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Prediction of sunspot activity

² Prediction of sunspot activity is important in telecommunica-
tion, meteorology, agriculture, etc.

² The set of data 1770-1892 has been chosen because used as a
benchmark to test prediction methods:

{ 1770-1869: Estimation data

{ 1870-1892: Testing data

² A comparison of the Nonlinear Set Membership (NSM) almost
optimal predictors is made with the following predictors:

{ AR: Linear AR model Box-Jenkins, 1976

{ BL: Bilinear model Granger-Andersen, 1978

{ TAR: Piece-wise AR model Tong-Lim, 1980

{ GMDH: Polynomial model Ivakhnenko, 1970

{ NN: Neural Network (sigmoidal)
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Sunspot activity, 1-step ahead prediction:
NSMG1 predictor

² NSMG1 is obtained considering a model of the form:
yt+1= f (wt)

wt= [yt yt¡1 yt¡2 ut]T

ut = 0; 8t
"t = 0; 8t
±t = ±; 8t

where ut is a noise acting on the system.

² The values of ± = 5 and ° = 5:5 are chosen on the base of the
trade-o® curve °¤ (±) and of a rough evaluation of ° = 3 ¥ 4
derived from a neural network approximation of fo.

² The NSMG1 prediction is:
cyT+1= fcG(gwT )= ÁcG(FSST )
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Sunspot activity, 1-step ahead prediction:
NSML1 predictor

² NSML1 is obtained by considering the series of residuals:
¢yt+1 = fyt+1 ¡ fcG(gwt)

and by using a model for such series of the form:

¢yt+1= ¢f (wt)

wt= [yt yt¡1 yt¡2 ut]T

ut = 0; "t = 0; ±t = ±; 8t
where ut is a noise acting on the system.

² A bound on the weighted norm of grad¢f(w):
kgrad¢f(w)kº2 · °r

with º = [0:9 0:8 0:6 0]; is taken.

² Based on validation analysis, the following values are chosen:
± = 1; °r = 0:2

² The NSML1 prediction is:
cyT+1= fcG(gwT )+Ác¢ (FSST )
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Sunspot activity:
1-step ahead prediction performances

² The following 1-step ahead prediction performances have been
evaluated on the testing data set:

{ RMSE1: Root Mean Square Error

{MAXE1: Maximum Prediction Error

Predictor RMSE1 MAXE1
NSMG1 14.6 28
NSML1 13.8 27
NN 16.2 41
AR 18.0 47
BL 16.6 46

SETAR 16.1 44
GMDH 14.7 42
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Sunspot activity, one-step ahead prediction:
NSMG11 predictor

² NSMG11 is obtained considering a model of the form:
yt+11= f (wt)

wt= [yt yt¡2 ::: yt¡12 ut]T

ut = 0; 8t
"t = 0; 8t
±t = ±; 8t

where ut is a noise acting on the system.

² The values of ± = 5 and ° = 7 are chosen on the base of the
trade-o® curve °¤ (±).

² The NSMG11 prediction is:
cyT+11= fcG(gwT )= ÁcG(FSST )
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Sunspot activity, 11-step ahead prediction:
NSML11 predictor

² NSML11 is obtained by considering the series of residuals:
¢yt+11 = fyt+11 ¡ fcG(gwt)

and by using a model for such series of the form:

¢yt+11= ¢f (wt)

wt= [yt yt¡1 : : : yt¡5 ut]T

ut = 0; "t = 0; ±t = ±; 8t
where ut is a noise acting on the system.

² A bound on the weighted norm of grad¢f(w):
kgrad¢f(w)kº2 · °r

with º = [0:8 1:2 1:2 1 1 1:4 1 0]; is taken.

² Based on validation analysis, the following values are chosen:
± = 1; °r = 1

² The NSML11 prediction is:
cyT+11= fcG(gwT )+Ác¢ (FSST )
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Sunspot activity:
11-step ahead prediction performances

² The following 11-step ahead prediction performances have been
evaluated on the testing data set:

{ RMSE11: Root Mean Square Error

{MAXE11: Maximum Prediction Error

Predictor RMSE11 MAXE11
NSMG11 19.9 45
NSML11 17.7 45
NN 23.4 63
AR 32.6 81
BL 32.6 81

SETAR 35.0 76
GMDH 29.4 81
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Prediction of river °ow

² Data set: 13500 measurements of the mean daily discharges
of the Dora Baltea river (Valle d'Aosta-Piemonte)
from January 1, 1941 to December 31, 1977:

{ 1-13000: Estimation data

{ 13200-13500: Testing data

² This data set has been used in:
-Porporato-Ridol¯, \Nonlinear analysis of river °ow time
sequences", Water Resour. Res., 1977.
- Porporato-Ridol¯, \Clues to existence of deterministic
chaos in river °ow", Int. J. of Modern Physics B, 1996.

² Evidence of a component of deterministic chaos has been found.
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Prediction of river °ow

² A comparison of 1-step ahead prediction performances is made
among the following predictors:

{ NSMG: Nonlinear SM predictor with global
information on gradf

{ NSML: Nonlinear SM predictor with local
information on gradf

{ NN: Neural Network (sigmoidal)

{ JIT: Just In Time predictor (Porporato-Ridol¯, 1997)
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River °ow: NSMG predictor

² NSMG is obtained considering a model of the form:
yt+1= f (wt)

wt= [yt yt¡1 yt¡2 yt¡3 ut]T

ut = 0; 8t
"t = " jytj ; 8t
±t = ±; 8t

where ut is a noise acting on the system.

² A bound on the weighted norm of gradfo(w):
kgradfo(w)kº2 · °

with º = [0:6 0:8 1:2 1 0]; is taken.

² Comparing the measured time series with the ¯ltered one, an
estimate of " = 0:3 has been obtained. The values of ± = 10
and ° = 50 are chosen on the base of the trade-o® curve °¤ (±)
and of a rough evaluation of ° = 30¥40 derived from a neural
network approximation of f .

² The NSMG prediction is:
cyT+1= fcG(gwT )
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River °ow: NSML predictor

² NSML is obtained by considering the series of residuals:
¢yt+1 = fyt+1 ¡ fcG(gwt)

and by using a model for such series of the form:

¢yt+1= ¢f (wt)

wt= [yt yt¡1 : : : yt¡5 ut]T

ut = 0; "t = " jytj ; ±t = ±; 8t
where ut is a noise acting on the system.

² A bound on the weighted norm of grad¢f(w):
kgrad¢f(w)kº2 · °r

with º = [0:6 0:8 1:2 1 0 0 0]; is taken.

² Based on validation analysis, the following values are chosen:
" = 0:6; ± = 10; °r = 22

² The NSML prediction is:
cyT+1= fcG(gwT )+Ác¢ (FSST )
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River °ow: prediction performances

² The following 1-step ahead prediction performances have been
evaluated on the testing data set:

{ RMSE: Root Mean Square Error

{MAXE: Maximum Prediction Error

Predictor RMSE MAXE

NSMG 86.8 688
NSML 85.1 731
NN 86.5 861
JIT 90.2 872
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Is SM approach too conservative ?

² The SM approach makes use of quite weak assumptions on
function fo and noises e and e0.

² This feature is basic for good performances in applications
where reliable information on the functional form of fo

and on noise properties (uncorrelation, pdf,...) is not avail-
able.

² In case that reliable information is available, it may be guessed
that the SM approach gives largely conservative results in com-
parison with methods able to account for such information.

² A most adverse situation for SM approach is simulated:

{ data are generated by a linear AR model driven by iid gaus-
sian noise

{ using such information, the optimal predictor, minimizing
the expected 1-step prediction error is computed.

{ the prediction performances are compared with the ones of
NSM predictors
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Is SM approach too conservative ?

² 200 time series of 150 data was generated by the equation:
yt+1 = 14:7 + 1:425yt ¡ 0:731yt¡1 + dt

where dt is an iid gaussian noise of variance ¾
2
d = 50.

² The time series have been divided into an estimation set of 100
data and a testing set of 50 data.

² The root mean square errors RMSEk and the maximum pre-
diction errors in absolute valueMAXEk for the k-step ahead
prediction; with k = 1; 11 are evaluated on the testing data
and averaged over the 200 realizations of the time series.

Predictor RMSE1 MAXE1 RMSE11 MAXE11
NSMG1 8.9 23 19.2 46
NSMG11 - - 19.4 45
NSML1 8.5 22 19.5 47
NSML11 - - 18.8 43
AR 7.2 18 17.9 43
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