Set Membership identification of nonlinear models

Carlo Novara

Dip. Elettronica e Telecomunicazioni Politecnico di Torino

# Outline

### 1 Identification problem

2 Nonlinear Set Membership approach

- 3 Nonlinear Set Membership theory
- 4 Mathematical properties
- 5 NSM local approach

2 Nonlinear Set Membership approach

3 Nonlinear Set Membership theory

4 Mathematical properties

5 NSM local approach



Consider a nonlinear system described in NARX form:

$$y_{k+1} = f^{o}(w_{k}) + d_{k}$$
  
$$w_{k} \doteq (y_{k}, \dots, y_{k-n_{a}+1}, u_{k}, \dots, u_{k-n_{b}+1})$$

$$u_k \in \mathbb{R}^{n_u}$$
: input  
 $y_k \in \mathbb{R}^{n_y}$ : output  
 $w_k \in \mathbb{R}^n$ : regressor,  $n = n_a n_y + n_b n_u$   
 $d_k \in \mathbb{R}^{n_y}$ : noise accounting for input and output disturbances/errors  
 $k = 0, 1, 2, \ldots$ : time index.

• The NARX model structure is quite general: A large number of real-world dynamic systems can be captured by this structure.

• Consider a nonlinear system described in NARX form:

$$y_{k+1} = f^o\left(w_k\right) + d_k$$

- $u_k \in \mathbb{R}^{n_u}$ : input  $y_k \in \mathbb{R}^{n_y}$ : output  $w_k \in \mathbb{R}^n$ : regressor  $d_k \in \mathbb{R}^{n_y}$ : disturbance/noise.
- Suppose that:
  - *d<sub>k</sub>* is unknown
  - *f<sup>o</sup>* is unknown
  - a set of data  $\mathcal{D} \doteq \{\tilde{y}_{k+1}, \tilde{w}_k\}_{k=1}^N$  is available.

Identification problem. Find an accurate (in some sense) estimate  $\hat{f}$  of  $f^o$ .

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

#### Related important problems:

 $\diamond$  For an estimate  $\hat{f} \cong f^o$ , evaluate the *identification error*  $\|f^o - \hat{f}\|$ .

- Sind an estimate that minimizes the identification error.
- However, the identification error cannot be evaluated, since  $f^o$  is unknown.
- Need of **prior assumptions** on the system (represented by  $f^o$ ) and on the noise  $d_k$  to derive a finite bound on this error.

## Parametric statistical approach

#### Classical assumptions:

- ◊ Noise: Statistical assumptions, like zero-mean, i.i.d., Gaussian, ...
- $\diamond$  System:  $f^o$  belongs to a set of parametrized functions:

$$f^{o} \in \mathcal{F}_{P}(\theta) \doteq \left\{ f(w,\theta) = \sum_{i=1}^{m} \alpha_{i} \sigma_{i}(w,\beta_{i}) \right\}$$
$$\theta = (\alpha_{1}, \dots, \alpha_{r}, \beta_{1}, \dots, \beta_{r}). \quad \Box$$

- Choice of the basis functions  $\sigma_i$ :
  - based on physical laws (when available);
  - "universal" approximators (polynomial, trigonometric, sigmoidal, ...).
- The parameters in  $\theta$  are typically estimated by solving an optimization problem (e.g., minimization of the prediction error).
  - Parameter estimation is often called learning.



#### 2 Nonlinear Set Membership approach

3 Nonlinear Set Membership theory

- 4 Mathematical properties
- 5 NSM local approach



# Nonlinear Set Membership approach

- In several real-world situations:
  - The statistical assumptions may not hold or not be reliable.
  - The physical laws may be not well known or too complex.
- The Nonlinear Set Membership (NSM) approach is based on somewhat weaker assumptions:

NSM assumptions:

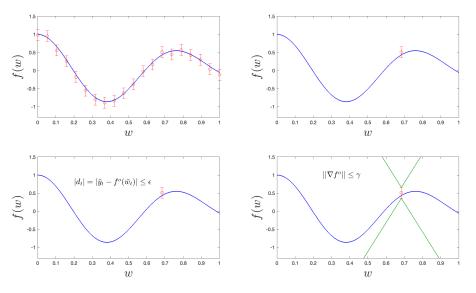
- ♦ **Noise:** bounded as  $||d_k|| \le \epsilon$ ,  $\forall k$ .
- ♦ System:  $f^o$  belongs to a set of functions with gradient (or Jacobian) bounded by a constant  $\gamma$ :

$$f^{o} \in \mathcal{F}_{S}(\gamma) \doteq \left\{ f \in C^{1} : \left\| \nabla f(w) \right\| \le \gamma, \, \forall w \in W \right\}$$

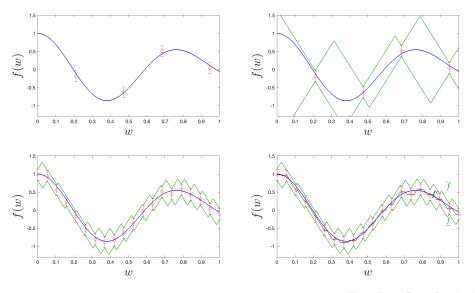
W =function domain = bounded set of  $\mathbb{R}^n$ .  $\Box$ 

- $\bullet\,$  The generalization from  $C^1$  to Lipschitz is straightforward.
- $\gamma$  and  $\epsilon$  are estimated from data by means of a validation criterion.

### Nonlinear Set Membership approach Basic idea ( $w \in \mathbb{R}$ ) - information utilization



### Nonlinear Set Membership approach Basic idea ( $w \in \mathbb{R}$ ) - uncertainty bounds and central estimate



# Nonlinear Set Membership approach

Uncertainty bounds and central estimate

• The bounds and the central estimate can be computed in closed-form in the general case  $w \in \mathbb{R}^n$ :

$$\overline{f}(w) \doteq \min_{k=1,\dots,N} \left( \tilde{y}_{k+1} + \epsilon + \gamma \| w - \tilde{w}_k \| \right)$$
  
$$\underline{f}(w) \doteq \max_{k=1,\dots,N} \left( \tilde{y}_{k+1} - \epsilon - \gamma \| w - \tilde{w}_k \| \right)$$
  
$$f^c(w) = \frac{1}{2} \left( \underline{f}(w) + \overline{f}(w) \right).$$

- In the following, we will see that:
  - ▶ <u>f</u> and <u>f</u> are optimal uncertainty bounds: they are the tightest bounds on the unknown function f<sup>o</sup> that can be obtained from the available information.
  - ▶ f<sup>c</sup> is an optimal estimate: it minimizes the worst-case identification error (to be defined later).



2 Nonlinear Set Membership approach

3 Nonlinear Set Membership theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4 Mathematical properties

5 NSM local approach

### Nonlinear Set Membership theory Feasible System Set

• All the information (prior and data) available at time N is summarized by the *Feasible System Set*.

Definition. Feasible System Set:

$$FSS \doteq \{ f \in \mathcal{F}_S(\gamma) : |\tilde{y}_{k+1} - f(\tilde{w}_k)| \le \epsilon, \, k = 1, \dots, N \} \,. \quad \Box$$

- FSS is the set of all systems compatible with the prior information (ε and γ) and data.
- In other words, FSS is the set of all systems  $f \in \mathcal{F}_S(\gamma)$  that could have generated the data.

## Nonlinear Set Membership theory

Validation of prior assumptions

- If FSS = Ø it means that no system exists compatible with prior assumptions and data ⇒ the assumptions are falsified by data.
- If FSS ≠ Ø at least one system exists compatible with prior assumptions and data ⇒ the assumptions are validated by data.

Definition. The assumptions are considered validated if  $FSS \neq \emptyset$ .  $\Box$ 

• The fact that the priors are validated by the present data does not exclude that they may be invalidated by future data (Popper, Conjectures and Refutations: the Growth of Scientific Knowledge", 1969).

Theorem. Conditions for  $FSS \neq \emptyset$  are

$$\diamond$$
 Necessary:  $\overline{f}(\tilde{w}_k) \geq \underline{f}(\tilde{w}_k) \ k = 1, \dots, N.$ 

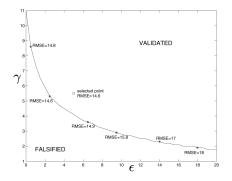
♦ Sufficient:  $\overline{f}(\tilde{w}_k) > \underline{f}(\tilde{w}_k) \ k = 1, \dots, N.$  □

### Nonlinear Set Membership theory Validation of prior assumptions

• Using the above theorem, the following curve can be constructed:

$$\gamma_{\min}(\epsilon) \doteq \inf_{FSS \neq \emptyset} \gamma.$$

- For each ε, it gives the minimum γ ensuring assumption validation.
- It separates the validated and falsified parameter regions.
- The curve, together with some accuracy criterion, can be used to choose the values of  $\epsilon$  and  $\gamma$ .



◆□> ◆□> ◆三> ◆三> ● □ ● ● ●

### Nonlinear Set Membership theory Optimality approximation

• Let  $\hat{f}$  be an approximation of the unknown "true" function  $f^o$ . Definition. Worst-Case (WC) identification error of  $\hat{f}$ :

$$E(\hat{f}) \doteq \sup_{f \in FSS} \left\| f - \hat{f} \right\|.$$

 $\bullet\,$  The error is measured using a  $L_p$  functional norm, given by

$$\left\|f\right\|_{p} \doteq \begin{cases} \left[\int_{W} \|f\left(w\right)\|_{p}^{p} dw\right]^{\frac{1}{p}}, & p < \infty, \\ \operatorname{ess\,sup}_{w \in W} \|f\left(w\right)\|_{\infty}, & p = \infty. \end{cases}$$

Definition. An approximation  $f^*$  is optimal if  $E(f^*) = \inf_f E(f) = r_I$ .  $r_I = radius \text{ of information}$ ; it is the minimum WC error achievable.  $\Box$ 

### Nonlinear Set Membership theory Optimal model

Assumption:  $FSS \neq \emptyset$ .

Theorem.

- i)  $f^c$  is an optimal estimate for any  $L_p$  norm.
- ii) The radius of information is given by  $r_I = \frac{1}{2} \|\overline{f} \underline{f}\|_p$ .  $\Box$

Theorem.  $\underline{f}$  and  $\overline{f}$  are optimal bounds: they are the tightest bounds on  $f^o$  that can be derived on the basis of the available information:

$$\overline{f}(w) = \sup_{f \in FSS} f(w), \ \forall w \in W$$
$$\underline{f}(w) = \inf_{f \in FSS} f(w), \ \forall w \in W. \quad \Box$$

2 Nonlinear Set Membership approach

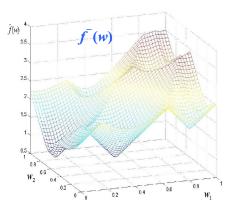
3 Nonlinear Set Membership theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 4 Mathematical properties
- 5 NSM local approach

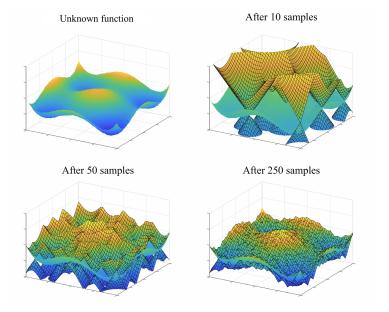
## Mathematical properties - uncertainty bounds

- Properties of  $\underline{f}$  and  $\overline{f}$ :
- Piecewise conic functions.
- Lipschitz continuous with constant  $\gamma$  (they are not  $C^1$ ).
- Differentiable almost everywhere.



ъ

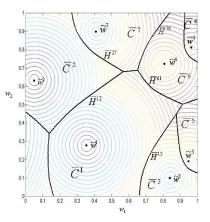
## Mathematical properties - uncertainty bounds



◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ● ●

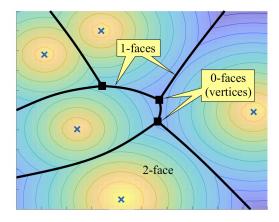
## Mathematical properties - Hyperbolic Voronoi Diagrams

- The projections of the cones intersections generate the so-called Hyperbolic Voronoi Diagrams (HVD).
- HVDs define a partition of the function domain, featuring faces of different dimensions (form 0 to *n*).
- They are generalizations of standard Voronoi Diagrams (Edelsbrunner, Combinatorial Geometry, Springer, 1987).



イロト 不得下 イヨト イヨト

## Mathematical properties - Hyperbolic Voronoi Diagrams



2 Nonlinear Set Membership approach

3 Nonlinear Set Membership theory

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

4 Mathematical properties

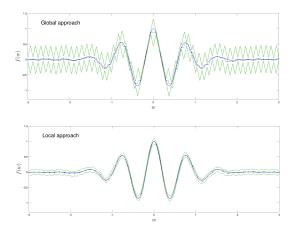


# NSM local approach

- A global bound on the norm of the unknown function gradient as been assumed so far:  $\|\nabla f^o(w)\| \leq \gamma, \forall w \in W.$
- Problems:
  - ▶  $\nabla f^o(w)$  may drastically change in function of w. A global gradient bound does allow an effective adaptation.
  - ► In the case of low number of identification data, the uncertainty region defined by f and f may be quite large.
- Simple method to overcome such problems:
  - ▶ Identify a function  $f^a$  approximating  $f^o$ , using any approach (e.g., polynomials, neural networks, support vector machines, ...).
  - Apply the NSM approach to the residue function f<sub>Δ</sub> ≐ f<sup>o</sup> − f<sup>a</sup>, using the data D<sub>Δ</sub> ≐ {ỹ<sub>k+1</sub> − f<sup>a</sup>(ῶ<sub>k</sub>), ῶ<sub>k</sub>}<sup>N</sup><sub>k=1</sub>.
- The global bound  $\|\nabla f_{\Delta}\| \leq \gamma_{\Delta}$  implies <u>local bounds</u> on  $\|\nabla f^o\|$ :

 $\|\nabla f_a(w)\| - \gamma_{\Delta} \le \|\nabla f_o(w)\| \le \|\nabla f_a(w)\| + \gamma_{\Delta}.$ 

# NSM local approach



**Remark:** Thanks to the local approach, NSM identification can be combined with any other modeling method, allowing an easy evaluation of tight uncertainty bounds.