Probabilistic Fundamentals in Robotics

Basic mathematical framework

Basilio Bona
DAUIN – Politecnico di Torino
June 2011

Course Outline

- Motivations
- Basic mathematical framework
- Probabilistic models of mobile robots
- Mobile robot localization problem
- Robotic mapping
- Probabilistic planning and control

Reference textbook [TBF2006]
http://www.probabilistic-robotics.org/
Basic mathematical framework

- Basic concepts in probability
- Recursive state estimation
 - Robot environment
 - Bayes filters
- Gaussian filters
 - Kalman filter
 - Extended Kalman Filter
 - Unscented Kalman filter
 - Information filter
- Nonparametric filters
 - Histogram filter
 - Particle filter

In binary logic, a proposition “about the state of the world” is only True or False; no third hypothesis is considered (tertium non datur)

Bayesian probability is a measure of the degree of belief of a proposition, i.e., an objective degree of rational belief, given the evidence

\[
\begin{align*}
\Pr(\text{True}) &= 1 \\
\Pr(\text{False}) &= 0 \\
0 &\leq \Pr(A) \leq 1 \\
\Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B)
\end{align*}
\]
Other axioms

\[
\Pr(A \cup \neg A) = \Pr(A) + \Pr(\neg A) - \Pr(A \cap \neg A) \\
\Pr(\text{True}) = \Pr(A) + \Pr(\neg A) - \Pr(\text{False}) \\
1 = \Pr(A) + \Pr(\neg A) - 0 \\
\Pr(\neg A) = 1 - \Pr(A)
\]

Random variables

A random variable \(X\) (or stochastic variable) is a variable whose value is a function of the outcome of a statistical experiment.

\(X\) can take a countable number of values in \(\{x_1, x_2, \ldots, x_n\}\).

\(P(X = x_i)\), or \(P(x_i)\) is the probability that the random variable \(X\) takes the value \(x_i\).

\(P(\cdot)\) is called “probability mass function”
Continuous random variables

The event $X = x$ takes its values in \mathbb{R}. The probability of the event $X = x$, i.e., $p(X = x)$ or $p(x)$ is a probability density function

$$\Pr(x \in [a, b]) = \int_{a}^{b} p(x) \, dx$$

Univariate Gaussian distribution

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right\}$$
Normal distribution

Area = $\Phi(0.7)$
Mean = 0
Variance = 1

Standard normal PDF

Mean vector
Covariance matrix

Multivariate Gaussian distribution

$$p(\mathbf{x}) = \det(2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mu)^\top \Sigma^{-1} (\mathbf{x} - \mu) \right\}$$

$N(\mathbf{x}; \mu, \Sigma)$
Joint and conditional probabilities

- \(P[(X = x) \cap (Y = y)] = P(x, y) \) joint probability

- \(P(x | y) \) is the probability of \(x \) given \(y \) (conditional probability), related to \(P(x, y) \) by

 \[
P(x, y) = P(x | y) P(y) = P(y | x) P(x)
 \]

- If \(X \) and \(Y \) are independent random variables, then

 \[P(x | y) = P(x), \text{ hence} \]

 \[P(x, y) = P(x) P(y)\]

Marginal and total Probability

Discrete

\[
P(x) = \sum_y P(x, y) = \sum_y P(x | y) P(y)
\]
\[
\sum_x P(x) = 1
\]

Continuous

\[
p(x) = \int_y p(x, y) \, dy = \int_y p(x | y) p(y) \, dy
\]
\[
\int_x p(x) = 1
\]
Posterior probability and Bayes rule

Bayes rule

\[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

\[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]

Prior probability distribution

Posterior probability distribution

Bayes rule conditioned by another variable

Bayes rule

\[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]

Conditioned Bayes rule

\[P(x|y, z) = \frac{P(y|x, z)P(x|z)}{P(y|z)} \]

as long as \(P(y|z) > 0 \)
Normalization

Bayes rule

\[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]

Normalization factor

\[P(x|y) = \frac{P(y|x)P(x)}{\sum_x P(y|x)P(x)} = \eta P(y|x)P(x) \]

Marginal probability

Marginal density function

\[P(x) = \int P(x, z)dz \]
\[P(x) = \int P(x|z)P(z)dz \]
\[P(x|y) = \int P(x|y, z)P(z|y)dz \]
Conditional independence

Given three random variables \(x, y, z \), we say that \(x \) and \(y \) are independent, conditioned to \(z \) (conditional independence) if

\[
P(x|z) = P(x|z, y) \quad \text{and} \quad P(y|z) = P(y|z, x)
\]

These means that

\[
P(x, y|z) = P(x|z)P(y|z)
\]

This is an important rule in probabilistic robotics
It applies whenever a variable \(y \) carries no information about a variable \(x \), if the value \(z \) of another variable is known.

Conditional independence \(\neq \) absolute independence

\[
p(x, y|z) = p(x|z)p(y|z) \quad \iff \quad p(x, y) = p(x)p(y)
\]

and

\[
p(x, y) = p(x)p(y) \quad \iff \quad p(x, y|z) = p(x|z)p(y|z)
\]

absolute independence
Expectation of a random variable

- Features of probabilistic distributions are called *statistics*
- *Expectation* $E[X]$ of a random variable X is defined as

 Discrete case
 $$E[X] = \sum_x x \ p(x)$$

 Continuous case
 $$E[X] = \int_x x \ p(x) \ dx$$

 Linearity property
 $$E[aX + b] = a \ E[X] + b$$

Covariance

- *Covariance* is the squared expected deviation from the mean

 $$\text{Cov}[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

 $N(x; \mu, \Sigma) \rightarrow E[x] = \mu; \ \text{Cov}[x] = \Sigma$
Entropy

- **Entropy** measures the expected information that the value of x carries

 \[H_p(x) = E[- \log_2 p(x)] \]

 Discrete
 \[H_p(x) = - \sum_x p(x) \log_2 p(x) \]

 Continuous
 \[H_p(x) = - \int_x p(x) \log_2 p(x) \, dx \]

In discrete case it is the number of bits required to encode x using an optimal encoding, assuming that $p(x)$ is the probability of observing x.

Robot environment interaction

[Diagram showing the interaction of localization, planning, perception, and action with the environment.]

Basilio Bona June 2011 23

Basilio Bona June 2011 24
Robot environment interaction

- *World* or *environment* is modeled as a dynamical system with its internal state.
- Robot *sensors* can acquire information about the world internal state.
- Sensors are *noisy*; often complete information of the world state cannot be acquired.
- A *belief measure* about the state of the world is stored by the robot in its internal memory.
- Robot influences the world through its *actuators* (e.g., motors and manipulators).

A video example

KUKA YouRobot
State

- **State** is denoted by x; x can be a single variable, but often it is a vector valued variable \mathbf{x}.
- **Pose** includes the cartesian coordinates of the robot and its orientation (roll, pitch, yaw angles).
- State includes robot pose and **velocity**, as well as configuration and **velocities** of any other generalized coordinate.
- **Features** of the environment (**landmarks**) and their location may be considered part of the state as well.
- Landmarks can be static or dynamic. If they are dynamic, their velocities may contribute to define the state vector.
- Other variables (e.g., battery charge state, etc.) can be also considered states.

Complete state

- A **complete state** x_t at time t is defined as the best predictor of its future.
- No other data (coming from past states, measurements, controls) add information that helps to better predict the future.
- Future may be stochastic, but no variables prior to the state x_t may influence the evolution of future states.
- Evolution of future states is mediated only through x_t.
- Complete state is often impossible to specify. A subset of complete state is called **incomplete state**.
- State variables $x_{i,t}$ where t is both continuous and discrete, gives what is called a **hybrid** state.
Given a probability space \((\Omega, \mathcal{F}, P)\), a **stochastic process** (or **random process**) with state space \(X\), is a collection of \(X\)-valued random variables indexed by a set \(T\) ("time").

That is, a stochastic process \(F\) is a collection \(\{F_t : t \in T\}\) where each \(F_t\) is an \(X\)-valued random variable.

Markov chains

A **Markov chain** is a discrete random process that enjoys the Markov property.

A stochastic process has the **Markov property** if

- the conditional probability distribution of future states of the process depends only upon the present state
- i.e., given the present, the future does not depend on the past
Environment interaction

- **Measurements** z: are perceptual interaction between the robot and the environment obtained through specific equipment (called also perceptions)

 $z_{t_1:t_2} = \{z_{t_1}, z_{t_1+1}, z_{t_1+2}, \ldots, z_{t_2-1}, z_{t_2}\}$

- **Control actions** u: are changes in the state of the world obtained through active asserting forces

 $u_{t_1:t_2} = \{u_{t_1}, u_{t_1+1}, u_{t_1+2}, \ldots, u_{t_2-1}, u_{t_2}\}$

- **Odometer data**: are of perceptual data that convey the information about the robot change of status; as such they are not considered measurements, but control data, since they measure the effect of control actions

Probabilistic generative laws

- The time evolution of state is governed by probabilistic laws

- If state is **complete** and **Markov**, then evolution depends only on present state and present control actions

 $$p(x_t|x_{0:t-1}, z_{1:t-1}, u_1:t) = p(x_t|x_{t-1}, u_t)$$

 State transition probability

- Measurements are generated, according to probabilistic laws, from the present state only

 $$p(z_t|x_{0:t-1}, z_{1:t-1}, u_1:t) = p(z_t|x_t)$$

 Measurement probability
Belief distribution

- What is a belief: it is a measure of the robot’s internal knowledge about the true state of the world

- Belief is traditionally expressed as a conditional probability distribution

- Belief distribution: assigns a probability (or a dpf) to each possible hypothesis about the true state of the world, based upon available data (measurements and controls)

\[bel(x_t) = p(x_t | z_{1:t-1}, u_{1:t}) \]

\[bel(x_t) = p(x_t | z_{1:t}, u_{1:t}) \]

Prediction

Correction/update

Temporal generative model
Hidden Markov model (HMM)
Dynamic Bayesian network (DBN)

\[p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t) \]
\[p(z_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t) \]
Bayes filter

Basic algorithm

\textbf{Bayes Filter} \left(\text{bel}(x_{t-1}), u_t, z_t \right)

1. forall \(x_t \) do

2. Prediction\quad \text{bel}(x_t) = \int p(x_t | x_{t-1}, u_t) \text{bel}(x_{t-1}) \, dx_{t-1}

3. Update\quad \text{bel}(x_t) = \eta(z_t | x_t) \text{bel}(x_t)

4. endfor

5. return \(\text{bel}(x_t) \)

Mathematical formulation of the Bayesian filter (1)

\[
p(x_t | z_{1:t}, u_{1:t}) = \frac{p(z_t | x_t, z_{1:t-1}, u_{1:t}) p(x_t | z_{1:t-1}, u_{1:t})}{p(z_t | z_{1:t-1}, u_{1:t})}
\]

\[
= \eta p(z_t | x_t, z_{1:t-1}, u_{1:t}) p(x_t | z_{1:t-1}, u_{1:t})
\]

the state is complete

\[
p(z_t | x_t, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)
\]

\[
p(x_t | z_{1:t}, u_{1:t}) = \eta(z_t | x_t) p(x_t | z_{1:t-1}, u_{1:t})
\]

\[
\text{bel}(x_t) = \eta(z_t | x_t) \overline{\text{bel}}(x_t)
\]
Mathematical formulation of the Bayesian filter (2)

Prediction:

\[\overline{bel}(x_t) = p(x_t|z_{1:t}, u_{1:t}) = \int p(x_t|x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1}|z_{1:t-1}, u_{1:t}) \, dx_{t-1} \]

\[p(x_t|x_{t-1}, z_{1:t-1}, u_{1:t}) = p(x_t|x_{t-1}, u_{1:t}) \]

the state is complete

Note: \(p(x_t|x_{t-1}, u_{1:t}) \neq p(x_t|x_{t-1}) \)

Control \(u_t \) can be omitted from \(u_{1:t} \)

\[p(x_{t-1}|z_{1:t-1}, u_{1:t}) = p(x_{t-1}|z_{1:t-1}, u_{1:t-1}) \]

Mathematical formulation of the Bayesian filter (3)

Update:

\[\overline{bel}(x_t) - \int p(x_t|x_{t-1}, u_t) p(x_{t-1}|z_{1:t-1}, u_{1:t-1}) \, dx_{t-1} \]

\[bel(x_t) = \eta(z_t|x_t) \overline{bel}(x_t) \]

The filter requires three probability distributions

- \(p(x_0) \): initial belief
- \(p(z_t|x_t) \): measurement probability
- \(p(x_t|u_t, x_{t-1}) \): state transition probability
Bayes filter recursion

Causal vs. diagnostic reasoning

Example:
A rover obtains a measurement z from a door that can be open (O) or closed (C)

$P(O|z)$ is a **Diagnostic** knowledge

$P(z|O)$ is a **Causal** knowledge

Easier to obtain, so diagnostic knowledge can be computed from the Bayes rule:

$$P(O|z) = \frac{P(z|O)P(O)}{P(z)}$$
Example

\[
P(z|O) = 0.6 \quad P(z|\neg O) = 0.3
\]
\[
P(O) = P(\neg O) = 0.5
\]

\[
P(O|z) = \frac{P(z|O)P(O)}{P(z|O)P(O) + P(z|\neg O)P(\neg O)}
\]
\[
P(O|z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67 > 0.6
\]

References

- Many textbooks on Probability Theory and Statistics

- Other material
 - http://cs.ubc.ca/~arnaud/stat302.html: slides from the course by A. Doucet, University of British Columbia