tempdir Get temporary directory
tempname Get temporary file

XML file handling
xmlread Parse an XML document
xmlwrite Serialize XML Document Object Model
xslt Transform XML document via XSLT

Serial port support
serial Construct serial port object
instrfindall Find all serial port objects
freeserial Release serial port
instrfind Find serial port objects

Timer support
timer Construct timer object
timerfindall Find all timer objects
timerfind Find visible timer objects

Command window I/O
clc Clear Command window
home Send cursor home

SOAP support
callSoapService Send a SOAP message
createSoapMessage Create a SOAP message
parseSoapResponse Convert SOAP message response

 183

22.21 Audio and video support
help audiovideo

Audio input/output objects
audioplayer Audio player object
audiorecorder Audio recorder object

Audio hardware drivers
sound Play vector as sound
soundsc Autoscale and play vector as sound
wavplay Play on Windows audio output device
wavrecord Record from Windows audio input

Audio file import and export
aufinfo Return information about au file
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file
wavfinfo Return information about wav file
wavread Read Microsoft (.wav) sound file
wavwrite Write Microsoft (.wav) sound file

Video file import/export
aviread Read movie (.avi) file
aviinfo Return information about avi file
avifile Create a new avi file
movie2avi Make avi movie from MATLAB movie

Utilities
lin2mu Convert linear signal to mu-law encoding
mu2lin Convert mu-law encoding to linear signal

Example audio data (MAT files)
chirp Frequency sweeps
gong Gong
handel Hallelujah chorus
laughter Laughter from a crowd
splat Chirp followed by a splat
train Train whistle

 184

22.22 Time and dates
help timefun

Current date and time
now Current date and time as date number
date Current date as date string
clock Current date and time as date vector

Basic functions
datenum Serial date number
datestr String representation of date
datevec Date components

Date functions
calendar Calendar
weekday Day of week
eomday End of month
datetick Date formatted tick labels

Timing functions
cputime CPU time in seconds
tic Start stopwatch timer
toc Stop stopwatch timer
etime Elapsed time
pause Wait in seconds

22.23 Data types and structures
help datatypes

Class determination functions
isnumeric True for numeric arrays
isfloat True for single and double arrays
isinteger True for integer arrays
islogical True for logical arrays
ischar True for char arrays (string)

 185

Data types (classes)
double Convert to double precision
char Create character array (string)
logical Convert numeric values to logical
cell Create cell array
struct Create or convert to structure array
single Convert to single precision
int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer
inline Construct inline object
function_handle Function handle (@ operator)
javaArray Construct a Java array
javaMethod Invoke a Java method
javaObject Invoke a Java object constructor

Multidimensional array functions
cat Concatenate arrays
ndims Number of dimensions
ndgrid Arrays for N-D functions & interpolation
permute Permute array dimensions
ipermute Inverse permute array dimensions
shiftdim Shift dimensions
squeeze Remove singleton dimensions

Function handle functions
@ Create function_handle
func2str function_handle array to string
str2func String to function_handle array
functions List functions of a function_handle

 186

Cell array functions
cell Create cell array
cellfun Functions on cell array contents
celldisp Display cell array contents
cellplot Display graphical depiction of cell array
cell2mat Combine cell array of matrices
mat2cell Break matrix into cell array of matrices
num2cell Convert numeric array into cell array
deal Deal inputs to outputs
cell2struct Convert cell array into structure array
struct2cell Convert structure array into cell array
iscell True for cell array

Structure functions
struct Create or convert to structure array
fieldnames Get structure field names
getfield Get structure field contents
setfield Set structure field contents
rmfield Remove structure field
isfield True if field is in structure array
isstruct True for structures
orderfields Order fields of a structure array

Object-oriented programming functions
class Create object or return object class
struct Convert object to structure array
methods List names & properties of class methods
methodsview List names & properties of class methods
isa True if object is a given class
isjava True for Java objects
isobject True for MATLAB objects
inferiorto Inferior class relationship
superiorto Superior class relationship
substruct Create structure for subsref/subasgn

 187

Overloadable operators
minus Overloadable method for a-b
plus Overloadable method for a+b
times Overloadable method for a.*b
mtimes Overloadable method for a*b
mldivide Overloadable method for a\b
mrdivide Overloadable method for a/b
rdivide Overloadable method for a./b
ldivide Overloadable method for a.\b
power Overloadable method for a.^b
mpower Overloadable method for a^b
uminus Overloadable method for -a
uplus Overloadable method for +a
horzcat Overloadable method for [a b]
vertcat Overloadable method for [a;b]
le Overloadable method for a<=b
lt Overloadable method for a<b
gt Overloadable method for a>b
ge Overloadable method for a>=b
eq Overloadable method for a==b
ne Overloadable method for a~=b
not Overloadable method for ~a
and Overloadable method for a&b
or Overloadable method for a|b
subsasgn for a(i)=b, a{i}=b, and a.field=b
subsref for a(i), a{i}, and a.field
colon Overloadable method for a:b
end Overloadable method for a(end)
transpose Overloadable method for a.'
ctranspose Overloadable method for a'
subsindex Overloadable method for x(a)
loadobj Called to load object from .mat file
saveobj Called to save object to .mat file

 188

22.24 Version control
help verctrl

Checkin/checkout
checkin checkin files to version control system
checkout checkout files
undocheckout undo checkout files

Specific version control
rcs Version control actions using RCS
pvcs Version control actions using PVCS
clearcase Version control actions using ClearCase
sourcesafe Version control using Visual SourceSafe
customverctrl Custom version control template
verctrl Version control operations on Windows
cmpopts Version control settings

22.25 Creating and debugging code
help codetools

Writing and managing M-files
edit Edit M-file
notebook Open an M-book in Microsoft Word
mlint List suspicious constructs in M-files

Directory tools
contentsrpt Audit Contents.m of a directory
coveragerpt Scan directory for profiler line coverage
deprept Scan file or directory for dependencies
diffrpt Directory browser and file comparitor
dofixrpt Scan file or directory for TODO, ...
helprpt Scan file or directory for help
mlintrpt Scan file or directory for M-lint info.
standardrpt Directory browser

Managing the file system and search patch
filebrowser Open Current Directory browser
pathtool View, modify, & save MATLAB path

 189

Profiling M-files
profile Profile function execution time
profview Profile browser
profsave Save static copy of profile report
profreport Generate profile report
profviewgateway Profiler HTML gateway function
opentoline Start editting a file at a given line
stripanchors Remove code evaluation anchors

Debugging M-files
debug help debug lists debugging commands
dbstop Set breakpoint
dbclear Remove breakpoint
dbcont Continue execution
dbdown Change local workspace context
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines
dbtype List M-file with line numbers
dbup Change local workspace context
dbquit Quit debug mode
dbmex Debug MEX-files (Unix only)

Managing, watching, and editting variables
openvar Open workspace for graphical editting
workspace View contents of a workspace

22.26 Help commands
help helptools

Accessing on-line HTML help
doc Bring up Help Browser to specific place
helpbrowser Same as doc, to last place viewed
helpdesk Same as doc, to help “Begin Here” page
helpview Display HTML file in Help Browser
docsearch Search in Help Browser

 190

Accessing M-file help
help View M-file help in Command window
helpwin View M-file help in Help Browser
lookfor Search all M-files for keyword

MathWorks tech support, web access
info Info about MATLAB & The MathWorks
support Open MathWorks tech support web page
whatsnew View Release Notes in Help Browser
web Open internal or system web browser

22.27 Microsoft Windows functions
help winfun

COM automation client functions
actxcontrol Create an ActiveX control
actxserver Create an ActiveX server
eventlisteners Lists all registered events
isevent True if event of object
registerevent Registers events
unregisterallevents Unregister all events
unregisterevent Unregister events
iscom True if COM/ActiveX object
isinterface True if COM interface
COM/set Set COM object property
COM/get Get COM object properties
COM/invoke Invoke/display method
COM/events List COM object events
COM/interfaces List custom interfaces
COM/addproperty Add custom property to object
COM/deleteproperty Remove custom property
COM/delete Delete COM object
COM/release Release COM interface
COM/move Move/resize ActiveX control
COM/propedit Edit properties

 191

COM automation client functions (continued)
COM/save Serialize COM object to file
COM/load Initialize COM object from file

COM sample code
mwsamp ActiveX control creation
sampev Event handler

DDE client functions
ddeadv Setup advisory link
ddeexec Execute string
ddeinit Initiate DDE conversation
ddepoke Send data to application
ddereq Request data from application
ddeterm Terminate DDE conversation
ddeunadv Release advisory link

General MS Windows functions
winopen Open file using Windows command
winqueryreg Read Windows registry

22.28 Examples and demonstrations
Type help demos to see a list of MATLAB demos.

22.29 Preferences
help local

Saved preferences files
startup User startup M-file
finish User finish M-file
matlabrc Master startup M-file
pathdef Search path defaults
docopt Web browser defaults
printopt Printer defaults

 192

Configuration information
hostid MATLAB server host ID number
license License number
version MATLAB version number

22.30 Symbolic Math Toolbox
help symbolic

Demonstrations
symintro Introduction to Symbolic Math Toolbox
symcalcdemo Calculus demonstration
symlindemo Demonstrate symbolic linear algebra
symvpademo Variable precision arithmetic demo
symrotdemo Study plane rotations
symeqndemo Demonstrate symbolic equation solving

Symbolic operations
sym Create symbolic object
syms Create symbolic object (short-hand)
findsym Determine symbolic variables
pretty Pretty print a symbolic expression
latex Symbolic expression in LaTeX
texlabel Convert string to TeX
ccode Symbolic expression in C code
fortran Symbolic expression in Fortran code

Calculus
diff Differentiate
int Integrate
limit Limit
taylor Taylor series
jacobian Jacobian matrix
symsum Summation of series

 193

Linear algebra
diag Create or extract diagonals
triu Upper triangle
tril Lower triangle
inv Matrix inverse
det Determinant
rank Rank
rref Reduced row echelon form
null Basis for null space
colspace Basis for column space
eig Eigenvalues and eigenvectors
svd Singular values and singular vectors
jordan Jordan canonical (normal) form
poly Characteristic polynomial
expm Matrix exponential
mldivide Matrix left division (backslash) a\b

mpower Matrix power a^b

mrdivide Matrix right division (slash) a/b

mrtimes Matrix multiplication a*b

transpose Matrix transpose a.'

ctranspose Matrix complex conj. transpose a'

Simplification
simplify Simplify
expand Expand
factor Factor
collect Collect
simple Search for shortest form
numden Numerator and denominator
horner Nested polynomial representation
subexpr Rewrite in terms of subexpressions
coeffs Coefficients of a multivariate polynomial
sort Sort symbolic vectors or polynomials
subs Symbolic substitution

 194

Solution of equations
solve Solve algebraic (nonlinear) equations
dsolve Solve differential equations
finverse Functional inverse
compose Functional composition

Variable precision arithmetic
vpa Variable precision arithmetic
digits Set variable precision accuracy

Integral transforms
fourier Fourier transform
laplace Laplace transform
ztrans Z transform
ifourier Inverse Fourier transform
ilaplace Inverse Laplace transform
iztrans Inverse Z transform

Conversions
double Convert symbolic matrix to double
single Convert symbolic matrix to single
poly2sym Coefficients to symbolic polynomial
sym2poly Symbolic polynomial to coefficients
char Convert sym object to string
int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

 195

Arithmetic and algebraic operations
plus Addition a+b

minus Subtraction a-b

uminus Negation -a

times Array multiplications a.*b

ldivide Left division (backslash) a\b

rdivide Right division (slash) a/b

power Array power a.^b

abs Absolute value
ceil Ceiling
conj Conjugate
colon Colon operator
fix Integer part
floor Floor
frac Fractional part
mod Modulus
round Round
quorem Quotient and remainder
imag Imaginary part
real Real part
exp Exponential
log Natural logarithm
log10 Common (base-10) logarithm
log2 Base-2 logarithm
sqrt Square root
prod Product of elements
sum Sum of elements

Logical operations
isreal True for real array
eq Equality test a==b
ne Inequality test a~=b

 196

Trigonometric functions
sin Sine
sinh Hyperbolic sine
asin Inverse sine
asinh Inverse hyperbolic sine
cos Cosine
cosh Hyperbolic cosine
acos Inverse cosine
acosh Inverse hyperbolic cosine
tan Tangent
tanh Hyperbolic tangent
atan Inverse tangent
atanh Inverse hyperbolic tangent
sec Secant
sech Hyperbolic secant
asec Inverse secant
asech Inverse hyperbolic secant
csc Cosecant
csch Hyperbolic cosecant
acsc Inverse cosecant
acsch Inverse hyperbolic cosecant
cot Cotangent
coth Hyperbolic cotangent
acot Inverse cotangent
acoth Inverse hyperbolic cotangent

String handling utilities
isvarname Check for a valid variable name
vectorize Vectorize a symbolic expression
disp Display symbolic expression as text
display Display function for symbolic statements
eval Evaluate a symbolic expression

 197

Special functions
besselj Bessel function of the first kind
bessely Bessel function of the second kind
besseli Modified Bessel function of the 1st kind
besselk Modified Bessel function of the 2nd kind
erf Error function
sinint Sine integral
cosint Cosine integral
zeta Riemann zeta function
gamma Symbolic gamma function
gcd Greatest common divisor
lcm Least common multiple
hypergeom Generalized hypergeometric function
lambertw Lambert W function
dirac Delta function
heaviside Step function

Pedagogical and graphical applications
rsums Riemann sums
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
ezmesh Easy-to-use mesh (surface) plotter
ezmeshc Easy-to-use mesh/contour plotter
ezplot Easy-to-use function plotter
ezplot3 Easy-to-use spatial curve plotter
ezpolar Easy-to-use polar coordinates plotter
ezsurf Easy-to-use surface plotter
ezsurfc Easy-to-use surface/contour plotter
funtool Function calculator
taylortool Taylor series calculator

Access to Maple (not in Student Version)
maple Access Maple kernel
mfun Numeric evaluation of Maple functions
mfunlist List of functions for mfun
mhelp Maple help

 198

23. Additional Resources
The MathWorks, Inc., and others provide a wide range of
products that extend MATLAB’s capabilities. Some are
collections of M-files called toolboxes. One of these has
already been introduced (the Symbolic Math Toolbox).
Also available is Simulink, an interactive graphical
system for modeling and simulating dynamic nonlinear
systems. The ver command lists the toolboxes and
Simulink components included in your installation, as
does the Help Browser (doc). Similar to MATLAB
toolboxes, Simulink has domain-specific add-ons called
blocksets.

MATLAB:

MATLAB®
Database Toolbox
MATLAB Report Generator

Math and Optimization:
Optimization Toolbox
Symbolic Toolbox
Extended Symbolic Math Toolbox
Partial Differential Equation Toolbox
Genetic Algorithm and Direct Search Toolbox

Statistics and Data Analysis:
Statistics Toolbox
Neural Network Toolbox
Curve Fitting Toolbox
Spline Toolbox
Model-Based Calibration Toolbox
Bioinformatics Toolbox

 199

Control System Design and Analysis:
Control System Toolbox
System Identification Toolbox
Fuzzy Logic Toolbox
Robust Control Toolbox
µ-Analysis and Synthesis Toolbox
LMI Control Toolbox
Model Predictive Control Toolbox

Signal Process and Communications:
Signal Processing Toolbox
Communications Toolbox
Filter Design Toolbox
Filter Design HDL Coder
System Identification Toolbox
Wavelet Toolbox
Fixed-Point Toolbox
RF Toolbox
Link for Code Composer Studio™
Link for ModelSim®

Image Processing:
Image Processing Toolbox
Image Acquisition Toolbox
Mapping Toolbox

Test and Measurement:
Data Acquisition Toolbox
Instrument Control Toolbox
Image Acquisition Toolbox
OPC Toolbox

Financial Modeling and Analysis:
Financial Toolbox

 200

Financial Derivatives Toolbox
GARCH Toolbox
Financial Time Series Toolbox
Datafeed Toolbox
Fixed-Income Toolbox

Application Deployment:
MATLAB Compiler
Excel Link
MATLAB Web Server

Application Deployment Targets:
MATLAB Builder for COM
MATLAB Builder for Excel

Simulink:

Simulink®
Stateflow®
Simulink Fixed Point
Simulink Accelerator
Simulink Report Generator

Physical Modeling:
SimMechanics
SimPowerSystems

Simulation Graphics:
Virtual Reality Toolbox
Dials and Gauges Blockset

Control System Design and Analysis:
Simulink Control Design
Simulink Response Optimization

 201

Simulink Parameter Estimation
Aerospace Blockset

Signal Processing and Communications:
Signal Processing Blockset
Communications Blockset
CDMA Reference Blockset
RF Blockset

Code Generation:
Real-Time Workshop®
Real-Time Workshop Embedded Coder
Stateflow Coder

PC-Based Rapid Control Prototyping and HIL:
xPC Target
xPC Target Embedded Option
xPC TargetBox™
Real-Time Windows Target

Embedded Targets:
Embedded Target for TI C6000™ DSP
Embedded Target for Motorola® MPC555
Embedded Target for OSEK/VDX®
Embedded Target for Infineon C166®
 Microcontrollers
Embedded Target for Motorola® HC12
Embedded Target for TI C2000™ DSP

Verification, Validation, and Testing:
Link for Code Composer Studio™
Link for ModelSim®
Simulink Verification and Validation

 202

Index

' (quote), 16, 147
- (subtract, negate), 11,

89, 109, 146, 187,
195

' (transpose), 5, 11, 89,
109, 147, 187, 193

! (operating system),
69, 145, 147

% (comment), 42, 132,
147

%% (code cell), 43, 132
%{ (block comment), 42
%} (block comment), 42
%val, 62
& (and), 14, 146, 187
&& (short-circuit and),

14, 146
() (parentheses), 10,

147, 187
* (multiply), 11, 89,

109, 146, 187, 193
, (comma), 4, 10, 89,

109, 147
.\ (array divide), 13,

146, 187
.' (array transpose), 11,

89, 109, 147, 187,
193

. (member), 17, 65,
147, 187

.* (array multiply), 13,
89, 146, 187, 195

.* (Java wildcard), 65

... (continue
statement), 3, 147

./ (array divide), 13,
146, 187

.^ (array power), 13,
89, 146, 187, 195

/ (slash), 11, 12, 89,
109, 146, 156, 187,
193, 195

: (colon), 18, 147, 150,
151, 187, 195

; (semicolon), 4, 10, 30,
89, 109, 147, 187

@ (function handle), 43,
147, 185

[] (construct array), 4,
10, 89, 109, 147, 187

[] (multiple output),
25, 41, 147

\ (backslash), 11, 12,
89, 109, 122, 146,
156, 187, 193, 195

^ (power), 11, 89, 109,
146, 187, 193

{ } (cell), 17, 147, 187
| (or), 14, 146, 187

 203

|| (short-circuit or), 14,
146

~ (not), 14, 146, 187
~= (not equal), 14, 146,

187, 195
+ (add, unary plus), 11,

89, 109, 146, 187,
195

< (less than), 14, 146,
187

<= (less than or equal),
14, 146, 187

= (assign), 3, 147, 187
== (equal), 14, 146,

187, 195
> (greater than), 14,

146, 187
>= (greater than or

equal), 14, 146, 187
abs, 23, 28, 154, 195
acos, 23, 152, 196
airy, 124, 155
all, 24, 34, 146
animation, 108, 171
anonymous function.

See functions.
ans, 3, 151
any, 24, 34, 146
arithmetic. See

operators.
numeric, 99
symbolic, 99
variable precision, 99

Array Editor, 9

asin, 23, 152, 196
assignment, 3
atan, 23, 152, 196
audio, 183
axis, 74, 78, 165, 167,

173
backslash. See \.
bisect, 45
bit-wise. See operators.
block comment. See %{.
Blocksets, 198
break, 31, 148
breakpoint, 38, 189
C code, 53, 192
C compiler, 54
calculus, 93, 101, 192
case, 33, 148
case-sensitivity, 4
cat, 17
catch, 33, 49, 69, 148
ccode, 94, 192
cd, 10, 145
ceil, 23, 154
cell array, 17, 43, 45,

185, 186
cell divider, 132
cell publishing, 132
char, 16, 66, 161, 177,

184, 185
characteristic

polynomial. See
poly.

chol, 24, 26, 60, 89,
90, 156, 157

 204

Cholesky factorization.
See chol.

classpath.txt, 67
clc, 6, 182
clear, 8, 40, 47, 92,

143
clf, 81, 119, 124, 126,

172
close button, 1
code development tools.

See Reports.
colamd, 60, 90, 164
collect, 102, 109, 193
colon notation. See :.
colormap, 82, 84, 166,

172
colperm, 90, 164
comma. See , (comma).
Command History

window, 9, 38
command line editting,

6
Command window, 2,

30, 36, 49, 144, 182
comment. See %.
complex, 15, 154
complex numbers, 15,

154
cond, 25, 156
condest, 25, 156, 164
condition number. See
cond, condest.

continue, 32, 148
contour plot. See plots.

control flow, 29, 148
conv, 120, 159, 160
convert

coordinates, 155
to different base, 178
to full, 85, 163
to number, 177
to numeric, 109, 194
to sparse, 85, 163
to string, 131, 177,

194
to symbolic, 92, 194

convolution. See conv.
coordinate transforms,

155
correlation, 158
cos, 23, 98, 152, 196
cputime, 51, 184
Current Directory

window, 9, 133, 188
data analysis, 158
data types, 7, 10, 16,

185
array, 17, 185
cell array, 17, 186
complex, 15
floating-point, 185
function handle, 185
integer, 16, 129, 184,

185
Java object, 185
logical, 14, 185
sparse matrix, 85
string, 16, 185

 205

struct, 17, 185, 186
symbolic, 92, 192

date, 184
dblquad, 122, 161
debugging, 38, 134,

144, 189
deconv, 120, 159, 160
deconvolution. See
deconv.

delete, 5, 10, 43, 145
demo, 3, 70, 143, 191
desktop, 1
det, 24, 110, 156
determinant. See det.
deval, 127, 163
diag, 21, 28, 36, 89,

151, 193
diagonal. See diag,
spdiags.

diagonally dominant, 28
diary, 5, 144
diff, 93, 96, 102, 109,

158, 192
differential algebraic

equations. See
equations.

differential operator,
116

differentiation
numeric, 96
symbolic, 93, 192

digits, 100, 194
dir, 10, 145

directory. See Current
Directory window.

disp, 16, 34, 128, 149,
150, 196

doc, 2, 189
dock window, 1
double, 16, 97, 109,

184, 185, 194
drawnow, 72, 174
dsolve, 116, 122, 125,

194
edit, 9, 36, 68, 188
edit-figure button, 74
efficient code, 51
eig, 24, 53, 89, 92,

110, 112, 118, 157,
193

eigenvalues and
eigenvectors. See
eig, eigs.

eigs, 24, 89, 157, 164
elementary math

complex, 154
exponential, 153
remainder, 154
rounding, 154
trigonometric, 152,

153, 196
else, 32, 34, 148
elseif, 32, 148
empty matrix, 20, 29,

59, 150
encryption/decryption,

16, 65

 206

end, 20, 29, 148, 151,
187

entry-wise. See
operators.

eps, 28, 39, 42, 151
equations (numeric)

boundary value, 127,
162

delay differential,
127, 162

differential algebraic,
127, 162

linear, 12, 24, 61, 89,
122, 146, 156, 164

nonlinear, 45, 123,
161

ordinary differential,
125, 162

partial differential,
127, 162, 198

polynomial, 118, 123,
160

stiff differential, 127
equations (symbolic)

linear, 109, 122, 192,
193

nonlinear, 113, 122,
192, 194

ordinary differential,
116, 122, 192, 194

polynomial, 114, 119,
194

error, 48, 59, 148
exit, 1, 8, 143

exit debug mode, 39
exp, 23, 72, 79, 93,

153, 195
expand, 102, 193
eye, 21, 79, 87, 150
ezcontour, 105, 161,

170, 197
ezcontourf, 105, 161,

170, 197
ezmesh, 105, 161, 170,

197
ezmeshc, 105, 161,

170, 197
ezplot, 103, 108, 119,

124, 132, 161, 169,
197

ezplot3, 107, 161,
170, 197

ezpolar, 105, 161,
169, 197

ezsurf, 106, 161, 170,
197

ezsurfc, 106, 161,
170, 197

factor, 102, 103, 109,
154, 193

false, 14, 26
fclose, 131, 181
fft, 120, 159
figure, 72, 124, 132,

172, 173
current, 72
rotate, 106

 207

Figure window, 72, 74,
77, 104, 172

file I/O, 131, 172, 179,
180, 181

filtering, 159
find, 11, 25, 38, 39,

65, 84, 151, 163
findsym, 95, 192
finite differences, 158
flint, 16
floating-point. See data

types.
floor, 23, 110, 154,

195
flow, 81
fminbnd, 125, 161
fminsearch, 125, 161
font, 2
fopen, 131, 181
for, 29, 148
format, 6, 99, 128, 144
fortran, 94, 192
Fortran code, 61, 192
Fourier transform, 120,

159, 194
fplot, 72, 161, 169
fprintf, 128, 181
full, 17, 85, 163
func2str, 45, 130, 185
function, 40, 149
function handle. See

functions.
functions, 45, 185. See

also M-file.

anonymous, 44, 73,
123

built-in, 21
function handle, 43,

147, 185
funtool, 105, 197
graphs, 72
matrix, 21, 24
number-theoretic,

154
scalar, 23
specialized math,

154, 155, 197
vector, 23

fzero, 46, 123, 161
gallery, 21, 152
gcf, 72, 172
Givens rotation, 20,

109, 111, 157, 192
global, 40, 45, 149
graph theory, 164
graphs. See plots.
grid, 74, 165, 167
gtext, 73, 75, 166, 169
GUI, 84, 174
guide, 84, 175
Handle Graphics, 83,

172
help, 2, 141, 142, 190
Help window, 2
Hessenberg form, 24
hold, 75, 119, 124,

165, 167, 173
horner, 102, 193

 208

HTML, 132
identity matrix. See
eye, speye.

if, 32, 34, 148
imag, 84
image, 84, 172, 173,

179
imaginary unit, 15, 151
import, 65, 144
independent variable,

116
indexing, 10, 19

one-based, 55
one-dimensional, 11,

27, 55, 84
zero-based, 55

infinite loop, 35
infinity, 151
initial value problem.

See equations.
inner product, 12
input, 49, 149
int, 96, 109, 121, 132,

192
int8, 17, 65, 185, 194
integer. See data types.
integration. See int,
quad, quadl.
numeric, 121, 161
symbolic, 96

Internet, 180
interpolation, 159

piecewise
polynomial, 119,
160

polynomial, 119
spline, 120, 160, 198

inv, 12, 21, 24, 50, 89,
109, 156, 193

inversion. See inv.
isosurface, 81, 171
issparse, 86, 163
Java, 65, 144, 145, 149,

172, 179, 185, 186
javaaddpath, 67, 144
javac, 67
javaclasspath, 67,

144
Jordan canonical form,

110
keyboard, 38, 49, 149
kron, 25, 146
Kronecker tensor

product. See kron.
labels. See plots.
language, 148
Laplace transform, 194
latex, 94, 192
LaTeX, 94, 132, 192
legend, 75, 126, 165
length, 24, 150
light, 78, 173
lightangle, 83, 168
lighting, 83, 166
limit, 98, 192
line types. See plots.

 209

linear equations. See
equations.

linsolve, 25, 63, 123,
156

linspace, 19, 150
Linux, vi
load, 8, 9, 69, 90, 143,

175
loadurl, 69
local variables, 40
log, 23, 153, 195
log10, 23, 153, 195
log2, 31, 153, 195
logical, 14, 184, 185
loops. See control flow.
lower triangular. See
tril.

lu, 24, 89, 90, 156, 164
LU factorization. See
lu.

Macintosh, vi, 1
magic, 21, 53, 118, 152
Mandelbrot set, 84
Maple, 91, 99, 117, 197
marker types. See plots.
material, 83, 166
MAT-file, 8, 9, 69, 143,

180
matrix

addition, 11, 109,
146, 195

analysis, 156, 193
division, 12, 87, 109,

146, 156, 193, 195

functions, 21, 24
information, 150
inversion, 109
manipulation, 151
multiplication, 11,

109, 146, 193
operators. See

operators.
power, 11, 109, 146,

193
sparse. See sparse

matrix.
subtraction, 11, 109,

146
symbolic, 193
transpose, 11, 109,

193
max, 24, 28, 39, 158
mean, 24, 158
median, 24, 158
memory, 16, 50, 59
menu bar, 2
mesh, 78, 79, 166
mesh plot. See plots.
meshgrid, 79, 150
mex, 54, 63, 143
mexErrMsgTxt, 56, 59
MEX-file, 54
mexFunction, 54, 56,

59, 61, 62
mexPrintf, 54, 59
M-file, 9, 29, 35, 139

Editor/Debugger, 35
function, 35, 40, 149

 210

script, 35, 36, 149
Microsoft

Excel, 181, 200
Powerpoint, 132
Windows, vi, 1, 2,

54, 145, 183, 190
Word, 132

min, 24, 158
mod, 32, 154, 195
more, 7, 144
multidimensional

arrays, 17, 185
multiple output. See [].
mxArray, 54
mxCalloc, 59
mxCopyPtrToReal8,

64
mxCopyReal8ToPtr,

64
mxCreateDoubleMatrix,

56, 59, 62
mxFree, 56, 59
mxGetM, 56, 59
mxGetN, 56, 59, 62
mxGetPr, 56, 59, 62
mxGetScalar, 56, 59
mxIsEmpty, 56, 59
mxIsSparse, 56, 59
mxMalloc, 56, 59
name resolution, 47
nargin, 42, 46, 149
nargout, 42, 46, 149
nnz, 85, 163

nonlinear equations. See
equations.

norm, 20, 25, 50, 126,
156

normest, 25, 156, 164
not-a-number, 150, 151
null, 110, 156, 193
null space. See null.
num2str, 131, 177
ode45, 125, 162
ones, 21, 87, 150
ones matrix. See ones,
spones.

open icon, 78
openvar, 9, 189
operating system, 67,

69, 145
operators

arithmetic, 11, 146,
187, 195

bit-wise, 147
entry-wise, 13, 23,

44, 71, 79, 80, 110,
146, 187, 195

index, 10, 19, 147
logical, 14, 146, 187,

195
matrix, 11, 146, 156,

187, 193, 195
overloadable, 187
relational, 13, 27, 91,

146, 187, 195
scalar, 11
set, 148

 211

short-circuit, 14
special characters, 10,

18, 147
symbolic, 195

optimization, 125, 161,
198

ordinary differential
equations. See
equations.

otherwise, 33, 148
outer product, 12
output format. See
format.

over-determined, 12
parametrically defined

curves, 73, 78, 105,
107, 161

surfaces, 80, 107
parentheses. See ().
path, 43, 47, 67, 144,

188, 191
pathtool, 43, 188
pause, 49, 184
pchip, 120, 159
performance, 50
permutation

matrix, 90, 164
vector, 90, 154, 164

pi, 22, 94, 151
plot, 70, 76, 119, 124,

126, 165
plot3, 78, 166
plots

2-D, 70, 165

2-D marker types, 76
2-D parametric, 73
2-D specialized, 163,

169
2-D symbolic, 103
3-D, 78, 166
3-D camera, 82, 168
3-D color, 82, 166,

167
3-D faceted, 79
3-D lighting, 83, 166
3-D mesh, 79, 161,

166, 197
3-D parametric

curves, 78, 107,
170

3-D parametric
surfaces, 80, 107

3-D rotation, 82, 168
3-D shading, 81
3-D specialized, 170
3-D surface, 80, 82,

105, 161, 166, 170,
197

3-D transparency,
168

3-D vector, 81, 171
3-D viewpoint, 168
3-D volume, 81, 171
animate, 108
annotation, 73, 78,

166, 169
axis, 74, 165, 167
color, 76

 212

contour, 161, 170,
171, 197

function, 72, 161
line types, 76
marker types, 76
multiple, 75
printing, 77, 165, 168
sparse matrix, 163
specialized, 77
subplot, 77
symbolic, 197
title, 73

poly, 24, 110, 118,
157, 160, 193

poly2sym, 119, 194
polyfit, 119, 160
polynomial

characteristic, 118
division, 120
evaluation, 119, 160
interpolation, 119,

159, 160
multiplication, 120,

160
piece-wise, 118
representation, 118,

160
symbolic, 119

polynomial equations.
See equations.

polyval, 119, 160
ppval, 120, 160
preallocate, 30, 53

preferences, 2, 133, 144,
191

pretty, 94, 192
prime factorization,

103, 154
prod, 24, 158, 195
profile, 139, 189
Property Editor, 104
pwd, 10, 145
qr, 24, 90, 156, 157
QR factorization. See
qr.

quad, 98, 121, 161
quadl, 98, 121, 161
quadrature. See

integration.
quit, 1, 143
quote. See '.
rand, 19, 21, 87, 150
rank, 25, 156, 193
real, 84, 124, 154, 195
relational. See

operators.
rem, 23, 32, 154
ReportDependency, 138
Reports

Contents, 137
Coverage, 64, 139
File Comparison, 139
Help, 135
M-Lint, 134
Profile, 139
TODO/FIXME, 135

return, 41, 148

 213

roots, 118, 160
rotate3d, 82, 168
round, 23, 154, 195
run icon, 37, 38
save, 5, 8, 9, 143, 175
save icon, 36, 77
scalar. See operators.
scalar functions, 23
Schur decomposition,

24, 157
script. See M-file.
seashell, 81, 107
semicolon. See ;.
set operators. See

operators.
shading, 81, 106, 166
sign, 23, 29, 39, 154
simple, 94, 103, 193
simplify, 102, 109,

193
sin, 23, 94, 98, 152,

196
single, 16, 184, 185,

194
singular value

decomposition. See
svd, svds.

size, 22, 24, 39, 150
slash. See /.
slice, 81, 171
SOAP, 182
solid modeling, 172
solve, 112, 113, 118,

122, 124, 194

sort, 24, 158, 193
sparse, 17, 85, 87, 163
sparse matrix, 17, 85,

163. See also data
types.
computations, 89
convert, 85, 163
creating, 87
diagonal, 86
fill-in, 89
iterative methods,

164
linear algebra, 164
ordering, 90
reordering, 90, 164
storage, 85
symbolic

factorization, 165
spdiags, 86, 163
special characters. See

operators.
specialized math

functions, 155, 197
speye, 87, 163
spline, 120, 160
spones, 87, 163
sprand, 87, 163
spreadsheet, 9, 181
sprintf, 131, 177
spy, 87, 90, 163
sqrt, 15, 23, 43, 153,

195
standard deviation. See
std.

 214

Start button, 3
startup, 67, 191
statistics, 24, 158, 198
std, 24, 158
str2func, 44, 46, 185
strings, 16, 65, 177,

185, 194, 196
struct, 17, 115, 120,

185, 186
Student Version, vi, 91,

117, 197
submatrices, 18, 19
subplot, 77, 165, 167,

173
subs, 100, 126, 193
subscripting, 10, 18, 20,

147, 151
subtract. See -.
sum, 24, 39, 158, 195
surf, 78, 79, 82, 166
surface plot. See plots.
svd, 24, 89, 110, 157,

193
svds, 24, 89, 157, 164
switch, 33, 148
sym, 92, 192, 194
sym2poly, 119, 194
symamd, 60, 90, 164
symbolic

abstract function, 93
algebraic equations,

113
calculus, 192
conversions, 194

demo, 192
derivative, 93
expression, 93
integral, 96, 192
linear algebra, 192,

193
linear equations, 110
matrices, 108
operators, 195
ordinary differential

equations, 116
partial derivative, 95
plot, 103, 161, 197
real, 92, 111
simplification, 102,

193
substitution, 100
unreal, 92, 111
variable, 92, 192

symrcm, 90, 164
syms, 92, 192
tan, 23, 152, 196
taylor, 98, 192, 197
Taylor series. See
taylor.

text, 73, 75, 166, 169,
173

tic, 50, 184
time, 49, 182, 184
title, 73, 166, 169
toc, 50, 184
toolboxes, 198
transpose. See '.
tril, 21, 86, 151, 193

 215

triplequad, 122, 161
triu, 21, 86, 151, 193
true, 14, 26
try, 33, 49, 69, 148
type, 10, 143
uicontrol. See GUI.
UMFPACK, 90, 164
under-determined, 12
undock window, 1
Unix, vi, 1, 2, 145
upper triangular. See
triu.

urlread, 67, 180
urlwrite, 67, 180
variable arguments, 42,

149
variable precision

arithmetic. See vpa.
variables. See

Workspace window.
vector functions, 23
vector visualization. See

plots.
vectorize, 196
vectors, 18

version control, 188
video, 183
view, 82, 83, 168
volume visualization.

See plots.
vpa, 97, 99, 192, 194
warning, 48, 128, 149
what, 10, 143
which, 43, 47, 143
while, 31, 148
who, 8, 143
whos, 8, 51, 143
Workspace window, 4,

5, 7, 9
xlabel, 73, 166, 169
XML, 132, 182
ylabel, 73, 166, 169
Z transform, 194
zero matrix. See zeros,
sparse.

zeros, 17, 21, 30, 53,
87, 150

ZIP file, 181
zlabel, 78, 169
zoom, 72, 165, 167

