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Nonlinear system identification

 Consider a nonlinear system in regression form:
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 The function f o is unknown, but a finite set of 
noise-corrupted measurements of yt and wt is available:
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Identification problem: find an estimate   of f of̂



 Related problems :
Ø for a given estimate

evaluate the identification error

 The estimation error cannot be exactly evaluated
since f o is not known

Ø find an estimate
minimizing the identification error

 Need of prior assumptions on f o and dt for 
deriving finite a bound on this error

Nonlinear system identification
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 Typical assumptions:

Ø on system:   

 Functional form of f o required:
Ø derived from physical laws
Ø si : basis function (polynomial, sigmoid,..)

1
( ) ( , ) ( , )

r
o

i i i
i

f f w wq q as b
=

ì ü
Î =í ý

î þ
åF =

Ø on noise:    iid stochastic noise

 The parameters q are estimated by means of the 
Prediction Error method using least squares

Nonlinear system identification



Parametric approach
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( ) DFY += q

 Given T noise-corrupted measurements of yt and wt,

Measured output

Known function
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Parametric approach
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 Problem: is in general non-convex( )qTV

 Prediction Error estimate of θ:

least-squares



Parametric approach

 If possible, physical laws are used to obtain the
parametric representation of ( )q,wf

 When the physical laws are not well known or too 
complex, black-box parameterizations are used

“Fixed” basis 
parameterization
Polinomial, trigonometric, etc.

“Tunable” basis 
perametrization
Neural networks



“Fixed” basis functions
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Basis functions

 Problem: Can σi’s be found such that
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“Fixed” basis functions

 For continuous fo, bounded              and σi
polynomial of degree i (Weierstrass):
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Polynomial NARX models



“Fixed” basis functions

 Estimation of θ is a convex problem: DLY += q
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 Least-squares solution: ( ) YLLL ¢¢= -1q̂
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“Tunable” basis functions
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 One of the most common “tunable” parameterization
is the one-hidden layer sigmoidal neural network  



“Tunable” basis functions

 The parameters 𝛽! give more flexibility to the model, 
possibly providing a more accurate estimate

 On the other hand, parameter estimation require to 
solve a non-convex optimization problem, due to the 
fact that the parameters appear nonlinearly:

( ) DFY += q

nonlinear in 𝜃



Parametric models
 Model structure choice:

- type of basis  functions
- Number r of “Basis”  functions
- Number n of regressors

 Problem: curse of dimensionality
The number of parameters r needed to obtain 
“accurate” models may grow exponentially with 
the dimension n of regressor space

More relevant in the case of “fixed” basis functions

The complexity of 
these problems may 
be exponential in n.



 Under suitable regularity conditions on the function to 
approximate, the number of parameters r required 
to obtain “accurate” models grows linearly with n

 The estimation of θ requires to solve a non-convex
minimization problem

Trapping in local minima

“Tunable” basis functions



One-step/multi-step prediction, simulation


