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Identification problem

Consider a nonlinear system described in NARX form:

yk+1 = fo (wk) + dk

wk
.
= (yk, . . . , yk−na+1, uk, . . . , uk−nb+1)

uk ∈ Rnu : input
yk ∈ Rny : output
wk ∈ Rn: regressor, n = nany + nbnu

dk ∈ Rny : noise accounting for input and output disturbances/errors
k = 0, 1, 2, . . . : time index.

The NARX model structure is quite general: A large number of
real-world dynamic systems can be captured by this structure.



Identification problem

Consider a nonlinear system described in NARX form:

yk+1 = fo (wk) + dk

uk ∈ Rnu : input
yk ∈ Rny : output
wk ∈ Rn: regressor
dk ∈ Rny : disturbance/noise.

Suppose that:
▶ dk is unknown
▶ fo is unknown
▶ a set of data D .

= {ỹk+1, w̃k}Nk=1 is available.

Identification problem. Find an accurate (in some sense) estimate f̂ of fo.



Identification problem

Related important problems:

⋄ For an estimate f̂ ∼= fo, evaluate the identification error
∥∥∥fo − f̂

∥∥∥.

⋄ Find an estimate that minimizes the identification error.

However, the identification error cannot be evaluated, since fo is
unknown.

Need of prior assumptions on the system (represented by fo) and on
the noise dk to derive a finite bound on this error.



Parametric statistical approach

Classical assumptions:

⋄ Noise: Statistical assumptions, like zero-mean, i.i.d., Gaussian, ...

⋄ System: fo belongs to a set of parametrized functions:

fo ∈ FP (θ)
.
=

{
f(w, θ) =

m∑
i=1

αiσi(w, βi)

}
θ = (α1, . . . αr, β1, . . . βr). 2

Choice of the basis functions σi:
▶ based on physical laws (when available);
▶ “universal” approximators (polynomial, trigonometric, sigmoidal, ...).

The parameters in θ are typically estimated by solving an optimization
problem (e.g., minimization of the prediction error).

▶ Parameter estimation is often called learning.
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Nonlinear Set Membership approach
In several real-world situations:

▶ The statistical assumptions may not hold or not be reliable.
▶ The physical laws may be not well known or too complex.

The Nonlinear Set Membership (NSM) approach is based on
somewhat weaker assumptions:

NSM assumptions:
⋄ Noise: bounded as ∥dk∥ ≤ ϵ, ∀k.

⋄ System: fo belongs to a set of functions with gradient (or Jacobian)
bounded by a constant γ:

fo ∈ FS(γ)
.
=

{
f ∈ C1 : ∥∇f(w)∥ ≤ γ, ∀w ∈ W

}
W = function domain = bounded set of Rn. 2

The generalization from C1 to Lipschitz is straightforward.
γ and ϵ are estimated from data by means of a validation criterion.



Nonlinear Set Membership approach
Basic idea (w ∈ R) - information utilization



Nonlinear Set Membership approach
Basic idea (w ∈ R) - uncertainty bounds and central estimate



Nonlinear Set Membership approach
Uncertainty bounds and central estimate

The bounds and the central estimate can be computed in closed-form
in the general case w ∈ Rn:

f(w)
.
= min

k=1,...,N
(ỹk+1 + ϵ+ γ ∥w − w̃k∥)

f(w)
.
= max

k=1,...,N
(ỹk+1 − ϵ− γ ∥w − w̃k∥)

f c(w) =
1

2

(
f(w) + f(w)

)
.

In the following, we will see that:
▶ f and f are optimal uncertainty bounds: they are the tightest bounds

on the unknown function fo that can be obtained from the available
information.

▶ f c is an optimal estimate: it minimizes the worst-case identification
error (to be defined later).
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Nonlinear Set Membership theory
Feasible System Set

All the information (prior and data) available at time N is summarized
by the Feasible System Set.

Definition. Feasible System Set:

FSS
.
= {f ∈ FS(γ) : |ỹk+1 − f (w̃k)| ≤ ϵ, k = 1, . . . , N} . 2

FSS is the set of all systems compatible with the prior information (ϵ
and γ) and data.
In other words, FSS is the set of all systems f ∈ FS(γ) that could
have generated the data.



Nonlinear Set Membership theory
Validation of prior assumptions

If FSS = ∅ it means that no system exists compatible with prior
assumptions and data ⇒ the assumptions are falsified by data.

If FSS ̸= ∅ at least one system exists compatible with prior
assumptions and data ⇒ the assumptions are validated by data.

Definition. The assumptions are considered validated if FSS ̸= ∅. 2

The fact that the priors are validated by the present data does not
exclude that they may be invalidated by future data (Popper,
Conjectures and Refutations: the Growth of Scientific Knowledge”, 1969).

Theorem. Conditions for FSS ̸= ∅ are

⋄ Necessary: f(w̃k) ≥ f(w̃k) k = 1, . . . , N .

⋄ Sufficient: f(w̃k) > f(w̃k) k = 1, . . . , N . 2



Nonlinear Set Membership theory
Validation of prior assumptions

Using the above theorem, the following curve can be constructed:

γmin(ϵ)
.
= inf

FSS ̸=∅
γ.

For each ϵ, it gives the minimum γ

ensuring assumption validation.

It separates the validated and
falsified parameter regions.

The curve, together with some
accuracy criterion, can be used to
choose the values of ϵ and γ.



Nonlinear Set Membership theory
Optimality approximation

Let f̂ be an approximation of the unknown “true” function fo.

Definition. Worst-Case (WC) identification error of f̂ :

E(f̂)
.
= sup

f∈FSS

∥∥∥f − f̂
∥∥∥ . □

The error is measured using a Lp functional norm, given by

∥f∥p
.
=


[∫

W ∥f (w)∥pp dw
] 1

p
, p < ∞,

ess supw∈W ∥f (w)∥∞ , p = ∞.

Definition. An approximation f∗ is optimal if E(f∗) = inff E(f) = rI .
rI = radius of information; it is the minimum WC error achievable. □



Nonlinear Set Membership theory
Optimal model

Assumption: FSS ̸= ∅.

Theorem.

i) f c is an optimal estimate for any Lp norm.

ii) The radius of information is given by rI = 1
2

∥∥f − f
∥∥
p
. □

Theorem. f and f are optimal bounds: they are the tightest bounds on fo

that can be derived on the basis of the available information:

f(w) = sup
f∈FSS

f(w), ∀w ∈ W

f(w) = inf
f∈FSS

f(w), ∀w ∈ W. □
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Mathematical properties - uncertainty bounds

Properties of f and f :

Piecewise conic functions.

Lipschitz continuous with constant γ
(they are not C1).

Differentiable almost everywhere.



Mathematical properties - uncertainty bounds



Mathematical properties - Hyperbolic Voronoi Diagrams

The projections of the cones
intersections generate the so-called
Hyperbolic Voronoi Diagrams (HVD).

HVDs define a partition of the function
domain, featuring faces of different
dimensions (form 0 to n).

They are generalizations of standard
Voronoi Diagrams (Edelsbrunner,
Combinatorial Geometry, Springer, 1987).



Mathematical properties - Hyperbolic Voronoi Diagrams
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NSM local approach
A global bound on the norm of the unknown function gradient as been
assumed so far: ∥∇fo(w)∥ ≤ γ, ∀w ∈ W .

Problems:
▶ ∇fo(w) may drastically change in function of w. A global gradient

bound does allow an effective adaptation.
▶ In the case of low number of identification data, the uncertainty region

defined by f and f may be quite large.

Simple method to overcome such problems:
▶ Identify a function fa approximating fo, using any approach (e.g.,

polynomials, neural networks, support vector machines, ...).
▶ Apply the NSM approach to the residue function f∆

.
= fo − fa,

using the data D∆
.
= {ỹk+1 − fa(w̃k), w̃k}Nk=1.

The global bound ∥∇f∆∥ ≤ γ∆ implies local bounds on ∥∇fo∥:

∥∇fa(w)∥ − γ∆ ≤ ∥∇fo(w)∥ ≤ ∥∇fa(w)∥+ γ∆.



NSM local approach

Remark: Thanks to the local approach, NSM identification can be
combined with any other modeling method, allowing an easy evaluation of
tight uncertainty bounds.
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