ESTIMATION THEORY

Michele TARAGNA

Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino
michele.taragna@polito.it

Master Course in Mechatronic Engineering
Master Course in Computer Engineering
01RKYQW / 01RKYOV "Estimation, Filtering and System Identification" Academic Year 2021/2022

Estimation problem

The estimation problem refers to the empirical evaluation of an uncertain variable, like an unknown characteristic parameter or a remote signal, on the basis of observations and experimental measurements of the phenomenon under investigation.

An estimation problem always assumes a suitable mathematical description (model) of the phenomenon:

- in the classical statistics, the investigated problems usually involve static models, characterized by instantaneous (or algebraic) relationships among variables;
- in this course, estimation methods are introduced also for phenomena that are adequately described by discrete-time dynamic models, characterized by relationships among variables that can be represented by means of difference equations (i.e., for simplicity, the time variable is assumed to be discrete).

Estimation problem

$\theta(t)$: real variable to be estimated, scalar or vector, constant or time-varying;
$d(t)$: available data, acquired at N time instants $t_{1}, t_{2}, \ldots, t_{N}$;
$T=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$: set of time instants used for observations, distributed with regularity (in this case, $T=\{1,2, \ldots, N\}$) or non-uniformly;
$d=\left\{d\left(t_{1}\right), d\left(t_{2}\right), \ldots, d\left(t_{N}\right)\right\}:$ observation set.
An estimator (or estimation algorithm) is a function $f(\cdot)$ that, starting from data, associates a value to the variable to be estimated:

$$
\theta(t)=f(d)
$$

The estimate term refers to the particular value given by the estimator when applied to the particular observed data.

Estimation problem classification

1) $\theta(t)$ is constant $=>$ parametric identification problem:

- the estimator is denoted by $\hat{\theta}$ or by $\hat{\theta}_{T}$;
- the true value of the unknown variable (if makes sense) is denoted by θ_{o};

2) $\theta(t)$ is a time-varying function:

- the estimator is denoted by $\hat{\theta}(t \mid T)$, or by $\hat{\theta}(t \mid N)$ if the time instants for observations are uniformly distributed;
- according to the temporal relationship between t and the last time instant t_{N} :
2.a) if $t>t_{N}=>$ prediction problem;
2.b) if $t=t_{N}=>$ filtering problem;
2.c) if $t_{1}<t<t_{N}=>$ regularization or interpolation or smoothing problem.

Example of prediction problem: time series analysis

Given a sequence of observations (time series or historical data set) of a variable y :

$$
y(1), y(2), \ldots, y(t)
$$

the goal is to evaluate the next value $y(t+1)$ of this variable
it is necessary to find a good predictor $\hat{y}(t+1 \mid t)$, i.e., a function of available data that provides the most accurate evaluation of the next value of the variable y :

$$
\hat{y}(t+1 \mid t)=f(y(t), y(t-1), \ldots, y(1)) \cong y(t+1)
$$

A predictor is said to be linear if it is a linear function of data:

$$
\hat{y}(t+1 \mid t)=a_{1}(t) y(t)+a_{2}(t) y(t-1)+\ldots+a_{t}(t) y(1)=\sum_{k=1}^{t} a_{k}(t) y(t-k+1)
$$

A linear predictor has a finite memory n if it is a linear function of the last n data only:

$$
\hat{y}(t+1 \mid t)=a_{1}(t) y(t)+a_{2}(t) y(t-1)+\ldots+a_{n}(t) y(t-n+1)=\sum_{k=1}^{n} a_{k}(t) y(t-k+1)
$$

If all the parameters $a_{i}(t)$ are constant, the predictor is also time-invariant:

$$
\hat{y}(t+1 \mid t)=a_{1} y(t)+a_{2} y(t-1)+\ldots+a_{n} y(t-n+1)=\sum_{k=1}^{n} a_{k} y(t-k+1)
$$

and it is characterized by the vector of constant parameters

$$
\theta=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]^{T} \in \mathbb{R}^{n}
$$

The prediction problem becomes a parametric identification problem.
Questions:

- how to measure the predictor quality?
- how to derive the "best" predictor?

If the predictive model is linear, time-invariant, with finite memory n much shorter than the total number of data measured up to time instant t, its predictive capability over the available data $y(i), i=1,2, \ldots, t$, can be evaluated in the following way:

- at each instant $i \geq n$, the prediction $\hat{y}(i+1 \mid i)$ of the next value is computed:

$$
\hat{y}(i+1 \mid i)=a_{1} y(i)+a_{2} y(i-1)+\ldots+a_{n} y(i-n+1)=\sum_{k=1}^{n} a_{k} y(i-k+1)
$$

and its prediction error $\varepsilon(i+1)$ with respect to $y(i+1)$ is evaluated:

$$
\varepsilon(i+1)=y(i+1)-\hat{y}(i+1 \mid i)
$$

- the model described by θ is a good predictive model if the error ε is "small" over all the available data \Rightarrow the following figure of merit is introduced:

$$
J(\theta)=\sum_{k=n+1}^{t} \varepsilon(k)^{2} \quad \text { (sum of squares of prediction errors) }
$$

- the best predictor is the one that minimizes J and the value of its parameters is:

$$
\theta^{*}=\underset{\theta \in \mathbb{R}^{n}}{\arg \min } J(\theta)
$$

For example, if $t=100$ and $n=10 \ll t$, for a given $\theta=\left[a_{1} \cdots a_{10}\right]^{T}$ it results:

$$
\left\{\begin{array}{cc}
\hat{y}(11 \mid 10)=a_{1} y(10)+\ldots+a_{10} y(1) & \Rightarrow \quad \varepsilon(11)=y(11)-\hat{y}(11 \mid 10) \\
\hat{y}(12 \mid 11)=a_{1} y(11)+\ldots+a_{10} y(2) & \Rightarrow \quad \varepsilon(12)=y(12)-\hat{y}(12 \mid 11) \\
\vdots & \\
\vdots \\
\hat{y}(100 \mid 99)=a_{1} y(99)+\ldots+a_{10} y(90) & \Rightarrow \varepsilon(100)=y(100)-\hat{y}(100 \mid 99)
\end{array}\right.
$$

and then the behaviour of the prediction error sequence $\varepsilon(\cdot)$ is plotted:

Fundamental question: is the predictor minimizing J necessarily a "good" model?
The predictor quality depends on the fact that the temporal behaviour of the prediction error sequence $\varepsilon(\cdot)$ has the following characteristics:

- its mean value is zero, i.e., it does not show a systematic error;
- it is "fully random", i.e., it does not contain any regularity element.

In probabilistic terms, this corresponds to require that the behaviour of the error $\varepsilon(\cdot)$ is that of a white noise ($W N$) process, i.e., a sequence of independent random variables with zero mean value and constant variance σ^{2} :

$$
\varepsilon(\cdot)=W N\left(0, \sigma^{2}\right)
$$

\Downarrow
A predictor is a "good" model if $\varepsilon(\cdot)$ has the white noise probabilistic characteristics.

Example \#1: prediction error with constant systematic error

Example \#2: prediction error with sinusoidal systematic error

Example \#3: "fully random" prediction error, with no systematic error

Then, the prediction problem can be recast as the study of a stochastic system, i.e., a dynamic system whose inputs are probabilistic signals; in fact:

$$
\begin{gathered}
\left\{\begin{aligned}
\hat{y}(t \mid t-1) & =a_{1} y(t-1)+a_{2} y(t-2)+\ldots+a_{n} y(t-n) \\
\varepsilon(t) & =y(t)-\hat{y}(t \mid t-1)
\end{aligned} \Rightarrow\right. \\
y(t)=\hat{y}(t \mid t-1)+\varepsilon(t)=a_{1} y(t-1)+a_{2} y(t-2)+\ldots+a_{n} y(t-n)+\varepsilon(t)
\end{gathered}
$$

represents a discrete-time LTI dynamic system with output $y(t)$ and input $\varepsilon(t)$
\mathcal{Z}-transforming, with $\mathcal{Z}[y(t-k)]=z^{-k} Y(z)$ and z^{-1} the unitary delay operator:

$$
Y(z)=a_{1} z^{-1} Y(z)+a_{2} z^{-2} Y(z)+\ldots+a_{n} z^{-n} Y(z)+\varepsilon(z)
$$

\Downarrow
$H(z)=\frac{Y(z)}{\varepsilon(z)}=\frac{1}{1-a_{1} z^{-1}-a_{2} z^{-2}-\ldots-a_{n} z^{-n}}=\frac{z^{n}}{z^{n}-a_{1} z^{n-1}-a_{2} z^{n-2}-\ldots-a_{n}}$
represents the transfer function of a LTI dynamic system \Rightarrow in order to be a "good" model, its input $\varepsilon(\cdot)$ shall have the white noise probabilistic characteristics.

Classification of data descriptions

- The actually available information is always:
- bounded \Rightarrow the measurement number N is necessarily finite;
- corrupted by different kinds of uncertainty (e.g., measurement noise).
- The uncertainty affecting the data can be described:
- in probabilistic terms \Rightarrow we talk about statistical or classical estimation;
- in terms of set theory, as a member of some bounded set \Rightarrow we talk about Set Membership or Unknown But Bounded (UBB) estimation.

Random experiment and random source of data

S : outcome space, i.e., the set of possible outcomes s of the random experiment;
\mathcal{F} : space of results of interest, i.e., the set of the combinations of interest where the outcomes in S can be clustered;
$P(\cdot)$: probability function defined in \mathcal{F} that associates to any event in \mathcal{F} a real number between 0 and 1 .
$\mathcal{E}=(S, \mathcal{F}, P(\cdot)):$ random experiment
Example: throw a dice with six sides to see if an odd or even number is drawn \Rightarrow

- $S=\{1,2,3,4,5,6\}$ is the set of 6 sides of the dice;
- $\mathcal{F}=\{A, B, S, \emptyset\}$, with $A=\{2,4,6\}$ and $B=\{1,3,5\}$ the results of interest, i.e., the even and odd number sets;
- $P(A)=P(B)=1 / 2$ (if the dice is not fixed), $P(S)=1, P(\emptyset)=0$.

A random variable of the experiment \mathcal{E} is a variable v whose values depend on the outcome s of \mathcal{E} through of a suitable function $\varphi(\cdot): S \rightarrow V$, where V is the set of possible values of v :

$$
v=\varphi(s)
$$

Example: the random variable depending on the outcome of the throw of a dice with six sides can be defined as

$$
v=\varphi(s)= \begin{cases}+1 & \text { if } s \in A=\{2,4,6\} \\ -1 & \text { if } s \in B=\{1,3,5\}\end{cases}
$$

A random source of data produces data that, besides the process under investigation characterized by the unknown true value θ_{o} of the variable to be estimated, are also functions of a random variable; in particular, at the time instant t, the datum $d(t)$ depends on the random variable $v(t)$.

Random source of data:
"True"
parameter

Probabilistic description of data

In the probabilistic (or classical or statistical) framework, data d are assumed to be produced by a random source of data \mathcal{S}, influenced by:

- the outcome s of a random experiment \mathcal{E}
- the "true" value θ_{o} of the unknown variable to be estimated

$$
d=d\left(s, \theta_{o}\right)
$$

\Downarrow
data d are random variables, since they are functions of the outcome s
\Downarrow
A full probabilistic description of data is constituted by

- its probability distribution $F(q)=\operatorname{Prob}\left\{d\left(s, \theta_{o}\right) \leq q\right\}$ or
- its probability density function $f(q)=\frac{d F(q)}{d q}$, often denoted by p.d.f.

Estimator characteristics

A random source of data \mathcal{S}, influenced by the outcome s of a random experiment \mathcal{E} and by the "true" value θ_{o} of the unknown variable to be estimated, produces data d :

$$
d=d\left(s, \theta_{o}\right)
$$

data d are random variables, since they are functions of the outcome s
\Downarrow
the estimator $f(\cdot)$ and the estimate $\hat{\theta}$ are random variables too, being functions of d :

$$
\hat{\theta}=f(d)=f\left(d\left(s, \theta_{o}\right)\right)
$$

\Downarrow
the quality of $f(\cdot)$ and $\hat{\theta}$ depends on their probabilistic characteristics.

Estimator probabilistic characteristics

- No bias (in order to avoid to introduce any systematic estimation error)
- Minimum variance (smaller scattering around the mean value guarantees higher probability of obtaining values close to the "true" value θ_{o})
- Asymptotic characteristics (for $N \rightarrow \infty$):
- quadratic-mean convergence
- almost-sure convergence
- consistency

Estimator probabilistic characteristics

An estimator is said to be unbiased (or correct) if

$$
E[\hat{\theta}]=\theta_{o}
$$

An unbiased estimator does not introduce any systematic estimation error.

Estimator probabilistic characteristics

An unbiased estimator $\hat{\theta}^{(1)}$ is said to be efficient (or with minimum variance) if $\operatorname{Var}\left[\hat{\theta}^{(1)}\right] \leq \operatorname{Var}\left[\hat{\theta}^{(2)}\right], \quad \forall \hat{\theta}^{(2)} \neq \hat{\theta}^{(1)}$

Smaller scattering around the mean value \Rightarrow higher probability of approaching θ_{o}.

Estimator probabilistic characteristics

An unbiased estimator converges in quadratic mean to θ_{o}, i.e., $\underset{N \rightarrow \infty}{\operatorname{li.m.m}} \hat{\theta}_{N}=\theta_{o}$, if

$$
\lim _{N \rightarrow \infty} E\left[\left\|\hat{\theta}_{N}-\theta_{o}\right\|^{2}\right]=0
$$

where $\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \quad \forall x \in \mathbb{R}^{n}$, is the Euclidean norm.
An unbiased estimator such that $\lim _{N \rightarrow \infty} \operatorname{Var}\left[\hat{\theta}_{N}\right]=0$ converges in quadratic mean:

Sure and almost-sure convergence, consistency

An estimator is function of both the outcome s of a random experiment \mathcal{E} and θ_{o} :

$$
\hat{\theta}=f(d)=f\left(d\left(s, \theta_{o}\right)\right) \quad \Rightarrow \quad \hat{\theta}=\hat{\theta}\left(s, \theta_{o}\right)
$$

If a particular outcome $\bar{s} \in S$ is considered and the sequence of estimates $\hat{\theta}_{N}\left(\bar{s}, \theta_{o}\right)$ is evaluated for increasing N, a numerical series $\hat{\theta}_{1}\left(\bar{s}, \theta_{o}\right), \hat{\theta}_{2}\left(\bar{s}, \theta_{o}\right), \ldots$, is derived that may converge to θ_{o} for some \bar{s}, and may not converge for some other \bar{s}.

Let A be the set of outcomes \bar{s} guaranteeing the convergence to θ_{o} :

- if $A \equiv S$, then we have sure convergence, since it holds $\forall \bar{s} \in S$;
- if $A \subset S$, considering A like an event, the probability $P(A)$ may be defined; if A is such that $P(A)=1$, we say that $\hat{\theta}_{N}$ converges to θ_{o} with probability 1 :

$$
\lim _{N \rightarrow \infty} \hat{\theta}_{N}=\theta_{o} \quad w . p .1
$$

we have almost-sure convergence \Rightarrow the algorithm is said to be consistent.

Example

Problem: N scalar data d_{i} with the same mean value $E\left[d_{i}\right]=\theta_{o}$, with variances $\operatorname{Var}\left[d_{i}\right]$ possibly different but bounded $\left(\exists \sigma \in \mathbb{R}_{+}: \operatorname{Var}\left[d_{i}\right] \leq \sigma^{2}<\infty, \forall i\right)$; data are uncorrelated, i.e.:

$$
E\left[\left\{d_{i}-E\left[d_{i}\right]\right\}\left\{d_{j}-E\left[d_{j}\right]\right\}\right]=0, \quad \forall i \neq j
$$

Estimator \#1 (sample mean):

$$
\hat{\theta}_{N}=\frac{1}{N} \sum_{i=1}^{N} d_{i}
$$

- it is an unbiased estimator:

$$
E\left[\hat{\theta}_{N}\right]=E\left[\frac{1}{N} \sum_{i=1}^{N} d_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[d_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} \theta_{o}=\theta_{o}
$$

- it converges in quadratic mean:

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\theta}_{N}\right] & =E\left[\left(\hat{\theta}_{N}-E\left[\hat{\theta}_{N}\right]\right)^{2}\right]=E\left[\left(\frac{1}{N} \sum_{i=1}^{N} d_{i}-\theta_{o}\right)^{2}\right]= \\
& =E\left[\left(\frac{1}{N} \sum_{i=1}^{N} d_{i}-\frac{1}{N} \sum_{i=1}^{N} \theta_{o}\right)^{2}\right]=E\left[\left(\frac{1}{N} \sum_{i=1}^{N}\left(d_{i}-\theta_{o}\right)\right)^{2}\right]= \\
& =E\left[\frac{1}{N^{2}}\left(\sum_{i=1}^{N}\left(d_{i}-\theta_{o}\right)\right)^{2}\right]=\frac{1}{N^{2}} E\left[\left(\sum_{i=1}^{N}\left(d_{i}-\theta_{o}\right)\right)^{2}\right]= \\
& =\frac{1}{N^{2}} E\left[\sum_{i=1}^{N}\left(d_{i}-\theta_{o}\right)^{2}+\sum_{i=1}^{N}\left(d_{i}-\theta_{o}\right) \sum_{j=1, j \neq i}^{N}\left(d_{j}-\theta_{o}\right)\right]= \\
& =\frac{1}{N^{2}}\left\{\sum_{i=1}^{N} E\left[\left(d_{i}-\theta_{o}\right)^{2}\right]+\sum_{i=1}^{N} E\left[\left(d_{i}-\theta_{o}\right) \sum_{j=1, j \neq i}^{N}\left(d_{j}-\theta_{o}\right)\right]\right\}= \\
& =\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left[d_{i}\right] \leq \frac{1}{N^{2}} \sum_{i=1}^{N} \sigma^{2}=\sigma^{2} / N
\end{aligned}
$$

\Downarrow

$$
\lim _{N \rightarrow \infty} \operatorname{Var}\left[\hat{\theta}_{N}\right] \leq \lim _{N \rightarrow \infty} \frac{\sigma^{2}}{N}=0
$$

\Downarrow
the algorithm converges in quadratic mean, since it is unbiased and with $\lim _{N \rightarrow \infty} \operatorname{Var}\left[\hat{\theta}_{N}\right]=0$.

Estimator \#2:

$$
\hat{\theta}_{N}=d_{j}
$$

- it is an unbiased estimator:

$$
E\left[\hat{\theta}_{N}\right]=E\left[d_{j}\right]=\theta_{o}
$$

- it does not converge in quadratic mean:

$$
\operatorname{Var}\left[\hat{\theta}_{N}\right]=E\left[\left(\hat{\theta}_{N}-E\left[\hat{\theta}_{N}\right]\right)^{2}\right]=E\left[\left(d_{j}-\theta_{o}\right)^{2}\right]=\operatorname{Var}\left[d_{j}\right] \leq \sigma^{2}
$$

and then it does not vary with the number N of data

the estimation uncertainty is constant and, in particular, it does not decrease when the number of data grows.

Estimator \#3 (weighted sample mean):

$$
\hat{\theta}_{N}=\sum_{i=1}^{N} \alpha_{i} d_{i}
$$

- it is an unbiased estimator if and only if $\sum_{i=1}^{N} \alpha_{i}=1$, because

$$
E\left[\hat{\theta}_{N}\right]=E\left[\sum_{i=1}^{N} \alpha_{i} d_{i}\right]=\sum_{i=1}^{N} \alpha_{i} E\left[d_{i}\right]=\theta_{o} \sum_{i=1}^{N} \alpha_{i}=\theta_{o} \Leftrightarrow \sum_{i=1}^{N} \alpha_{i}=1
$$

Note: the algorithm \#1 corresponds to the case $\alpha_{i}=\frac{1}{N}, \forall i$; the algorithm \#2 corresponds to the case $\alpha_{j}=1$ and $\alpha_{i}=0, \forall i \neq j$

- it can be proven that the minimum variance unbiased estimator has weights

$$
\alpha_{i}=\frac{\alpha}{\operatorname{Var}\left[d_{i}\right]}, \quad \alpha=\left[\sum_{i=1}^{N} \frac{1}{\operatorname{Var}\left[d_{i}\right]}\right]^{-1}
$$

intuitively, more uncertain data are considered as less trusted, with lower weights

- the variance of the minimum variance unbiased estimator is

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\theta}_{N}\right] & =E\left[\left(\hat{\theta}_{N}-E\left[\hat{\theta}_{N}\right]\right)^{2}\right]=E\left[\left(\sum_{i=1}^{N} \alpha_{i} d_{i}-\theta_{o}\right)^{2}\right]= \\
& =E\left[\left(\sum_{i=1}^{N} \alpha_{i} d_{i}-\sum_{i=1}^{N} \alpha_{i} \theta_{o}\right)^{2}\right]=E\left[\left(\sum_{i=1}^{N} \alpha_{i}\left(d_{i}-\theta_{o}\right)\right)^{2}\right]= \\
& =E\left[\sum_{i=1}^{N} \alpha_{i}^{2}\left(d_{i}-\theta_{o}\right)^{2}+\sum_{i=1}^{N} \alpha_{i}\left(d_{i}-\theta_{o}\right) \sum_{j=1, j \neq i}^{N} \alpha_{j}\left(d_{j}-\theta_{o}\right)\right]= \\
& =\sum_{i=1}^{N} \alpha_{i}^{2} E\left[\left(d_{i}-\theta_{o}\right)^{2}\right]+\sum_{i=1}^{N} \alpha_{i} E\left[\left(d_{i}-\theta_{o}\right) \sum_{j=1, j \neq i}^{N} \alpha_{j}\left(d_{j}-\theta_{o}\right)\right]= \\
& =\sum_{i=1}^{N} \alpha_{i}^{2} \operatorname{Var}\left[d_{i}\right]=\sum_{i=1}^{N} \frac{\alpha^{2}}{\operatorname{Var}\left[d_{i}\right]^{2}} \operatorname{Var}\left[d_{i}\right]=\alpha^{2} \sum_{i=1}^{N} \frac{1}{\operatorname{Var}\left[d_{i}\right]}= \\
& =\alpha=\left[\sum_{i=1}^{N} \frac{1}{\operatorname{Var}\left[d_{i}\right]}\right]^{-1} \leq\left[\sum_{i=1}^{N} \frac{1}{\sigma^{2}}\right]^{-1}=\frac{\sigma^{2}}{N}
\end{aligned}
$$

- the minimum variance unbiased algorithm converges in quadratic mean, since

$$
\lim _{N \rightarrow \infty} \operatorname{Var}\left[\hat{\theta}_{N}\right] \leq \lim _{N \rightarrow \infty} \frac{\sigma^{2}}{N}=0
$$

Cramér-Rao inequality

The estimation precision has its own intrinsic limits, due to the random source of data: in fact, the variance of any estimator cannot be less than a certain value, since data are always affected by noises and the corresponding uncertainty reflects into a structural estimate uncertainty, which cannot be suppressed simply by changing the estimator:

- in the scalar case $\theta \in \mathbb{R}$, the following Cramér-Rao inequality holds for any unbiased estimator $\hat{\theta}$:

$$
\operatorname{Var}[\hat{\theta}] \geq m^{-1}
$$

where m is the Fisher information quantity defined as

$$
m=E\left[\left\{\frac{\partial}{\partial \theta} \ln f\left(d^{(\theta)}, \theta\right)\right\}^{2}\right]_{\theta=\theta_{o}}=-E\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f\left(d^{(\theta)}, \theta\right)\right]_{\theta=\theta_{o}} \geq 0
$$

$d^{(\theta)} \in \mathbb{R}^{N}$ are the data generated by the random source for a generic value θ of the unknown variable, not necessarily the "true" value $\theta_{o} ; f(q, \theta), q \in \mathbb{R}^{N}$, is the probability density function of q;

- in the vector case $\theta \in \mathbb{R}^{n}$, for any unbiased estimator $\hat{\theta}$, the Cramér-Rao inequality becomes

$$
\operatorname{Var}[\hat{\theta}] \geq M^{-1}
$$

where M is the nonsingular Fisher information matrix

$$
\begin{gathered}
M=\left[m_{i j}\right] \in \mathbb{R}^{n \times n} \\
m_{i j}=-E\left[\frac{\partial^{2}}{\partial \theta_{i} \partial \theta j} \ln f\left(d^{(\theta)}, \theta\right)\right]_{\theta=\theta_{o}}, \quad \forall i, j=1,2, \ldots, n
\end{gathered}
$$

From this inequality it follows that

$$
\operatorname{Var}\left[\hat{\theta}_{i}\right] \geq\left[M^{-1}\right]_{i i}, \quad \forall i=1,2, \ldots, n
$$

An unbiased estimator is efficient if it provides the minimum variance, i.e., if its variance achieves the minimal theoretic value assessed by the Cramér-Rao inequality:

$$
\operatorname{Var}[\hat{\theta}]=m^{-1} \text { or } \operatorname{Var}[\hat{\theta}]=M^{-1}
$$

Least Squares estimation method

Linear regression problem: given the measurements of $n+1$ real variables $y(t)$, $u_{1}(t), \ldots, u_{n}(t)$ over a time interval (e.g., for $t=1,2, \ldots, N$), find if possible the values of n real parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ such that the following relationship holds

$$
y(t)=\theta_{1} u_{1}(t)+\ldots+\theta_{n} u_{n}(t)
$$

In matrix terms, by defining the real vectors

$$
\theta=\left[\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{n}
\end{array}\right] \in \mathbb{R}^{n}, \quad \varphi(t)=\left[\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{n}(t)
\end{array}\right] \in \mathbb{R}^{n} \Rightarrow y(t)=\varphi(t)^{T} \theta
$$

In the actual problems, there exists always a nonzero error $\varepsilon(t)=y(t)-\varphi(t)^{T} \theta$
by defining $J(\theta)=\sum_{t=1}^{N} \varepsilon(t)^{2}$, the problem is solved by finding $\theta^{*}=\underset{\theta \in \mathbb{R}^{n}}{\arg \min } J(\theta)$.

In order to find the minimum of the figure of merit J, we have to require that

$$
\begin{gathered}
\frac{d J(\theta)}{d \theta}=\left[\frac{d J(\theta)}{d \theta_{1}} \ldots \frac{d J(\theta)}{d \theta_{n}}\right]=0 \quad \Leftrightarrow \\
\frac{d J(\theta)}{d \theta_{i}}=\frac{d}{d \theta_{i}}\left[\sum_{t=1}^{N} \varepsilon(t)^{2}\right]=\sum_{t=1}^{N} \frac{d}{d \theta_{i}}\left[\varepsilon(t)^{2}\right]=\sum_{t=1}^{N} \frac{d}{d \theta_{i}}\left[\left(y(t)-\varphi(t)^{T} \theta\right)^{2}\right]= \\
=-2 \sum_{t=1}^{N}\left(y(t)-\varphi(t)^{T} \theta\right) u_{i}(t)=0, \quad i=1,2, \ldots, n \quad \Leftrightarrow \\
\frac{d J(\theta)}{d \theta}=-2 \sum_{t=1}^{N}\left(y(t)-\varphi(t)^{T} \theta\right) \varphi(t)^{T}=0 \quad \Leftrightarrow \\
\sum_{t=1}^{N}\left(y(t) \varphi(t)^{T}-\varphi(t)^{T} \theta \varphi(t)^{T}\right)=\sum_{t=1}^{N} y(t) \varphi(t)^{T}-\sum_{t=1}^{N} \varphi(t)^{T} \theta \varphi(t)^{T}=0
\end{gathered} \Leftrightarrow
$$

The relationship

$$
\sum_{t=1}^{N}\left[\varphi(t) \varphi(t)^{T}\right] \theta=\sum_{t=1}^{N} \varphi(t) y(t)
$$

is a system of n scalar equations involving n scalar unknowns $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ that is called normal equation system:

- if the matrix $\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}$ is nonsingular ($\Leftrightarrow \operatorname{det} \sum_{t=1}^{N} \varphi(t) \varphi(t)^{T} \neq 0$, known as identifiability condition), then the normal equation system has a single unique solution given by the Least Squares (LS) estimate:

$$
\hat{\theta}=\left[\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}\right]^{-1}\left[\sum_{t=1}^{N} \varphi(t) y(t)\right]
$$

- if $\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}$ is singular, it can be proved that the normal equations have an infinite number of solutions, due to their particular structure.

The stationarity condition $\frac{d J(\theta)}{d \theta}=0$ does not guarantee that $\hat{\theta}$ is a minimum of $J(\theta)$ \Rightarrow we have to consider the Hessian matrix

$$
\begin{aligned}
\frac{d^{2} J(\theta)}{d \theta^{2}} & =\frac{d}{d \theta}\left[\frac{d J(\theta)}{d \theta}\right]^{T}=\frac{d}{d \theta}\left[-2 \sum_{t=1}^{N}\left(y(t)-\varphi(t)^{T} \theta\right) \varphi(t)^{T}\right]^{T}= \\
& =\frac{d}{d \theta}\left[-2 \sum_{t=1}^{N}\left(y(t) \varphi(t)^{T}-\theta^{T} \varphi(t) \varphi(t)^{T}\right)^{T}\right]= \\
& =\frac{d}{d \theta}\left[-2 \sum_{t=1}^{N} y(t) \varphi(t)+2 \sum_{t=1}^{N} \varphi(t) \varphi(t)^{T} \theta\right]= \\
& =2 \sum_{t=1}^{N} \frac{d}{d \theta} \varphi(t) \varphi(t)^{T} \theta=2 \sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}
\end{aligned}
$$

that turns out to be positive semidefinite, since $\forall x \in \mathbb{R}^{n}$

$$
\begin{gathered}
x^{T} \frac{d^{2} J(\theta)}{d \theta^{2}} x=x^{T} 2 \sum_{t=1}^{N} \varphi(t) \varphi(t)^{T} x=2 \sum_{t=1}^{N} x^{T} \varphi(t) \varphi(t)^{T} x=2 \sum_{t=1}^{N}\left(x^{T} \varphi(t)\right)^{2} \geq 0 \\
\Downarrow
\end{gathered}
$$

$\hat{\theta}$ is certainly a (local or global) minimum of $J(\theta)$.

The Taylor series expansion of $J(\theta)$ in the neighborhood of $\hat{\theta}$ allows to understand if $\hat{\theta}$ is a local or global minimum:
$J(\theta)=J(\hat{\theta})+\left.\frac{d J(\theta)}{d \theta}\right|_{\hat{\theta}}(\theta-\hat{\theta})+\left.\frac{1}{2}(\theta-\hat{\theta})^{T} \frac{d^{2} J(\theta)}{d \theta^{2}}\right|_{\hat{\theta}}(\theta-\hat{\theta})+\ldots=J(\hat{\theta})+\left.\frac{1}{2}(\theta-\hat{\theta})^{T} \frac{d^{2} J(\theta)}{d \theta^{2}}\right|_{\hat{\theta}}(\theta-\hat{\theta})$
since the term $\left.\frac{d J(\theta)}{d \theta}\right|_{\theta=\hat{\theta}}$ is zero ($\hat{\theta}$ is a minimum) as well as all the $J(\theta)$ derivatives of order greater than two $(J(\theta)$ is a quadratic function of θ)

$$
J(\theta)-J(\hat{\theta})=\left.\frac{1}{2}(\theta-\hat{\theta})^{T} \frac{d^{2} J(\theta)}{d \theta^{2}}\right|_{\hat{\theta}}(\theta-\hat{\theta}),\left.\quad \frac{d^{2} J(\theta)}{d \theta^{2}}\right|_{\hat{\theta}}=2 \sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}
$$

is a positive semidefinite quadratic form, since $\left.\frac{d^{2} J(\vartheta)}{d \vartheta^{2}}\right|_{\hat{\theta}}$ is positive semidefinite:

- if $\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}$ is nonsingular $\left.\Rightarrow \frac{d^{2} J(\theta)}{d \theta^{2}}\right|_{\hat{\theta}}$ is positive definite \Rightarrow the quadratic form is positive definite and it is a paraboloid with a unique minimum $\Rightarrow \hat{\theta}$ is the global minimum of $J(\theta)$;
- if $\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}$ is singular \Rightarrow the quadratic form is positive semidefinite and it has an infinite number of local minima, aligned over a line tangent to $J(\theta)$.

The obtained results may be rewritten in a compact matrix form by defining:

$$
\begin{gathered}
\Phi=\left[\begin{array}{c}
\varphi(1)^{T} \\
\vdots \\
\varphi(N)^{T}
\end{array}\right]=\left[\begin{array}{ccc}
u_{1}(1) & \ldots & u_{n}(1) \\
\vdots & & \vdots \\
u_{1}(N) & \ldots & u_{n}(N)
\end{array}\right] \in \mathbb{R}^{N \times n}, \quad y=\left[\begin{array}{c}
y(1) \\
\vdots \\
y(N)
\end{array}\right] \in \mathbb{R}^{N} \\
\Downarrow \\
y(t)=\varphi(t)^{T} \theta, \quad t=1,2, \ldots, N \quad \Leftrightarrow \quad \begin{array}{|}
\mathbf{y}=\boldsymbol{\Phi} \boldsymbol{\theta} \\
\Downarrow \\
\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}=\Phi^{T} \Phi, \quad \sum_{t=1}^{N} \varphi(t) y(t)=\Phi^{T} y \\
\Downarrow
\end{array}
\end{gathered}
$$

the normal equation system becomes:

$$
\Phi^{T} \Phi \theta=\Phi^{T} y
$$

and, if $\Phi^{T} \Phi$ is nonsingular (identifiability condition), it has a unique solution given by the least squares estimate:

$$
\hat{\boldsymbol{\theta}}_{\mathrm{LS}}=\left[\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right]^{-1} \boldsymbol{\Phi}^{T} \mathbf{y}
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \begin{array}{l}
\text { Proof: } \\
\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T}=\sum_{t=1}^{N}\left[\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{n}(t)
\end{array}\right]\left[u_{1}(t) \cdots u_{n}(t)\right]=\sum_{t=1}^{N}\left[\begin{array}{ccc}
u_{1}^{2}(t) & \cdots & u_{1}(t) u_{n}(t) \\
\vdots & \ddots & \vdots \\
u_{n}(t) u_{1}(t) & \cdots & u_{n}^{2}(t)
\end{array}\right]
\end{array} \\
& =\left[\begin{array}{ccc}
\sum_{t=1}^{N} u_{1}^{2}(t) & \cdots & \sum_{t=1}^{N} u_{1}(t) u_{n}(t) \\
\vdots & \ddots & \vdots \\
\sum_{t=1}^{N} u_{n}(t) u_{1}(t) & \cdots & \sum_{t=1}^{N} u_{n}^{2}(t)
\end{array}\right] \\
& \Phi^{T} \Phi=[\varphi(1) \cdots \varphi(N)]\left[\begin{array}{c}
\varphi(1)^{T} \\
\vdots \\
\varphi(\dot{N})^{T}
\end{array}\right]=\left[\begin{array}{ccc}
u_{1}(1) & \ldots & u_{1}(N) \\
\vdots & \ddots & \vdots \\
u_{n}(1) & \ldots & u_{n}(N)
\end{array}\right]\left[\begin{array}{ccc}
u_{1}(1) & \ldots & u_{n}(1) \\
\vdots & \ddots & \vdots \\
u_{1}(N) & \ldots & u_{n}(N)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\sum_{t=1}^{N} u_{1}^{2}(t) & \cdots & \sum_{t=1}^{N} u_{1}(t) u_{n}(t) \\
\vdots & \ddots & \vdots \\
\sum_{t=1}^{N} u_{n}(t) u_{1}(t) & \cdots & \sum_{t=1}^{N} u_{n}^{2}(t)
\end{array}\right]=\sum_{t=1}^{N} \varphi(t) \varphi(t)^{T} \\
& \sum_{t=1}^{N} \varphi(t) y(t)=\sum_{t=1}^{N}\left[\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{n}(t)
\end{array}\right] y(t)=\left[\begin{array}{c}
\sum_{t=1}^{N} u_{1}(t) y(t) \\
\vdots \\
\sum_{t=1}^{N} \begin{array}{c}
u_{n} \\
\vdots
\end{array}(t) y(t)
\end{array}\right] \\
& \Phi^{T} y=[\varphi(1) \cdots \varphi(N)]\left[\begin{array}{c}
y(1) \\
\vdots \\
y(\dot{N})
\end{array}\right]=\left[\begin{array}{ccc}
u_{1}(1) & \cdots & u_{1}(N) \\
\vdots & \ddots & \vdots \\
u_{n}(1) & \cdots & u_{n} \dot{(N)}
\end{array}\right]\left[\begin{array}{c}
y(1) \\
\vdots \\
y(\dot{N})
\end{array}\right]=\left[\begin{array}{c}
\sum_{t=1}^{N} u_{1}(t) y(t) \\
\vdots \\
\sum_{t=1}^{N} u_{n}(t) y(t)
\end{array}\right]
\end{aligned}
$$

Probabilistic characteristics of least squares estimator

Assumptions:

- the identifiability condition holds: $\exists\left[\Phi^{T} \Phi\right]^{-1}$;
- the random source of data has the following structure

$$
y(t)=\varphi(t)^{T} \theta_{o}+v(t), \quad t=1,2, \ldots, N
$$

where $v(t)$ is a zero-mean random disturbance \Rightarrow
the relationship between y and $u_{1}, u_{2}, \ldots, u_{n}$ is assumed to be linear \Rightarrow there exists a "true" value θ_{o} of the unknown variable;
in compact matrix form, it results that:

$$
y=\Phi \theta_{o}+v
$$

where $v=\left[\begin{array}{c}v(1) \\ \vdots \\ v(N)\end{array}\right] \in \mathbb{R}^{N}$ is a vector random variable with $E[v]=\mathbf{0}$.

Under these assumptions, the least squares estimator becomes:

$$
\begin{aligned}
\hat{\theta} & =\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} y=\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\left(\Phi \theta_{o}+v\right)= \\
& =\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} \Phi \theta_{o}+\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} v=\theta_{o}+\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} v
\end{aligned}
$$

and it has the following probabilistic characteristics:

- it is unbiased, since its mean value $E[\hat{\theta}]=\theta_{o}$

$$
\begin{aligned}
E[\hat{\theta}] & =E\left[\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} y\right]=\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} E[y]=\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} E\left[\Phi \theta_{o}+v\right]= \\
& =\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\left(\Phi \theta_{o}+E[v]\right)=\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} \Phi \theta_{o}=\theta_{o}
\end{aligned}
$$

- if v is a vector of zero-mean random variables that are uncorrelated and with the same variance $\sigma_{v}^{2}\left(\operatorname{Var}[v]=E\left[v v^{T}\right]=\sigma_{v}^{2} I_{N}\right)$, as in the case of disturbance $v(\cdot)$ given by a white noise $W N\left(0, \sigma_{v}^{2}\right) \Rightarrow \operatorname{Var}[\hat{\theta}]=\sigma_{v}^{2}\left[\Phi^{T} \Phi\right]^{-1}$

$$
\begin{aligned}
\operatorname{Var}[\hat{\theta}] & =E\left[(\hat{\theta}-E[\hat{\theta}])(\hat{\theta}-E[\hat{\theta}])^{T}\right]=E\left[\left(\hat{\theta}-\theta_{o}\right)\left(\hat{\theta}-\theta_{o}\right)^{T}\right]= \\
& =E\left[\left(\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} v\right)\left(\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} v\right)^{T}\right]=E\left[\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} v v^{T} \Phi\left[\Phi^{T} \Phi\right]^{-1}\right]= \\
& =\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} E\left[v v^{T}\right] \Phi\left[\Phi^{T} \Phi\right]^{-1}=\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} \sigma_{v}^{2} I_{N} \Phi\left[\Phi^{T} \Phi\right]^{-1}= \\
& =\sigma_{v}^{2}\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} \Phi\left[\Phi^{T} \Phi\right]^{-1}=\sigma_{v}^{2}\left[\Phi^{T} \Phi\right]^{-1}
\end{aligned}
$$

- The variance σ_{v}^{2} of the disturbance v is usually unknown \Rightarrow under the same previous assumptions, a "reasonable" unbiased estimate $\hat{\sigma}_{v}^{2}$ (such that $E\left[\hat{\sigma}_{v}^{2}\right]=\sigma_{v}^{2}$) can be directly derived from data as

$$
\hat{\sigma}_{v}^{2}=\frac{J(\hat{\theta})}{N-n}
$$

where $N=$ measurement number, $n=$ number of unknown parameters of θ,

$$
\begin{aligned}
J(\hat{\theta}) & =\left.\sum_{t=1}^{N} \varepsilon(t)^{2}\right|_{\theta=\hat{\theta}}=\sum_{t=1}^{N}\left[y(t)-\varphi(t)^{T} \hat{\theta}\right]^{2}=[y-\Phi \hat{\theta}]^{T}[y-\Phi \hat{\theta}]= \\
& =\left(\left(I_{N}-\Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\right) y\right)^{T}\left(I_{N}-\Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\right) y= \\
& =y^{T}\left(I_{N}-\Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\right)\left(I_{N}-\Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\right) y= \\
& =y^{T}\left(I_{N}-2 \Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}+\Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} \Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\right) y= \\
& =y^{T}\left(I_{N}-\Phi\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T}\right) y
\end{aligned}
$$

$$
\Downarrow
$$

$$
\operatorname{Var}[\hat{\theta}]=\sigma_{v}^{2}\left[\Phi^{T} \Phi\right]^{-1} \cong \hat{\sigma}_{v}^{2}\left[\Phi^{T} \Phi\right]^{-1}
$$

Weighted Least Squares estimation method

With the least squares estimation method, all the errors have the same relevance, since the figure of merit to be minimized is

$$
J_{L S}(\theta)=\sum_{t=1}^{N} \varepsilon(t)^{2}, \quad \text { where } \quad \varepsilon(t)=y(t)-\varphi(t)^{T} \theta, \quad t=1,2, \ldots, N
$$

However, if some measurements are more accurate than some others, different relevance can be assigned to the errors, by defining the figure of merit

$$
J_{W L S}(\theta)=\sum_{t=1}^{N} q(t) \varepsilon(t)^{2}=\varepsilon^{T} Q \varepsilon
$$

where $q(t)>0$ are the weighting coefficients (or weights) for $t=1,2, \ldots, N$,

$$
Q=\operatorname{diag}(q(t))=\left[\begin{array}{cccc}
q(1) & 0 & \ldots & 0 \\
0 & q(2) & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & q(N)
\end{array}\right] \in \mathbb{R}^{N \times N}, \quad \varepsilon=\left[\begin{array}{c}
\varepsilon(1) \\
\vdots \\
\varepsilon(N)
\end{array}\right] \in \mathbb{R}^{N} .
$$

The Weighted Least Squares (WLS) estimate minimizes the figure of merit $J_{W L S}(\theta)$:

$$
\hat{\boldsymbol{\theta}}_{W L S}=\left[\boldsymbol{\Phi}^{T} \mathbf{Q} \boldsymbol{\Phi}\right]^{-\mathbf{1}} \mathbf{\Phi}^{T} \mathbf{Q} \mathbf{y}
$$

If the disturbance v is a vector of zero-mean uncorrelated random variables with variance Σ_{v}, the estimator $\hat{\theta}_{W L S}$ has the following probabilistic characteristics:

- it is unbiased, since its mean value $E\left[\hat{\theta}_{W L S}\right]=\theta_{o}$

$$
\begin{aligned}
E\left[\hat{\theta}_{W L S}\right] & =E\left[\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q y\right]=\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q E[y]=\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q E\left[\Phi \theta_{o}+v\right]= \\
& =\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q\left(\Phi \theta_{o}+E[v]\right)=\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q \Phi \theta_{o}=\theta_{o}
\end{aligned}
$$

- its variance is

$$
\begin{aligned}
& \operatorname{Var}\left[\hat{\theta}_{W L S}\right]=E\left[\left(\hat{\theta}_{W L S}-E\left[\hat{\theta}_{W L S}\right]\right)\left(\hat{\theta}_{W L S}-E\left[\hat{\theta}_{W L S}\right]\right)^{T}\right]= \\
& \quad=E\left[\left(\hat{\theta}_{W L S}-\theta_{o}\right)\left(\hat{\theta}_{W L S}-\theta_{o}\right)^{T}\right]=E\left[\left(\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q v\right)\left(\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q v\right)^{T}\right]= \\
& \quad=E\left[\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q v v^{T} Q^{T} \Phi\left[\Phi^{T} Q \Phi\right]^{-1}\right]= \\
& \quad=\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q E\left[v v^{T}\right] Q \Phi\left[\Phi^{T} Q \Phi\right]^{-1}=\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q \Sigma_{v} Q \Phi\left[\Phi^{T} Q \Phi\right]^{-1}
\end{aligned}
$$

and then it depends on the disturbance variance Σ_{v};

- it can be proved that the best choice for Q that minimizes $\operatorname{Var}\left[\hat{\theta}_{W L S}\right]$ is

$$
Q^{*}=\underset{Q=\operatorname{diag}(q(t)) \in \mathbb{R}^{N \times N}}{\arg \min } \operatorname{Var}\left[\hat{\theta}_{W L S}\right]=\Sigma_{v}^{-1}
$$

and in this case we obtain the so-called Gauss-Markov estimate:

$$
\hat{\boldsymbol{\theta}}_{G M}=\left[\boldsymbol{\Phi}^{T} \boldsymbol{\Sigma}_{v}^{-1} \boldsymbol{\Phi}\right]^{-\mathbf{1}} \boldsymbol{\Phi}^{T} \boldsymbol{\Sigma}_{v}^{-1} \mathbf{y}
$$

whose variance is

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\theta}_{G M}\right] & =\left[\Phi^{T} Q \Phi\right]^{-1} \Phi^{T} Q \Sigma_{v} Q \Phi\left[\Phi^{T} Q \Phi\right]^{-1}= \\
& =\left[\Phi^{T} \Sigma_{v}^{-1} \Phi\right]^{-1} \Phi^{T} \Sigma_{v}^{-1} \Sigma_{v} Q \Phi\left[\Phi^{T} \Sigma_{v}^{-1} \Phi\right]^{-1} \\
& =\left[\Phi^{T} \Sigma_{v}^{-1} \Phi\right]^{-1} ;
\end{aligned}
$$

If in particular it results that $\Sigma_{v}=\sigma_{v}^{2} I_{N} \quad \Rightarrow$

$$
\hat{\theta}_{G M}=\left[\Phi^{T} \frac{1}{\sigma_{v}^{2}} I_{N} \Phi\right]^{-1} \Phi^{T} \frac{1}{\sigma_{v}^{2}} I_{N} y=\left[\Phi^{T} \Phi\right]^{-1} \Phi^{T} y=\hat{\theta}_{L S}
$$

Maximum Likelihood estimators

The actual data are generated by a random source, which depends on the outcome s of a random experiment and on the "true" value θ_{o} of the unknown to be estimated. However, if a generic value θ of the unknown parameter is considered, the data can be seen as function of both the value θ and the outcome $s \Rightarrow$ the data can be denoted by $d^{(\theta)}(s)$, with p.d.f. $f(q, \theta)$ that is function of θ too. Let δ be the particular data observation that corresponds to a particular outcome \bar{s} of the random experiment:

$$
\delta=d^{(\theta)}(\bar{s})
$$

The so-called likelihood function is given by the p.d.f. of the data evaluated in δ :

$$
L(\theta)=\left.f(q, \theta)\right|_{q=\delta}
$$

The Maximum Likelihood (ML) estimate is defined as:

$$
\hat{\theta}_{M L}=\underset{\theta \in \mathbb{R}^{n}}{\arg \max } L(\theta)
$$

Random source of data for a generic value θ of the unknown parameter:

Generic
 parameter

Random experiment

Outcome of \mathcal{E}

Random noise
$d^{(\theta)}$ "Effective" generic datum (noise-corrupted)

Parametric model

 of the system"Ideal"
generic datum
(noise-free)

Example: a scalar parameter $\theta_{o} \in \mathbb{R}$ is estimated using a unique measurement (i.e., $N=1$), corrupted by a zero-mean Gaussian disturbance with variance σ_{v}^{2} \Rightarrow the random source of data has the following structure:

$$
y=\theta_{o}+v
$$

where the noise v is a scalar zero-mean Gaussian random variable with p.d.f.

$$
f(q)=\mathcal{N}\left(0, \sigma_{v}^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{v}} \exp \left(\frac{-q^{2}}{2 \sigma_{v}^{2}}\right)
$$

Since $v=y-\theta_{o} \Rightarrow$ the p.d.f. of data y generated by a random source where a generic value θ is considered instead of θ_{o} is then given by

$$
\begin{gathered}
f(q, \theta)=\frac{1}{\sqrt{2 \pi} \sigma_{v}} \exp \left(\frac{-(q-\theta)^{2}}{2 \sigma_{v}^{2}}\right)=\mathcal{N}\left(\theta, \sigma_{v}^{2}\right) \Rightarrow \\
L(\theta)=\left.f(q, \theta)\right|_{q=\delta}=\frac{1}{\sqrt{2 \pi} \sigma_{v}} \exp \left(\frac{-(\delta-\theta)^{2}}{2 \sigma_{v}^{2}}\right)=\mathcal{N}\left(\delta, \sigma_{v}^{2}\right)
\end{gathered}
$$

$f(q, \theta)$ translates when the value of θ changes $\Rightarrow L(\theta)=\left.f(q, \theta)\right|_{q=\delta}$ varies too.

$$
f(q, \theta)=\mathcal{N}\left(\theta, \sigma_{v}^{2}\right) \quad \Rightarrow \quad L(\theta)=\left.f(q, \theta)\right|_{q=\delta}=\mathcal{N}\left(\delta, \sigma_{v}^{2}\right)
$$

Maximum Likelihood estimator properties

The estimate $\hat{\theta}_{M L}$ is:

- asymptotically unbiased: $E\left(\hat{\theta}_{M L}\right) \xrightarrow[N \rightarrow \infty]{ } \theta_{o}$
- asymptotically efficient: $\Sigma_{\hat{\theta}_{M L}} \leq \Sigma_{\hat{\theta}} \quad \forall \hat{\theta}$ if $N \rightarrow \infty$
- consistent: $\lim _{N \rightarrow \infty} \Sigma_{\hat{\theta}_{M L}}=0$
- asymptotically Gaussian (for $N \rightarrow \infty$)

Example: let us assume that the random source of data has the following structure:

$$
y(t)=\psi\left(t, \theta_{o}\right)+v(t), \quad t=1,2, \ldots, N \quad \Leftrightarrow \quad y=\Psi\left(\theta_{o}\right)+v
$$

where $\psi\left(t, \theta_{o}\right)$ is a generic nonlinear function of θ_{o} and the disturbance v is a vector of zero-mean Gaussian random variables with variance Σ_{v} and p.d.f.

$$
f(q)=\mathcal{N}\left(0, \Sigma_{v}\right)=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \Sigma_{v}}} \exp \left(-\frac{1}{2} q^{T} \Sigma_{v}^{-1} q\right)
$$

Since $v=y-\Psi\left(\theta_{o}\right) \Rightarrow$ the p.d.f. of data generated by a random source where a generic value θ is considered instead of θ_{o} is then given by

$$
\begin{gathered}
f(q, \theta)=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \Sigma_{v}}} \exp \left(-\frac{1}{2}[q-\Psi(\theta)]^{T} \Sigma_{v}^{-1}[q-\Psi(\theta)]\right) \\
L(\theta)=\left.f(q, \theta)\right|_{q=\delta}=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \Sigma_{v}}} \exp \left(-\frac{1}{2}[\delta-\Psi(\theta)]^{T} \Sigma_{v}^{-1}[\delta-\Psi(\theta)]\right)
\end{gathered}
$$

$$
\begin{gathered}
L(\theta)=\left.f(q, \theta)\right|_{q=\delta}=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \Sigma_{v}}} \exp \left(-\frac{1}{2}[\delta-\Psi(\theta)]^{T} \Sigma_{v}^{-1}[\delta-\Psi(\theta)]\right) \\
\Downarrow \\
\left.f(q, \theta)\right|_{q=\delta} \text { is an exponential function of } \theta \\
\Downarrow \\
\hat{\theta}_{M L}=\underset{\theta \in \mathbb{R}^{n}}{\arg \max } L(\theta)=\underset{\theta \in \mathbb{R}^{n}}{\arg \min }\{\underbrace{[\delta-\Psi(\theta)]^{T} \Sigma_{v}^{-1}[\delta-\Psi(\theta)]}_{R(\theta)}\}
\end{gathered}
$$

Problem: the global minimum of $R(\theta)$ has to be found with respect to θ, but $R(\theta)$ may have many local minima if $\Psi(\theta)$ is a generic nonlinear function of the unknown variable; the standard nonlinear optimization algorithms do not guarantee to find always the global minimum.

Particular case: $\Psi(\theta)=$ linear function of the unknown parameters $=\Phi \theta$
$R(\theta)$ is a quadratic function of $\theta: R(\theta)=[\delta-\Phi \theta]^{T} \Sigma_{v}^{-1}[\delta-\Phi \theta]$
there exists a unique minimum of $R(\theta)$, if $\operatorname{det}\left(\Phi^{T} \Sigma_{v}^{-1} \Phi\right) \neq 0$
\Downarrow
$\hat{\theta}_{M L}=\left(\Phi^{T} \Sigma_{v}^{-1} \Phi\right)^{-1} \Phi^{T} \Sigma_{v}^{-1} \delta=$ Gauss-Markov estimate $=\hat{\theta}_{G M}=$
$=$ Weighted Least Squares estimate using the disturbance variance Σ_{v}

If $\Sigma_{v}=\sigma_{v}^{2} I_{N}$, i.e., independent identically distributed (i.i.d.) disturbance:

$$
\hat{\theta}_{M L}=\hat{\theta}_{G M}=\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} \delta=\text { Least Squares estimate }
$$

Gauss-Markov estimate properties

The estimate $\hat{\theta}_{G M}$ is:

- unbiased: $E\left(\hat{\theta}_{G M}\right)=\theta_{o}$
- efficient: $\Sigma_{\hat{\theta}_{G M}} \leq \Sigma_{\hat{\theta}} \quad \forall \hat{\theta}$
- consistent: $\lim _{N \rightarrow \infty} \Sigma_{\hat{\theta}_{G M}}=0$
- Gaussian

Bayesian estimation method

The Bayesian method allows one to take into account experimental data and a priori information on the unknown of the estimation problem that, if well exploited, can improve the estimate and make up for possible random errors corrupting the data:

- the unknown θ is considered as a random variable, whose a priori p.d.f. (i.e., in absence of data) has some given behaviour, mean value and variance

the mean value is a possible initial estimate of θ, while the variance represents the a priori uncertainty;
- as new experimental data arrive, the p.d.f. of θ is updated on the basis of the new information: the mean value changes with respect to the a priori one, while the variance is expected to decrease thanks to the information provided by data.

Random source of data with a random unknown parameter θ :

Parametric model of the system
"Ideal" datum (noise-free)

Random experiments

Outcome of $\boldsymbol{\varepsilon}_{\mathbf{2}}$

Random noise

A joint random experiment $\mathcal{E}=\mathcal{E}_{1} \times \mathcal{E}_{2}$ is assumed to exist, whose joint outcome s is the couple of single outcomes s_{1} and $s_{2}: s=\left(s_{1}, s_{2}\right)$:

- the unknown θ is generated by a first random source \mathcal{S}_{1} on the basis of the outcome s_{1} of the first random experiment $\mathcal{E}_{1} \Rightarrow \theta=\theta\left(s_{1}\right)$;
- the data d are generated by the second random source \mathcal{S}_{2}, influenced by
- the outcome s_{2} of the second random experiment \mathcal{E}_{2}
- the value $\theta\left(s_{1}\right)$ of the unknown to be estimated

$$
d=d\left(s_{2}, \theta\left(s_{1}\right)\right)
$$

A generic estimator is a function of data $\hat{\theta}=h(d)$ and its performances improve as much as the estimate $\hat{\theta}$ is closer to the unknown to be estimated
by considering as figure of merit the mean squared error (MSE)

$$
J(h(\cdot))=E\left[\|\theta-h(d)\|^{2}\right]
$$

the Bayesian optimal estimator is the particular function $h^{*}(\cdot)$ such that

$$
E\left[\left\|\theta-h^{*}(d)\right\|^{2}\right] \leq E\left[\|\theta-h(d)\|^{2}\right], \quad \forall h(\cdot)
$$

It can be proved that such an optimal estimator exists and it is given by:

$$
h^{*}(x)=E[\theta \mid d=x]
$$

where x is the current value that the data d may take.
The Bayesian estimator (or conditional mean estimator) is the function

$$
\hat{\boldsymbol{\theta}}=\mathbf{E}[\boldsymbol{\theta} \mid \mathbf{d}]
$$

and the Bayesian estimate (or conditional mean estimate) is the numeric value

$$
\hat{\theta}=E[\theta \mid d=\delta]
$$

where δ is the value of the data d that corresponds to a particular outcome of the joint random experiment \mathcal{E}.

Bayesian estimator in the Gaussian case

Assumption: the data d and the unknown θ are scalar random variables with zero mean value and both are individually and jointly Gaussian:

$$
\begin{gathered}
{\left[\begin{array}{l}
d \\
\theta
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \Sigma=\operatorname{Var}\left[\begin{array}{l}
d \\
\theta
\end{array}\right]=\left[\begin{array}{ll}
\sigma_{d d} & \sigma_{d \theta} \\
\sigma_{\theta d} & \sigma_{\theta \theta}
\end{array}\right]\right) \Rightarrow \text { their joint p.d.f. is given by: }} \\
f(d, \theta)=C \exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
d & \theta
\end{array}\right] \Sigma^{-1}\left[\begin{array}{ll}
d & \theta
\end{array}\right]^{T}\right\}, \quad C \text { : suitable constant }
\end{gathered}
$$

Since

$$
\begin{gathered}
\operatorname{det} \Sigma=\operatorname{det}\left[\begin{array}{cc}
\sigma_{d d} & \sigma_{d \theta} \\
\sigma_{\theta d} & \sigma_{\theta \theta}
\end{array}\right]=\sigma_{d d} \sigma_{\theta \theta}-\sigma_{d \theta}^{2}=\sigma_{d d}\left(\sigma_{\theta \theta}-\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}}\right)=\sigma_{d d} \sigma^{2} \\
\text { where } \\
\sigma^{2}=\sigma_{\theta \theta}-\sigma_{\theta d}^{2} / \sigma_{d d} \leq \sigma_{\theta \theta} \\
\Sigma^{-1}=\frac{1}{\operatorname{det} \Sigma}\left[\begin{array}{cc}
\sigma_{\theta \theta} & -\sigma_{d \theta} \\
-\sigma_{\theta d} & \sigma_{d d}
\end{array}\right]=\frac{1}{\sigma^{2}}\left[\begin{array}{cc}
\sigma_{\theta \theta} / \sigma_{d d} & -\sigma_{d \theta} / \sigma_{d d} \\
-\sigma_{\theta d} / \sigma_{d d} & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
f(d, \theta) & =C \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\begin{array}{ll}
d & \theta
\end{array}\right]\left[\begin{array}{cc}
\Downarrow \\
\sigma_{\theta \theta} / \sigma_{d d} & -\sigma_{d \theta} / \sigma_{d d} \\
-\sigma_{\theta d} / \sigma_{d d} & 1
\end{array}\right]\left[\begin{array}{l}
d \\
\theta
\end{array}\right]\right\}= \\
& =C \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\begin{array}{ll}
d & \theta
\end{array}\right]\left[\begin{array}{c}
\sigma_{\theta \theta} / \sigma_{d d} d-\sigma_{d \theta} / \sigma_{d d} \theta \\
-\sigma_{\theta d} / \sigma_{d d} d+\theta
\end{array}\right]\right\}= \\
& =C \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{\sigma_{\theta \theta}}{\sigma_{d d}} d^{2}-2 \frac{\sigma_{\theta d}}{\sigma_{d d}} d \theta+\theta^{2}\right)\right\}
\end{aligned}
$$

The p.d.f. of the data d is given by:

$$
f(d)=C^{\prime} \exp \left\{-\frac{d^{2}}{2 \sigma_{d d}}\right\}, \quad C^{\prime}: \text { suitable constant }
$$

the p.d.f. of the unknown θ conditioned by data d is equal to:

$$
\begin{aligned}
f(\theta \mid d) & =\frac{f(d, \theta)}{f(d)}=\frac{C}{C^{\prime}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{\sigma_{\theta \theta}}{\sigma_{d d}} d^{2}-2 \frac{\sigma_{\theta d}}{\sigma_{d d}} d \theta+\theta^{2}\right)+\frac{d^{2}}{2 \sigma_{d d}}\right\}= \\
& =C^{\prime \prime} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\frac{\sigma_{d \theta}^{2}}{\sigma_{d d}^{2}} d^{2}-2 \frac{\sigma_{\theta d}}{\sigma_{d d}} d \theta+\theta^{2}\right]\right\}=C^{\prime \prime} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\theta-\frac{\sigma_{\theta d}}{\sigma_{d d}} d\right]^{2}\right\}
\end{aligned}
$$

$$
f(\theta \mid d)=C^{\prime \prime} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\theta-\frac{\sigma_{\theta d}}{\sigma_{d d}} d\right]^{2}\right\} \sim \mathcal{N}\left(\frac{\sigma_{\theta d}}{\sigma_{d d}} d, \sigma^{2}\right)
$$

The Bayesian estimator is the function

$$
\hat{\theta}=E[\theta \mid d]=\frac{\boldsymbol{\sigma}_{\theta d}}{\boldsymbol{\sigma}_{d d}} d
$$

while the Bayesian estimate corresponding to the particular observation δ of data d is the numerical value

$$
\hat{\theta}=E[\theta \mid d=\delta]=\frac{\sigma_{\theta d}}{\sigma_{d d}} \delta
$$

Since $E[d]=E[\theta]=0 \Rightarrow$

$$
E[\hat{\theta}]=E\left[\frac{\sigma_{\theta d}}{\sigma_{d d}} d\right]=\frac{\sigma_{\theta d}}{\sigma_{d d}} E[d]=0
$$

$$
\operatorname{Var}[\hat{\theta}]=E\left[(\hat{\theta}-E[\hat{\theta}])^{2}\right]=E\left[\hat{\theta}^{2}\right]=E\left[\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}^{2}} d^{2}\right]=\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}^{2}} E\left[d^{2}\right]=\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}}
$$

$$
J(\hat{\theta})=\operatorname{Var}[\theta-\hat{\theta}]=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\frac{\sigma_{\theta d}}{\sigma_{d d}} d\right)^{2}\right]=E\left[\theta^{2}-2 \frac{\sigma_{\theta d}}{\sigma_{d d}} \theta d+\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}^{2}} d^{2}\right]=
$$

$$
\begin{aligned}
& =E\left[\theta^{2}\right]-2 \frac{\sigma_{\theta d}}{\sigma_{d d}} E[\theta d]+\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}^{2}} E\left[d^{2}\right]=\sigma_{\theta \theta}-2 \frac{\sigma_{\theta d}}{\sigma_{d d}} \sigma_{\theta d}+\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}^{2}} \sigma_{d d}= \\
& =\sigma_{\theta \theta}-2 \frac{\sigma_{\theta d}^{2}}{\sigma_{d d}}+\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}}=\sigma_{\theta \theta}-\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}}=\sigma^{2}
\end{aligned}
$$

Optimal linear estimator

Assumption: both the data d and the unknown θ are scalar random variables with zero mean value and variance matrix $\operatorname{Var}\left[\begin{array}{l}d \\ \theta\end{array}\right]=\left[\begin{array}{cc}\sigma_{d d} & \sigma_{d \theta} \\ \sigma_{\theta d} & \sigma_{\theta \theta}\end{array}\right]$.
Goal: estimate θ by means of a linear estimator whose structure is

$$
\hat{\theta}=\alpha d+\beta
$$

with α, β real parameters, estimated by minimizing the mean squared error (MSE):

$$
\begin{gathered}
J=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[(\theta-\alpha d-\beta)^{2}\right]=J(\alpha, \beta) \\
\frac{\hat{\Downarrow} \operatorname{gradient} J(\alpha, \beta)=\mathbf{0}, \operatorname{Hessian} J(\alpha, \beta) \geq 0}{\partial \alpha}=\frac{\partial}{\partial \alpha} E\left[(\theta-\alpha d-\beta)^{2}\right]=E\left[\frac{\partial}{\partial \alpha}(\theta-\alpha d-\beta)^{2}\right]=E[-2(\theta-\alpha d-\beta) d]= \\
=-2 E[\theta d]+2 \alpha E\left[d^{2}\right]+2 \beta E[d]=-2 \sigma_{d \theta}+2 \alpha \sigma_{d d}=0 \\
\frac{\partial J}{\partial \beta}=\frac{\partial}{\partial \beta} E\left[(\theta-\alpha d-\beta)^{2}\right]=E\left[\frac{\partial}{\partial \beta}(\theta-\alpha d-\beta)^{2}\right]=E[-2(\theta-\alpha d-\beta)]= \\
=-2 E[\theta]+2 \alpha E[d]+2 \beta=2 \beta=0
\end{gathered} \begin{aligned}
& \hat{\mathbb{y}} \begin{array}{l}
\alpha=\sigma_{\theta d} / \sigma_{d d} \Rightarrow \hat{\theta}=\frac{\sigma_{d \theta}}{\sigma_{d d}} d \equiv E[\theta \mid d]
\end{array}
\end{aligned}
$$

Generalizations

- If the data d and the unknown θ are scalar random variables with nonzero mean value $(E[d]=\bar{d} \in \mathbb{R}, E[\theta]=\bar{\theta} \in \mathbb{R})$ and variance matrix $\operatorname{Var}\left[\begin{array}{c}d \\ \theta\end{array}\right]=\left[\begin{array}{cc}\sigma_{d d} & \sigma_{d \theta} \\ \sigma_{\theta d} & \sigma_{\theta \theta}\end{array}\right]$, the Bayesian estimator and the optimal linear estimator are given by:

$$
\begin{gathered}
\hat{\theta}=\bar{\theta}+\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d}) \\
J(\hat{\theta})=\operatorname{Var}[\theta-\hat{\theta}]=E\left[(\theta-\hat{\theta})^{2}\right]=\sigma_{\theta \theta}-\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}}=\sigma^{2}
\end{gathered}
$$

- If the data d and the unknown θ are vector random variables with nonzero mean value $\left(E[d]=\bar{d} \in \mathbb{R}^{N}, E[\theta]=\bar{\theta} \in \mathbb{R}^{n}\right)$ and variance matrix $\operatorname{Var}\left[\begin{array}{c}d \\ \theta\end{array}\right]=\left[\begin{array}{ll}\Sigma_{d d} & \Sigma_{d \theta} \\ \Sigma_{\theta d} & \Sigma_{\theta \theta}\end{array}\right]$, the Bayesian estimator and the optimal linear estimator are given by:

$$
\begin{gathered}
\hat{\theta}=\bar{\theta}+\Sigma_{\theta d} \Sigma_{d d}^{-1}(d-\bar{d}) \\
\operatorname{Var}[\theta-\hat{\theta}]=E\left[(\theta-\hat{\theta})(\theta-\hat{\theta})^{T}\right]=\Sigma_{\theta \theta}-\Sigma_{\theta d} \Sigma_{d d}^{-1} \Sigma_{d \theta}
\end{gathered}
$$

Proof for the scalar case.
If $E[d]=\bar{d} \neq 0 \in \mathbb{R}$ and/or $E[\theta]=\bar{\theta} \neq 0 \in \mathbb{R}$, then define the random variables

$$
\begin{aligned}
& d^{\prime}=d-\bar{d} \Rightarrow E\left[d^{\prime}\right]=E[d-\bar{d}]=E[d]-\bar{d}=0 \\
& \theta^{\prime}=\theta-\bar{\theta} \Rightarrow \\
& E\left[\theta^{\prime}\right]=E[\theta-\bar{\theta}]=E[\theta]-\bar{\theta}=0
\end{aligned}
$$

The Bayesian estimate $\widehat{\theta^{\prime}}$ of θ^{\prime} based on d^{\prime} is given by:

$$
\widehat{\theta^{\prime}}=E\left[\theta^{\prime} \mid d^{\prime}\right]=E\left[\theta-\bar{\theta} \mid d^{\prime}\right]=E\left[\theta \mid d^{\prime}\right]-\bar{\theta}=E[\theta \mid d]-\bar{\theta}=\hat{\theta}-\bar{\theta}=\frac{\sigma_{\theta^{\prime} d^{\prime}}}{\sigma_{d^{\prime} d^{\prime}}} d^{\prime}
$$

where

$$
\begin{aligned}
& \sigma_{\theta^{\prime} d^{\prime}}=E\left[\left(\theta^{\prime}-E\left[\theta^{\prime}\right]\right)\left(d^{\prime}-E\left[d^{\prime}\right]\right)\right]=E\left[\theta^{\prime} d^{\prime}\right]=E[(\theta-\bar{\theta})(d-\bar{d})]=\sigma_{\theta d} \\
& \sigma_{d^{\prime} d^{\prime}}=E\left[\left(d^{\prime}-E\left[d^{\prime}\right]\right)^{2}\right]=E\left[\left(d^{\prime}\right)^{2}\right]=E\left[(d-\bar{d})^{2}\right]=\sigma_{d d}
\end{aligned}
$$

and then:

$$
\widehat{\theta^{\prime}}=\frac{\sigma_{\theta^{\prime} d^{\prime}}}{\sigma_{d^{\prime} d^{\prime}}} d^{\prime}=\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})=\hat{\theta}-\bar{\theta} \quad \Rightarrow \quad \hat{\theta}=\bar{\theta}+\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})
$$

Remarks

Remark \#1:

- Using the a priori information only (i.e., in absence of data), a reasonable initial estimate of the unknown is given by the a priori estimate

$$
\hat{\theta}=\hat{\theta}^{\text {prior }}=E[\theta]=\bar{\theta}
$$

and the corresponding a priori uncertainty is $\operatorname{Var}[\theta]=\Sigma_{\theta \theta}$

- Using also the a posteriori information (i.e., the data), the estimate changes and the a posteriori estimate in the scalar case is given by

$$
\hat{\theta}=\hat{\theta}^{\text {posterior }}=\bar{\theta}+\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})=\hat{\theta}^{\text {prior }}+\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})
$$

- if $\sigma_{\theta d}=0$, i.e., if d and θ are uncorrelated $\Rightarrow \hat{\theta}^{\text {posterior }}=\hat{\theta}^{\text {prior }}$
- if $\sigma_{\theta d}>0 \Rightarrow \hat{\theta}^{\text {posterior }}-\hat{\theta}^{\text {prior }}$ and $d-\bar{d}$ have the same sign
- if $\sigma_{\theta d}<0 \Rightarrow \hat{\theta}^{\text {posterior }}-\hat{\theta}^{\text {prior }}$ and $d-\bar{d}$ have opposite sign

Remark \#2: the a posteriori estimate in the scalar case is given by

$$
\hat{\theta}=\hat{\theta}^{\text {posterior }}=\bar{\theta}+\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})=\hat{\theta}^{\text {prior }}+\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})
$$

- if $\sigma_{d d}$ is high, i.e., if the observation d is affected by great uncertainty \Rightarrow $\hat{\theta}$ mainly depends on $\hat{\theta}^{\text {prior }}$ instead on the term $\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})$
- if $\sigma_{d d}$ is low, i.e., if the observation d is affected by small uncertainty \Rightarrow $\hat{\theta}$ strongly depends on the term $\frac{\sigma_{\theta d}}{\sigma_{d d}}(d-\bar{d})$ that corrects $\hat{\theta}^{\text {prior }}$

Remark \#3: the estimation error variance represents the a posteriori uncertainty:
$J(\hat{\theta})=\operatorname{Var}[\theta-\hat{\theta}]=E\left[(\theta-\hat{\theta})^{2}\right]=\sigma_{\theta \theta}-\frac{\sigma_{\theta d}^{2}}{\sigma_{d d}}=\sigma_{\theta \theta}\left(1-\frac{\sigma_{\theta d}^{2}}{\sigma_{\theta \theta} \sigma_{d d}}\right)=\sigma_{\theta \theta}\left(1-\rho^{2}\right)$
where $\rho=\frac{\sigma_{\theta d}}{\sqrt{\sigma_{\theta \theta} \sigma_{d d}}}$ is the correlation coefficient between θ and d, such that $|\rho| \leq 1$

- if $\rho=0$, i.e., if d and θ are uncorrelated \Rightarrow
the a posteriori uncertainty turns out to be equal to the a priori one
- if $\rho \neq 0 \Rightarrow$ the a posteriori uncertainty is smaller than the a priori one

Geometrical interpretation

- Let \mathbb{G} be the set of the real scalar random variables v with zero mean value, whose value $v(s)$ depends on the outcome s of the underlying random experiment \mathcal{E}.
- Let \mathcal{G} be the vector space defined on \mathbb{G} such that, $\forall v_{1}, v_{2} \in \mathbb{G}$ and $\forall \mu \in \mathbb{R}$, then $v_{1}+v_{2} \in \mathbb{G}$ and $\mu v_{1} \in \mathbb{G}$; let \mathcal{G} be equipped with the inner (or scalar) product:

$$
\left\langle v_{1}, v_{2}\right\rangle=E\left[v_{1} v_{2}\right]
$$

that satisfies the following properties, $\forall v, v_{1}, v_{2} \in \mathbb{G}$ and $\forall \mu \in \mathbb{R}$:

```
            \(\left.\begin{array}{rl}\text { (i) } \quad\langle v, v\rangle & =\operatorname{Var}[v] \geq 0 \text { (nonnegativity) } \\ \text { (ii) }\langle v, v\rangle & =0 \text { if and only if } v \sim(0,0)\end{array}\right\} \quad\) (positive-definiteness)
(iii) \(\left\langle v, v_{1}+v_{2}\right\rangle=\left\langle v, v_{1}\right\rangle+\left\langle v, v_{2}\right\rangle\) (additivity)
(iv) \(\left\langle v_{1}, \mu v_{2}\right\rangle=\mu\left\langle v_{1}, v_{2}\right\rangle\) (homogeneity)
(v) \(\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{2}, v_{1}\right\rangle\) (symmetry)
```

Such an inner product allows to naturally define a norm on \mathcal{G} as:

$$
\|v\|=\sqrt{\langle v, v\rangle}=\sqrt{\operatorname{Var}[v]}
$$

- Any random variable v is a vector in the space \mathcal{G} with "length" $\|v\|=\sqrt{\operatorname{Var}[v]}$
- Given two random variables v_{1} and v_{2}, the angle α between the corresponding vectors in \mathcal{G} is involved in the inner product, since:

$$
\begin{gathered}
\left\langle v_{1}, v_{2}\right\rangle=\left\|v_{1}\right\|\left\|v_{2}\right\| \cos \alpha \\
\cos \alpha=\frac{\left.\Downarrow v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|\left\|v_{2}\right\|}=\frac{E\left[v_{1} v_{2}\right]}{\sqrt{\operatorname{Var}\left[v_{1}\right]} \sqrt{\operatorname{Var}\left[v_{2}\right]}}=\rho
\end{gathered}
$$

- $\rho=0 \Leftrightarrow v_{1}$ and v_{2} are uncorrelated \Leftrightarrow the corresponding vectors in \mathcal{G} are orthogonal, i.e., $v_{1} \perp v_{2}$
- $\rho= \pm 1 \Leftrightarrow$ the vectors corresponding to v_{1} and v_{2} are parallel, i.e., $v_{1} / / v_{2}$:
if $v_{2}=\alpha v_{1}+\beta$, with $\alpha, \beta \in \mathbb{R}$ and $\alpha>0$, then $\rho=+1$ if $v_{2}=\alpha v_{1}+\beta$, with $\alpha, \beta \in \mathbb{R}$ and $\alpha<0$, then $\rho=-1$
- In the scalar Gaussian case, the Bayesian estimate of v_{2} based on v_{1} is:

$$
\begin{gathered}
\hat{v}_{2}=E\left[v_{2} \mid v_{1}\right]=\frac{\sigma_{21}}{\sigma_{11}} v_{1}, \quad \text { where } \sigma_{21}=E\left[v_{1} v_{2}\right], \sigma_{11}=\operatorname{Var}\left[v_{1}\right] \\
\hat{v}_{2}=\frac{E\left[v_{1} v_{2}\right]}{\operatorname{Var}\left[v_{1}\right]} v_{1}=\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=\frac{1}{\left\|v_{1}\right\|} \underbrace{\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|} \frac{1}{\left\|v_{2}\right\|}}_{\cos \alpha}\left\|v_{2}\right\| v_{1}=\underbrace{\left\|v_{2}\right\| \cos \alpha}_{\left\|\hat{v}_{2}\right\|} \frac{v_{1}}{\left\|v_{1}\right\|}
\end{gathered}
$$

the Bayesian estimate \hat{v}_{2} has the same direction of v_{1} with "length" $\left\|v_{2}\right\| \cos \alpha$, i.e., \hat{v}_{2} is the orthogonal projection of v_{2} over v_{1}

$$
\begin{aligned}
\left\|\hat{v}_{2}\right\| & =\left\|\frac{\sigma_{21}}{\sigma_{11}} v_{1}\right\|=\frac{\sigma_{21}}{\sigma_{11}}\left\|v_{1}\right\| \\
& =\frac{\sigma_{21}}{\sigma_{11}} \sqrt{\sigma_{11}}=\frac{\sigma_{21}}{\sqrt{\sigma_{11}}}
\end{aligned}
$$

- The estimation error variance of v_{2} given v_{1} (i.e., the a posteriori uncertainty) is:

$$
\begin{gathered}
\operatorname{Var}\left[v_{2}-E\left[v_{2} \mid v_{1}\right]\right]=\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}}, \text { with } \sigma_{22}=\operatorname{Var}\left[v_{2}\right], \sigma_{21}=E\left[v_{1} v_{2}\right], \sigma_{11}=\operatorname{Var}\left[v_{1}\right] \\
\forall \\
\operatorname{Var}\left[v_{2}-E\left[v_{2} \mid v_{1}\right]\right]=\operatorname{Var}\left[v_{2}\right]-\frac{E\left[v_{1} v_{2}\right]^{2}}{V \operatorname{ar}\left[v_{1}\right]}=\left\|v_{2}\right\|^{2}-\left\|E\left[v_{2} \mid v_{1}\right]\right\|^{2}=\left\|v_{2}-E\left[v_{2} \mid v_{1}\right]\right\|^{2}
\end{gathered}
$$

i.e., it can be computed by evaluating the "length" of the vector $v_{2}-E\left[v_{2} \mid v_{1}\right]$ through the Pythagorean theorem

- The generalization of the geometric interpretation to the vector case is straightforward

Recursive Bayesian estimation: scalar case

Assumptions: the unknown θ is a scalar random variable with zero mean value; the data vector d is a random variable having 2 components $d(1), d(2)$, with zero mean value:

- The optimal linear estimate of θ based on $d(1)$ only is given by:

$$
E[\theta \mid d(1)]=\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)
$$

- The optimal linear estimate of θ based on $d(1)$ and $d(2)$ is given by:

$$
E[\theta \mid d(1), d(2)]=\Sigma_{\theta d} \Sigma_{d d}^{-1} d=\left[\begin{array}{ll}
\sigma_{\theta 1} & \sigma_{\theta 2}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]^{-1}\left[\begin{array}{l}
d(1) \\
d(2)
\end{array}\right]
$$

Since

$$
\begin{aligned}
& \operatorname{det} \Sigma_{d d}=\operatorname{det}\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]=\sigma_{11} \sigma_{22}-\sigma_{21}^{2}=\sigma_{11}\left(\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}}\right)=\sigma_{11} \sigma^{2}, \\
& \text { where } \quad \sigma^{2}=\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}} \\
& \Sigma_{d d}^{-1}=\frac{1}{\operatorname{det} \Sigma_{d d}}\left[\begin{array}{rr}
\sigma_{22} & -\sigma_{12} \\
-\sigma_{21} & \sigma_{11}
\end{array}\right]_{\Downarrow}^{\Downarrow}=\frac{1}{\sigma^{2}}\left[\begin{array}{cc}
\sigma_{22} / \sigma_{11} & -\sigma_{12} / \sigma_{11} \\
-\sigma_{21} / \sigma_{11} & 1
\end{array}\right] \\
& E[\theta \mid d(1), d(2)]=\Sigma_{\theta d} \Sigma_{d d}^{-1} d=\left[\begin{array}{ll}
\sigma_{\theta 1} & \sigma_{\theta 2}
\end{array}\right] \frac{1}{\sigma^{2}}\left[\begin{array}{cc}
\sigma_{22} / \sigma_{11} & -\sigma_{12} / \sigma_{11} \\
-\sigma_{21} / \sigma_{11} & 1
\end{array}\right]\left[\begin{array}{l}
d(1) \\
d(2)
\end{array}\right]= \\
& =\frac{1}{\sigma^{2}}\left[\sigma_{\theta 1} \frac{\sigma_{22}}{\sigma_{11}}-\sigma_{\theta 2} \frac{\sigma_{21}}{\sigma_{11}} \quad \sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{12}}{\sigma_{11}}\right]\left[\begin{array}{l}
d(1) \\
d(2)
\end{array}\right]= \\
& =\frac{1}{\sigma^{2}}\left(\sigma_{\theta 1} \frac{\sigma_{22}}{\sigma_{11}}-\sigma_{\theta 2} \frac{\sigma_{21}}{\sigma_{11}}\right) d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{12}}{\sigma_{11}}\right) d(2)
\end{aligned}
$$

By adding and subtracting the term $E[\theta \mid d(1)]=\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)$ and recalling that

$$
\begin{aligned}
& \sigma_{12}=\sigma_{21} \text { and } \sigma^{2}=\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}}, \text { it results that: } \\
& \quad E[\theta \mid d(1), d(2)]= \\
& \quad=\frac{1}{\sigma^{2}}\left(\sigma_{\theta 1} \frac{\sigma_{22}}{\sigma_{11}}-\sigma_{\theta 2} \frac{\sigma_{21}}{\sigma_{11}}\right) d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{12}}{\sigma_{11}}\right) d(2)+\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)-\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)= \\
& \quad=\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 1} \frac{\sigma_{22}}{\sigma_{11}}-\sigma_{\theta 2} \frac{\sigma_{21}}{\sigma_{11}}-\frac{\sigma_{\theta 1}}{\sigma_{11}} \sigma^{2}\right) d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{12}}{\sigma_{11}}\right) d(2)= \\
& \quad=\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 1} \frac{\sigma_{22}}{\sigma_{11}}-\sigma_{\theta 2} \frac{\sigma_{21}}{\sigma_{11}}-\frac{\sigma_{\theta 1}}{\sigma_{11}} \sigma_{22}+\frac{\sigma_{\theta 1}}{\sigma_{11}} \frac{\sigma_{21}^{2}}{\sigma_{11}}\right) d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{12}}{\sigma_{11}}\right) d(2) \\
& \quad=\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)+\frac{1}{\sigma^{2}}\left(-\sigma_{\theta 2} \frac{\sigma_{21}}{\sigma_{11}}+\sigma_{\theta 1} \frac{\sigma_{21}^{2}}{\sigma_{11}^{2}}\right) d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{12}}{\sigma_{11}}\right) d(2)= \\
& \quad=\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)-\frac{1}{\sigma^{2}} \frac{\sigma_{21}}{\sigma_{11}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{21}}{\sigma_{11}}\right) d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{12}}{\sigma_{11}}\right) d(2)= \\
& \quad=\frac{\sigma_{\theta 1}}{\sigma_{11}} d(1)+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{21}}{\sigma_{11}}\right)\left[d(2)-\frac{\sigma_{21}}{\sigma_{11}} d(1)\right]= \\
& \quad=E[\theta \mid d(1)]+\frac{1}{\sigma^{2}}\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{21}}{\sigma_{11}}\right)[d(2)-E[d(2) \mid d(1)]]
\end{aligned}
$$

Definition: given two scalar random variables $d(1)$ and $d(2)$ with zero mean value, the innovation of $d(2)$ given $d(1)$ is the scalar random variable defined by:

$$
e=d(2)-E[d(2) \mid d(1)]=d(2)-\frac{\sigma_{21}}{\sigma_{11}} d(1)
$$

- $E[e]=E\left[d(2)-\frac{\sigma_{21}}{\sigma_{11}} d(1)\right]=E[d(2)]-\frac{\sigma_{21}}{\sigma_{11}} E[d(1)]=0$
- $\sigma_{e e}=\operatorname{Var}[e]=E\left[(e-E[e])^{2}\right]=E\left[e^{2}\right]=E\left[\left(d(2)-\frac{\sigma_{21}}{\sigma_{11}} d(1)\right)^{2}\right]=$
$=E\left[d^{2}(2)-2 \frac{\sigma_{21}}{\sigma_{11}} d(2) d(1)+\frac{\sigma_{21}^{2}}{\sigma_{11}^{2}} d^{2}(1)\right]=E\left[d^{2}(2)\right]-2 \frac{\sigma_{21}}{\sigma_{11}} E[d(2) d(1)]+\frac{\sigma_{21}^{2}}{\sigma_{11}^{2}} E\left[d^{2}(1)\right]$
$=\sigma_{22}-2 \frac{\sigma_{21}}{\sigma_{11}} \sigma_{21}+\frac{\sigma_{21}^{2}}{\sigma_{11}^{2}} \sigma_{11}=\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}}=\sigma^{2}=\sigma_{22}\left(1-\frac{\sigma_{21}^{2}}{\sigma_{11} \sigma_{22}}\right)=\sigma_{22}\left(1-\rho_{21}^{2}\right) \leq \sigma_{22}$
- $\sigma_{\theta e}=E[\theta e]=E\left[\theta\left(d(2)-\frac{\sigma_{21}}{\sigma_{11}} d(1)\right)\right]=E[\theta d(2)]-\frac{\sigma_{21}}{\sigma_{11}} E[\theta d(1)]=\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{21}}{\sigma_{11}}$
- $\sigma_{1 e}=E[d(1) e]=E\left[d(1)\left(d(2)-\frac{\sigma_{21}}{\sigma_{11}} d(1)\right)\right]=E[d(1) d(2)]-\frac{\sigma_{21}}{\sigma_{11}} E\left[d^{2}(1)\right]=$ $=\sigma_{12}-\frac{\sigma_{21}}{\sigma_{11}} \sigma_{11}=0 \Leftrightarrow d(1)$ and e are uncorrelated, as well as $E[d(2) \mid d(1)]$ and e are
From the definition, it follows that: $d(2)=E[d(2) \mid d(1)]+e \quad \Rightarrow$
the term e represents the only new information provided by $d(2)$ with respect to $d(1)$

By exploiting the definition and the properties of the innovation e, it follows that:

$$
\begin{aligned}
E[\theta \mid d(1), d(2)] & =E[\theta \mid d(1)]+\underbrace{\frac{1}{\sigma^{2}}}_{1 / \sigma_{e e}} \underbrace{\left(\sigma_{\theta 2}-\sigma_{\theta 1} \frac{\sigma_{21}}{\sigma_{11}}\right)}_{\sigma_{\theta e}} \underbrace{[d(2)-E[d(2) \mid d(1)]]}_{e}= \\
& =E[\theta \mid d(1)]+\frac{\sigma_{\theta e}}{\sigma_{e e}} e= \\
& =E[\theta \mid d(1)]+E[\theta \mid e]
\end{aligned}
$$

i.e., the optimal linear estimate of θ based on $d(1)$ and $d(2)$ is equal to the sum of:

- the optimal linear estimate of θ based on the observation $d(1)$ only
- the optimal linear estimate of θ based on the innovation $e=d(2)-\frac{\sigma_{21}}{\sigma_{11}} d(1)$, which depends on data $d(1)$ and $d(2)$

It can be proved as well that:
$E[\theta \mid d(1), e]=E[\theta \mid d(1), d(2)]=E[\theta \mid d(1)]+E[\theta \mid e]$

Geometrical interpretation

- Let us consider any random variable as a vector in the normed vector space \mathcal{G} \Rightarrow the Bayesian estimate of θ based on d is the orthogonal projection of θ over d

Geometrical interpretation

- Let us consider any random variable as a vector in the normed vector space \mathcal{G} \Rightarrow the Bayesian estimate of θ based on d is the orthogonal projection of θ over d
- Let $\mathcal{H}[d(1), d(2)]$ be the plane defined by the vectors $d(1)$ and $d(2)$

Geometrical interpretation

- Let us consider any random variable as a vector in the normed vector space \mathcal{G} \Rightarrow the Bayesian estimate of θ based on d is the orthogonal projection of θ over d
- Let $\mathcal{H}[d(1), d(2)]$ be the plane defined by the vectors $d(1)$ and $d(2)$
- The Bayesian estimate $E[d(2) \mid d(1)]$ is the projection of $d(2)$ over $d(1)$

Geometrical interpretation

- Let us consider any random variable as a vector in the normed vector space \mathcal{G} \Rightarrow the Bayesian estimate of θ based on d is the orthogonal projection of θ over d
- Let $\mathcal{H}[d(1), d(2)]$ be the plane defined by the vectors $d(1)$ and $d(2)$
- The Bayesian estimate $E[d(2) \mid d(1)]$ is the projection of $d(2)$ over $d(1)$
- The innovation $e=d(2)-E[d(2) \mid d(1)]$ is the vector given by the difference between $d(2)$ and the projection of $d(2)$ over $d(1)$ and it is orthogonal to $d(1)$

- The Bayesian estimate $E[\theta \mid d(1)]$ is the orthogonal projection of θ over $d(1)$

- The Bayesian estimate $E[\theta \mid d(1)]$ is the orthogonal projection of θ over $d(1)$
- The Bayesian estimate $E[\theta \mid e]$ is the orthogonal projection of θ over e and then it is orthogonal to $E[\theta \mid d(1)]$

- The Bayesian estimate $E[\theta \mid d(1)]$ is the orthogonal projection of θ over $d(1)$
- The Bayesian estimate $E[\theta \mid e]$ is the orthogonal projection of θ over e and then it is orthogonal to $E[\theta \mid d(1)]$
- The Bayesian estimate $E[\theta \mid d(1), d(2)]$ is the orthogonal projection of θ over the plane $\mathcal{H}[d(1), d(2)]$ and it is the vector sum of $E[\theta \mid d(1)]$ and $E[\theta \mid e]$:

$$
E[\theta \mid d(1), d(2)]=E[\theta \mid d(1)]+E[\theta \mid e]=E[\theta \mid d(1), e]
$$

Recursive Bayesian estimation: vector case

- If the unknown θ and the data d are vector random variables with zero mean value:
by defining the innovation of $d(2)$ given $d(1)$ as the vector random variable:

$$
e=d(2)-E[d(2) \mid d(1)]=d(2)-\Sigma_{21} \Sigma_{11}^{-1} d(1)
$$

the optimal linear estimate of θ based on $d(1)$ and $d(2)$ is given by:

$$
E[\theta \mid d(1), d(2)]=\Sigma_{\theta 1} \Sigma_{11}^{-1} d(1)+\Sigma_{\theta e} \Sigma_{e e}^{-1} e=E[\theta \mid d(1)]+E[\theta \mid e]
$$

where

$$
\Sigma_{e e}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}, \quad \Sigma_{\theta e}=\Sigma_{\theta 2}-\Sigma_{\theta 1} \Sigma_{11}^{-1} \Sigma_{12}
$$

- If the unknown θ and the data d are vector random variables with nonzero mean value:

$$
\left[\begin{array}{c}
\theta \\
d(1) \\
d(2)
\end{array}\right] \sim\left(\left[\begin{array}{c}
\bar{\theta} \\
\bar{d}(1) \\
\bar{d}(2)
\end{array}\right], \Sigma=\operatorname{Var}\left[\begin{array}{c}
\theta \\
d(1) \\
d(2)
\end{array}\right]=\left[\begin{array}{lll}
\Sigma_{\theta \theta} & \Sigma_{\theta 1} & \Sigma_{\theta 2} \\
\Sigma_{1 \theta} & \Sigma_{11} & \Sigma_{12} \\
\Sigma_{2 \theta} & \Sigma_{21} & \Sigma_{22}
\end{array}\right]\right), \quad\left\{\begin{array}{l}
\Sigma_{\theta 1}=\Sigma_{1 \theta}^{T} \\
\Sigma_{\theta 2}=\Sigma_{2 \theta}^{T} \\
\Sigma_{12}=\Sigma_{21}^{T}
\end{array}\right.
$$

by defining the innovation of $d(2)$ given $d(1)$ as the vector random variable:

$$
e=d(2)-\bar{d}(2)-E[d(2)-\bar{d}(2) \mid d(1)-\bar{d}(1)]=d(2)-\bar{d}(2)-\Sigma_{21} \Sigma_{11}^{-1}[d(1)-\bar{d}(1)]
$$

the optimal linear estimate of θ based on $d(1)$ and $d(2)$ is given by:

$$
\begin{aligned}
E[\theta \mid d(1), d(2)] & =\underbrace{\bar{\theta}+\Sigma_{\theta 1} \Sigma_{11}^{-1}[d(1)-\bar{d}(1)]}_{E[\theta \mid d(1)]}+\Sigma_{\theta e} \Sigma_{e e}^{-1} e= \\
& =E[\theta \mid d(1)]+\underbrace{\Sigma_{\theta e} \Sigma_{e e}^{-1} e+\bar{\theta}}_{E[\theta \mid e]}-\bar{\theta}= \\
& =E[\theta \mid d(1)]+E[\theta \mid e]-\bar{\theta}
\end{aligned}
$$

