Prediction of sunspot activity

- Prediction of sunspot activity is important in telecommunication, meteorology, agriculture, etc.
- The set of data 1770-1892 has been chosen because used as a **benchmark** to test prediction methods:
 - 1770-1869: Estimation data
 - 1870-1892: Testing data
- A comparison of the Nonlinear Set Membership (NSM) almost optimal predictors is made with the following predictors:

– AR: Linear AR model	Box-Jenkins, 1976
– BL: Bilinear model	Granger-Andersen, 1978
– TAR: Piece-wise AR model	Tong-Lim, 1980
– GMDH: Polynomial model	Ivakhnenko, 1970
– NN: Neural Network (sigmoidal))

Sunspot activity, 1-step ahead prediction: NSMG1 predictor

• NSMG1 is obtained considering a model of the form:

$$y_{t+1} = f(w_t) w_t = [y_t y_{t-1} y_{t-2} u_t]^T$$

$$u_t = 0, \ \forall t$$

$$\varepsilon_t = 0, \ \forall t$$

$$\delta_t = \delta, \ \forall t$$

where u_t is a noise acting on the system.

- The values of $\delta = 5$ and $\gamma = 5.5$ are chosen on the base of the trade-off curve $\gamma^*(\delta)$ and of a rough evaluation of $\gamma = 3 \div 4$ derived from a neural network approximation of f^o .
- The NSMG1 prediction is:

$$\widehat{y}_{T+1} = f_G^c(\widetilde{w}_T) = \phi_G^c(FSS_T)$$

Sunspot activity, 1-step ahead prediction: NSML1 predictor

• NSML1 is obtained by considering the series of residuals:

$$\Delta y_{t+1} = \widetilde{y}_{t+1} - f_G^c(\widetilde{w}_t)$$

and by using a model for such series of the form:

$$\Delta y_{t+1} = \Delta f(w_t)$$
$$w_t = [y_t \, y_{t-1} \, y_{t-2} \, u_t]^T$$

$$u_t = 0, \quad \varepsilon_t = 0, \quad \delta_t = \delta, \ \forall t$$

where u_t is a noise acting on the system.

• A bound on the weighted norm of $\operatorname{grad}\Delta f(w)$:

$$\|\operatorname{grad}\Delta f(w)\|_2^{\nu} \leq \gamma_r$$

with $\nu = [0.9 \quad 0.8 \quad 0.6 \quad 0]$, is taken.

• Based on validation analysis, the following values are chosen:

$$\delta = 1, \quad \gamma_r = 0.2$$

• The NSML1 prediction is:

$$\widehat{y}_{T+1} = f_G^c(\widetilde{w}_T) + \phi_\Delta^c(FSS_T)$$

Sunspot activity: 1-step ahead prediction performances

- The following 1-step ahead prediction performances have been evaluated on the testing data set:
 - $-RMSE_1$: Root Mean Square Error
 - $-MAXE_1$: Maximum Prediction Error

Predictor	$RMSE_1$	$MAXE_1$
NSMG1	14.6	28
NSML1	13.8	27
NN	16.2	41
AR	18.0	47
BL	16.6	46
SETAR	16.1	44
GMDH	14.7	42

Sunspot activity, one-step ahead prediction: NSMG11 predictor

• NSMG11 is obtained considering a model of the form:

$$y_{t+11} = f(w_t) w_t = [y_t \ y_{t-2} \ \dots \ y_{t-12} \ u_t]^T$$

$$u_t = 0, \ \forall t$$
$$\varepsilon_t = 0, \ \forall t$$
$$\delta_t = \delta, \ \forall t$$

where u_t is a noise acting on the system.

- The values of $\delta = 5$ and $\gamma = 7$ are chosen on the base of the trade-off curve $\gamma^*(\delta)$.
- The NSMG11 prediction is:

$$\widehat{y}_{T+11} = f_G^c(\widetilde{w}_T) = \phi_G^c(FSS_T)$$

Sunspot activity, 11-step ahead prediction: NSML11 predictor

• NSML11 is obtained by considering the series of residuals:

$$\Delta y_{t+11} = \widetilde{y}_{t+11} - f_G^c(\widetilde{w}_t)$$

and by using a model for such series of the form:

$$\Delta y_{t+11} = \Delta f(w_t)$$

$$w_t = [y_t \ y_{t-1} \ \dots \ y_{t-5} \ u_t]^T$$

$$u_t = 0, \quad \varepsilon_t = 0, \quad \delta_t = \delta, \ \forall t$$

where u_t is a noise acting on the system.

• A bound on the weighted norm of $\operatorname{grad}\Delta f(w)$:

$$\|\operatorname{grad}\Delta f(w)\|_2^{\nu} \leq \gamma_r$$

with $\nu = [0.8 \quad 1.2 \quad 1.2 \quad 1 \quad 1 \quad 1.4 \quad 1 \quad 0]$, is taken.

• Based on validation analysis, the following values are chosen:

 $\delta = 1, \quad \gamma_r = 1$

• The NSML11 prediction is:

$$\widehat{y}_{T+11} = f_G^c(\widetilde{w}_T) + \phi_\Delta^c(FSS_T)$$

Sunspot activity: 11-step ahead prediction performances

- The following 11-step ahead prediction performances have been evaluated on the testing data set:
 - $-RMSE_{11}$: Root Mean Square Error
 - $-MAXE_{11}$: Maximum Prediction Error

Predictor	$RMSE_{11}$	$MAXE_{11}$
NSMG11	19.9	45
NSML11	17.7	45
NN	23.4	63
AR	32.6	81
BL	32.6	81
SETAR	35.0	76
GMDH	29.4	81

Prediction of river flow

- Data set: 13500 measurements of the mean daily discharges of the Dora Baltea river (Valle d'Aosta-Piemonte) from January 1, 1941 to December 31, 1977:
 - -1-13000: Estimation data
 - -13200-13500: Testing data
- This data set has been used in:
 -Porporato-Ridolfi, "Nonlinear analysis of river flow time sequences", Water Resour. Res., 1977.
 Porporato-Ridolfi, "Clues to existence of deterministic chaos in river flow", Int. J. of Modern Physics B, 1996.
- Evidence of a component of deterministic chaos has been found.

Prediction of river flow

- A comparison of 1-step ahead prediction performances is made among the following predictors:
 - NSMG: Nonlinear SM predictor with global information on $\mathrm{grad} f$
 - NSML: Nonlinear SM predictor with local information on $\mathrm{grad}\,f$
 - NN: Neural Network (sigmoidal)
 - JIT: Just In Time predictor (Porporato-Ridolfi, 1997)

River flow: NSMG predictor

• NSMG is obtained considering a model of the form:

$$y_{t+1} = f(w_t) w_t = [y_t y_{t-1} y_{t-2} y_{t-3} u_t]^T$$

$$u_t = 0, \ \forall t$$

$$\varepsilon_t = \varepsilon |y_t|, \ \forall t$$

$$\delta_t = \delta, \ \forall t$$

where u_t is a noise acting on the system.

• A bound on the weighted norm of $\operatorname{grad} f^o(w)$:

 $\|\operatorname{grad} f^o(w)\|_2^{\nu} \leq \gamma$

with $\nu = [0.6 \quad 0.8 \quad 1.2 \quad 1 \quad 0]$, is taken.

- Comparing the measured time series with the filtered one, an estimate of $\varepsilon = 0.3$ has been obtained. The values of $\delta = 10$ and $\gamma = 50$ are chosen on the base of the trade-off curve $\gamma^*(\delta)$ and of a rough evaluation of $\gamma = 30 \div 40$ derived from a neural network approximation of f.
- The NSMG prediction is:

$$\widehat{y}_{T+1} = f_G^c(\widetilde{w}_T)$$

River flow: NSML predictor

• NSML is obtained by considering the series of residuals:

$$\Delta y_{t+1} = \widetilde{y}_{t+1} - f_G^c(\widetilde{w}_t)$$

and by using a model for such series of the form:

$$\Delta y_{t+1} = \Delta f(w_t)$$

$$w_t = [y_t \, y_{t-1} \dots \, y_{t-5} \, u_t]^T$$

$$u_t = 0, \quad \varepsilon_t = \varepsilon |y_t|, \quad \delta_t = \delta, \ \forall t$$

where u_t is a noise acting on the system.

• A bound on the weighted norm of $\operatorname{grad}\Delta f(w)$:

$$\|\operatorname{grad}\Delta f(w)\|_2^{\nu} \leq \gamma_r$$

with $\nu = [0.6 \quad 0.8 \quad 1.2 \quad 1 \quad 0 \quad 0 \quad 0]$, is taken.

• Based on validation analysis, the following values are chosen:

 $\varepsilon = 0.6, \quad \delta = 10, \quad \gamma_r = 22$

• The NSML prediction is:

$$\widehat{y}_{T+1} = f_G^c(\widetilde{w}_T) + \phi_\Delta^c(FSS_T)$$

River flow: prediction performances

- The following 1-step ahead prediction performances have been evaluated on the testing data set:
 - $-\,RMSE$: Root Mean Square Error
 - -MAXE: Maximum Prediction Error

Predictor	RMSE	MAXE
NSMG	86.8	688
NSML	85.1	731
NN	86.5	861
JIT	90.2	872

Is SM approach too conservative ?

- The SM approach makes use of quite weak assumptions on function f^o and noises e and e'.
- This feature is basic for good performances in applications where **reliable information** on the functional form of f^o and on noise properties (uncorrelation, pdf,...) is not available.
- In case that reliable information is available, it may be guessed that the SM approach gives largely conservative results in comparison with methods able to account for such information.
- A most adverse situation for SM approach is simulated:
 - data are generated by a linear AR model driven by iid gaussian noise
 - using such information, the optimal predictor, minimizing the expected 1-step prediction error is computed.
 - the prediction performances are compared with the ones of NSM predictors

Is SM approach too conservative ?

• 200 time series of 150 data was generated by the equation:

$$y_{t+1} = 14.7 + 1.425y_t - 0.731y_{t-1} + d_t$$

where d_t is an iid gaussian noise of variance $\sigma_d^2 = 50$.

- The time series have been divided into an estimation set of 100 data and a testing set of 50 data.
- The root mean square errors \overline{RMSE}_k and the maximum prediction errors in absolute value \overline{MAXE}_k for the k-step ahead prediction, with k = 1, 11 are evaluated on the testing data and averaged over the 200 realizations of the time series.

Predictor	\overline{RMSE}_1	\overline{MAXE}_1	\overline{RMSE}_{11}	\overline{MAXE}_{11}
NSMG1	8.9	23	19.2	46
NSMG11	-	_	19.4	45
NSML1	8.5	22	19.5	47
NSML11	-	_	18.8	43
AR	7.2	18	17.9	43