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Abstract

Robustness had become in past years a central issue in system and control theory, focusing the attention of researchers from the study of
a single model to the investigation of a set of models, described by a set of perturbations of a “nominal” model. Such a set, often indicated
as an uncertainty model set or model set for short, has to be suitably constructed to describe the inherent uncertainty about the system under
consideration and to be used for analysis and design purposes.H∞ identification methods deliver uncertainty model sets in a suitable form to
be used by well-established robust design techniques, based onH∞ or � optimization methods. The literature onH∞ identification is now very
extensive. In this paper, some of the most relevant contributions related to assumption validation, evaluation of bounds on unmodeled dynamics,
convergence analysis and optimality properties of linear, two-stage and interpolatory algorithms are surveyed from a deterministic point of view.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A quite general problem appearing in many scientific and
technical fields is to make some kind of inference on a dynam-
ical systemSo, starting from some general information on it
and from a finite number of noisy measurements. Typical ex-
amples of inference are smoothing, filtering, prediction, control
design, decision making, fault detection, diagnosis, etc. The
usual approach is to estimate a modelM of So and to make
the inference onM. Due to the unavoidable discrepancies be-
tween the identified modelM and the actual systemSo, it is of
paramount importance to evaluate the inference error, i.e. the
error in making inference onM instead ofSo.
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Consider in particular the control design problem. Typically,
the system to be controlled is not completely known and a
control law has to be designed, able to drive the plant to reach,
if possible, given performance specifications. The classical ap-
proach consists in building a mathematical model of the plant,
on the basis of the available information (priors and measure-
ments), and then designing a control that meets the desired
performance specifications for the identified model. However,
this way it is not taken into account that any identified model
is only an approximation of the actual system. Indeed, the per-
formances actually achievable on the plant may be very poor,
according to the size of the modeling error, and even the closed
loop stability may be missed. In order to face these problems,
robustness had become in past years a central issue in system
and control theory, focusing the attention of the researchers
from the study of a single modelM to the investigation of a
set of modelsM. Such a set, often indicated asuncertainty
model setor model set for short, has to be suitably constructed
to describe the inherent uncertainty about the system under
consideration and to be used for analysis and design purposes.
Typically, model sets are described by a set of perturbations of
a “nominal” model. Thus, in the control problem, the inference
error corresponds to the difference between the performances
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predicted on the nominal model and those actually achievable
on the real system. Since the real system is not known, the
actually achievable performances are unknown and then those
guaranteed for all systems belonging to the uncertainty model
set are used instead.
Since data are corrupted by noise and provide only limited

information, no finite bound on the inference error can be de-
rived if no prior assumption onSo and on noise is made. In
particular, some information onSo is required, e.g. by assum-
ing thatSo belongs to some subsetK of dynamical systems.
Different theories have been developed, according to different
assumptions on the setK and the noise.
Classical statistical identification theory gives deep and ex-

tensive results for the case thatK is a set of parametric mod-
els M(p), p ∈ Rq , and that noise is stochastic with known
p.d.f., possibly filtered by a parametric noise model. As a mat-
ter of fact, in most practical applications there exists nopo

such thatSo = M(po) and the problem arises of considering
that only approximated models can be estimated and that the
effects of unmodeled dynamics have to be accounted for. This
appears to be a formidable problem. Some results are avail-
able in statistical identification and learning literature, essen-
tially related to asymptotic analysis, see, e.g.,Ljung and Yuan
(1985), Vidyasagar (1996), andLjung and Guo (1997). Indeed,
evaluation of the identification accuracy with a finite number
of samples is of great importance. Set membership (SM) iden-
tification methods have been developed in the last 20 years
in order to deal with unmodeled dynamics and finite sam-
ples, see, e.g.,Milanese and Vicino (1991), Smith and Dahleh
(1994),Mäkilä, Partington, andGustafsson (1995),Ninness and
Goodwin (1995), Milanese, Norton, Piet-Lahanier, and Wal-
ter (1996), Partington (1997), Giarré, Milanese, and Taragna
(1997), Garulli, Tesi, and Vicino (1999), Chen and Gu (2000)
and the references therein.

H∞ identification, where the modeling error is measured by
theH∞ norm, is among the most investigated SM methods in
the literature. Indeed,H∞ identification methods deliver un-
certainty model sets in a suitable form to be used by well-
established robust design techniques, based onH∞ or � opti-
mization methods. The literature onH∞ identification is now
very extensive, considering time and/or frequency domain mea-
surements and under different prior assumptions. In this paper,
some of the most relevant contributions related to assumption
validation, evaluation of bounds on unmodeled dynamics, con-
vergence analysis and optimality properties are surveyed from
a deterministic point of view.
Needless to say, any overview paper reflects the authors’ out-

look on the topic, and this paper is not an exception. Moreover,
it is not the authors’ ambition to provide a complete coverage
of the literature, due to space limitations and uniformity of ex-
position. In particular, for model set validation results under
both deterministic and stochastic frameworks, closely related
to the assumption validation problem investigated in this pa-
per, the interested reader can refer, e.g., toSmith and Doyle
(1992), Zhou and Kimura (1993), Poolla, Khargonekar, Tikku,
Krause, and Nagpal (1994), Chen (1997), Zhou (2001), Zhou,
Wang, and Sun (2002)and the references cited there. Other

important issues are not reviewed as well, such as the struc-
ture of unfalsified models (see, e.g.,Zhou & Kimura, 1995;
Zhou, 1998, 2000), the sample complexity (see, e.g.,Harrison,
Ward, & Gamble, 1996; Chen & Gu, 2002), the probabilistic
and mixed probabilistic–deterministic approaches to model set
identification (see, e.g.,Goodwin, Gevers, & Ninness, 1992; de
Vries & Van den Hof, 1995; Hakvoort & Van den Hof, 1997;
Milanese & Taragna, 1999; Ljung, 1999; Reinelt, Garulli, &
Ljung, 2002), the derivation of reduced order model sets (see,
e.g., Zhou & Kimura, 1995; Beck, Doyle, & Glover, 1996;
Jikuya & Kimura, 1998, 1999; Andersson, Rantzer, & Beck,
1999), the experiment design, the input selection, the presence
of outliers (Mäkilä & Partington, 2000), mixed time-frequency
measurements. Moreover, only pointwise bounds on errors are
considered, while other classes of bounded noise, e.g.	2 or 	1
bounded noise, have been investigated. Also, we are aware that
w.p.1 we havemissed to reference some important contribution,
and we apologize in advance with the authors. Finally, it must
be remarked that some of the results reported in the paper are
specificH∞ instances of other more general referenced results.

2. Prior and experimental information

In this section, the main concepts of SMH∞ identification
are introduced. Causal, discrete-time, single-input single-
output, linear time-invariant,	2 BIBO stable, possibly dis-
tributed parameter, dynamical systems are considered. Any
such systemS is uniquely determined by its impulse response
hS .= {hS

k }∞k=0, whose power-series representation of the trans-
fer function S(z)

.= ∑∞
k=0 h

S
k z

k is an element of the Hardy
spaceH∞(D) defined as

H∞(D)
.=
{
f : D → C|f analytic inD and

‖f ‖∞
.= sup

z∈D
|f (z)|<∞

}
,

whereD .= {z ∈ C : |z|<1} is the open unit disk. Note that
S(z) as defined here merely denotes the standardz-transform
of hS evaluated atz−1.
Let So ∈ H∞(D) be the actual plant to be identified us-

ing both experimental information and prior information (or
assumptions).

2.1. Experimental information

The noisy measurements are represented as

yN = FN(So) + eN ,

whereyN = [y0 . . . yN−1]T ∈ RN is a known vector depend-
ing on the actual measurements,FN is a known operator called
“information operator” indicating how the measurements de-
pend onSo, andeN ∈ RN is an unknown vector representing
the measurement noise. The following experimental settings
are considered.
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• Time domain measurements ofN samples of the outputy
of the systemSo, initially at rest, fed by a known one-sided
input u (u	 = 0 for 	<0, u0 �= 0):

y	 =
	∑

k=0

hSo

k u	−k + e	, 	 = 0, . . . , N − 1. (1)

In this case, the information operator is given byFN(S) =
FNhS , where

FN = [ Tu 0N×∞ ] ∈ RN×∞ (2)

and Tu ∈ RN×N is the lower triangular Toeplitz matrix
formed by the input vectoruN = [u0 . . . uN−1]T.

• Measurements of real and imaginary part of the complex-
valued samples of the system frequency responseSo(�k),
k = 1, . . . , N/2:

y2k−2 =Re(So(�k)) + e2k−2,

y2k−1 = Im(So(�k)) + e2k−1. (3)

In this case, the information operator is given byFN(S) =
FNhS , where

FN = [�T(�1) · · · �T(�N/2) ]
T ∈ RN×∞, (4)

�(�) =
[
�1(�)

�2(�)

]
=
[
Re(�(�))

Im(�(�))

]
∈ R2×∞, (5)

�(�) = [ 1 ej� ej2� · · · ] ∈ C1×∞. (6)

• Mixed time and frequency domain measurements, consisting
of both (1) and (3), can be considered as well. In such a
case, the information operator can be obtained by stacking
together the information operators (2) and (4).

2.2. Prior information on plantSo

Assumption onSo is typically given asSo ∈ K ⊂ H∞(D),
whereK is a nonfinitely parametrized subset of dynamical sys-
tems. The following subsetsK investigated in the literature are
considered in the paper:

(1) K
(1)
�,L

.= {S ∈ H∞(D) : supz∈D�
|S(z)|�L}

with L>0, �>1 andD�
.= {z ∈ C : |z|��} the closed

disk of radius�.
(2) K

(2)
�,L

.= {S ∈ H∞(D) : |hS
k |�L�−k, ∀k�0}

with L>0 and�>1.
(3) K

(3)
�

.= {S ∈ H∞(D) : supz∈D|dS(z)dz |��}.
(4) K

(4)
�

.= {S ∈ H∞(D) : sup�∈[0,�]|dSR/I (�)

d� |��},
where the notation SR(�)

.= Re[S(e−j�)] and

SI(�)
.= Im[S(e−j�)] is used. The notation(·)R/I indicates

both (·)R and(·)I .
The following result, derived by standard properties of analytic
functions, may prove useful to understand the relations among
these sets.

Result 1.

(i) K
(1)
�,L ⊂ K

(2)
�,L,

(ii) K
(2)
�,L ⊂ K

(3)
� for � = L�

(�−1)2
,

(iii) K
(3)
� ⊂ K

(4)
� .

It has to be pointed out that the computational complexity
of the assumption validation and derivation of almost optimal
algorithms is highly dependent on the assumed subsetK. In
fact, as shown in Sections 3 and 7 and discussed in Section
8, the choice ofK has a direct effect on the number of data
that can be reasonably processed and on the tightness of the
identified model sets.

2.3. Prior information on noiseeN

eN ∈ Be = {ẽN = [ẽ0 · · · ẽN−1]T ∈ RN : ‖AẽN‖We∞ �ε},
(7)

where

‖AẽN‖We∞ = ‖W−1
e AẽN‖∞ = max

0�k� l−1
w−1

e,k |(AẽN)k|,

A ∈ Rl×N is a given matrix of rankN andWe=diag(we,0, . . . ,

we,l−1) ∈ Rl×l is a given weighting matrix withwe,k >0 ∀k.
By takingA = We = IN×N , such an assumption accommo-

dates for constant magnitude bound on noise:|ẽk|�ε ∀k. By
suitably choosingWe, it is possible to consider noise bounds
dependent onk: |ẽk|�we,kε ∀k, to account e.g. for relative
measurement errors. By suitably choosingA, it is possible to
account for information on deterministic uncorrelation proper-
ties of the noise, see, e.g.,Hakvoort and Van den Hof (1995),
Paganini (1996), Venkatesh and Dahleh (1997).

3. Validation of prior assumptions

As typical in any identification theory, the problem of check-
ing the validity of prior assumptions arises. The only thing that
can be actually done is to check if prior assumptions are in-
validated by the data, evaluating if no system exists consistent
with data and assumptions. To this end it is useful to consider
the Feasible Systems Set, often calledunfalsified systems set,
i.e. the set of all systems consistent with prior information and
measured data.

Definition 1 (Feasible Systems Set).

FSS(K,Be, FN, yN)

=̇ {S ∈ K : yN = FN(S) + ẽN , ẽN ∈ Be}.
Thus, prior assumptions are invalidated ifFSSis empty. How-

ever, it is usual to introduce the concept of prior assumption
validation as consistency with the measured data, i.e.FSSis
not empty.

Definition 2 (Validation of prior assumptions). Prior assump-
tions are consideredvalidatedif FSS�= ∅.
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Note that the fact that the prior assumptions are consistent
with the present data does not exclude that they may be inval-
idated by future data.
The following results show how to validate different prior

assumptions.

Result 2 (Chen, Nett, & Fan, 1992, 1995). Given N/2
frequency-domain measurements, the prior assumptionsSo ∈
K

(1)
�,L andeN ∈ Be with A = We = IN×N are validated if and

only if there is a vector�N ∈ Be such that[ −Q−1 −L−1(Dy − D�)
H

−L−1(Dy − D�) −Q

]
�0, (8)

where Dy=̇diag({y2k−2 + jy2k−1}N/2
k=1), D�=̇diag({�2k−2

+ j�2k−1}N/2
k=1) and Q =̇ [ 1

1−�−2zizl
], with zk = ej�k , for

i, l, k = 1, . . . , N/2.

Result 3(Chen & Nett, 1995). GivenN time-domain measure-
ments, the prior assumptionsSo ∈ K

(1)
�,L and eN ∈ Be with

A = We = IN×N are validated if and only if there is a vector
�N ∈ Be such that[ −T T

u D2
�Tu −(Ty − T�)

T

−(Ty − T�) −L2D−2
�

]
�0 (9)

with D�=̇diag(1, �, . . . , �N−1) and Tu, Ty and T� given
by the lower triangular Toeplitz matrices associated with
uN , yN and�N , respectively.

These two validation results forK = K
(1)
�,L are based

on two different interpolation techniques, Nevanlinna–Pick
(see, e.g.,Ball, Gohberg, & Rodman, 1990) and Carathéodory–
Fejér (see, e.g.,Rosenblum & Rovnyak, 1985), respectively.
The interpolation conditions are converted into the LMI prob-
lems (8) and (9), which appear to be computationally more
efficient.
Let Sn be theFIRn system with impulse responsehSn .=

{hS
0, h

S
1, . . . , h

S
n−1,0, . . .}.

Result 4(Milanese &Taragna, 2000). Given time or frequency
domain measurements, letn be a given positive integer. Condi-
tions for validating prior assumptionsSo ∈ K

(2)
�,L andeN ∈ Be

are as follows:

(i) ε∗ �ε is a sufficient condition, beingε∗ solution of the
problem:

ε∗ = min

ε̃,Sn:
{

Sn∈K
(2)
�,L,

‖A(yN−FNhSn )‖We∞ � ε̃.

ε̃. (10)

(ii) ε∗ �ε + εn‖W−1
e A‖∞,∞ is a necessary condition, with

εn = L�n

1−� and ‖W−1
e A‖∞,∞ = max0� i � l−1

∑N−1
k=0

|(W−1
e A)ik|.

(iii) ε∗ �ε is a necessary and sufficient condition for the case
of time domain data, ifn�N is chosen.

Note that problem (10) can be solved by linear program-
ming techniques. By choosingn sufficiently large, the “gap”
between sufficient and necessary conditions can be made arbi-
trarily small.

Result 5 (Milanese, Novara, & Taragna, 2001). GivenN/2
frequency-domain measurements, conditions for validating
prior assumptionsSo ∈ K

(4)
� andeN ∈ Be with A=IN×N are:

(i) 	R/I,k �hR/I,k, for k = 1, . . . , N/2, is a necessary condi-
tion, where

	R/I,k
.= min

l=1,...,N/2
(hR/I,l + �|�l − �k|),

hR,k

.= y2k−2 − we,2k−2ε, hI,k
.= y2k−1 − we,2k−1ε,

hR,k
.= y2k−2 + we,2k−2ε, hI,k

.= y2k−1 + we,2k−1ε.

(ii) 	R/I,k > hR/I,k, for k = 1, . . . , N/2, is a sufficient condi-
tion.

These latter validation conditions can be easily checked by
straightforward computation.

4. Identification algorithms, model sets and identification
errors

The FSS(K,Be, FN, yN) summarizes the overall informa-
tion on the system to be identified, i.e. prior assumptions on
system and noise(K,Be) and information coming from exper-
imental data(FN, yN), thus describing the uncertainty about
the system to be identified. If prior assumptions are “true”,FSS
includesSo and, in the line with the robustness paradigm, con-
trol should be designed to be robust versus such an uncertainty
model set. Some results on theFSSstructure and the param-
eterization of all the unfalsified models for weekly corrupted
plants can be found, e.g., inZhou and Kimura (1995), Zhou
(1998, 2000). However,FSSis in general not represented in a
suitable form to be used by robust control design techniques,
and model sets with such a property have to be looked for. In
order to be consistent with robust control design philosophy,
model sets including the set of unfalsified systemshave to be
looked for. This is formalized by the following definition.

Definition 3 (Model set). A set of modelsM ⊆ H∞(D) is
called amodel setfor So if:

M ⊇ FSS.

In this paper, additive model sets of the following form are
considered:

M(M,W) = {M + 
 : |
(�)|�W(�), ∀� ∈ [0,2�]},
(11)

whereM is called the nominal model. In this case, the following
result is an immediate consequence of Definition 3.
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Result 6. For a given nominal modelM:

• M(M,W) is a model set forSo if and only if:

W(�)�W ∗(�,M)
.= sup

S∈FSS
|S(�) − M(�)|,

∀� ∈ [0,2�].
• M(M,W ∗) is the smallest model set forSo of the form (11),
i.e. for any model setM(M,W) it results:

M(M,W ∗) ⊆ M(M,W).

The nominal model can be obtained by some identification
algorithm, i.e. an operator�mapping the available information,
represented by the quadruple(K,Be, FN, yN), into a model
M ∈ H∞(D):

�(K,Be, FN, yN) = M.

For notational simplicity, the dependence onyN only will be
usually evidenced.
Some of the main features of an identification algorithm can

be summarized as follows.

Definition 4 (Linear/nonlinear, untuned/tuned, interpolatory
algorithm).

• An algorithm� is said to belinear if it is a linear function
of the datayN ; otherwise, it is said to benonlinear.

• An algorithm� is said to beuntunedif it does not depend
on plant and noise information, i.e. if�(K,Be, FN, yN) is
actually not dependent on the constants involved inK and
Be definitions; otherwise, it is said to betuned.

• An algorithm�I is said to beinterpolatoryif it always gives
models consistent with prior information and measured data,
i.e. if M I = �I(yN) ∈ FSS.

Given an algorithm�, the error‖So − �(yN)‖∞ cannot be
exactly known. The tightest upper bound on this errorfor given
data recordis supS∈FSS‖S − �(yN)‖∞, while for any possible
system and noiseis supS∈K sup̃eN∈Be

‖S −�(FN(S)+ ẽN )‖∞.
This motivates the definition of the following two identification
errors.

Definition 5 (Local and global identification errors).

• The local identification errorof the algorithm� and of the
identified modelM = �(yN) is

El(�) = E(M) = sup
S∈FSS

‖S − M‖∞.

• Theglobal identification errorof the algorithm� is

Eg(�) = sup
S∈K

sup
ẽN∈Be

‖S − �(FN(S) + ẽN )‖∞.

Note thatEg(�)�El(�), since the following result holds.

Result 7 (Milanese & Tempo, 1985).

Eg(�) = sup
yN

El(�(yN)).

The local errorEl(�), contrary to the global errorEg(�), is
not worst-case with respect to the noise. This fact has important
implications in optimality and convergence properties, as shown
in the next sections.
In Section 7, bounds onEg(�) for different prior assumptions

and algorithms are reported.
For a given identification algorithm�, providing the model

M = �(yN), the evaluation of local errorEl(�) is impor-
tant because it represents the tightest bound on model error
‖So − M‖∞. SinceEl(�) = sup�supS∈FSS|S(�) − M̂(�)| =
sup� W ∗(�,M), evaluation ofEl(�) can be made by comput-
ingW ∗(�,M) for a sufficiently coarse set of frequencies. The
following result shows how to computeW ∗(�,M) in the case
thatK = K

(2)
�,L.

Result 8 (Milanese & Taragna, 2002). Assume time or fre-
quency domain measurements andK = K

(2)
�,L. Letm�3 andn

be such that there exists aFIRn systemSn ∈ FSS. Then, for
given modelM:

Wn
m(�,M)�W ∗(�,M)�W

n

m(�,M),

lim
n,m→∞ W

n

m(�,M) = lim
n,m→∞ Wn

m(�,M) = W ∗(�,M),

where

W
n

m(�,M) = max
k=1,...,m

‖M(�) − vk(�)‖2 + L�n

1− �
,

Wn
m(�,M) = max

k=1,...,m
‖M(�) − tk(�)‖2,

vk(�) =
[

sin(sk) cos(sk)
sin(sk+1) cos(sk+1)

]−1

×
[ [sin(sk) cos(sk)]tk(�)

[sin(sk+1) cos(sk+1)]tk+1(�)

]
, (12)

sk = 2�k/m,

tk(�) = �(�) argmin
Sn∈FSSn

[−�1(�) sin(sk)

+ �2(�) cos(sk)]hSn ∈ R2, (13)

tk(�) = �(�) argmin
Sn∈FSSn

[−�1(�) sin(sk)

+ �2(�) cos(sk)]hSn ∈ R2, (14)

FSS
n = {Sn ∈ K

(2)
�,L : ‖(We + W̃ )−1A(yN − FNhSn

)‖∞ �ε},
FSSn = {Sn ∈ K

(2)
�,L : ‖W−1

e A(yN − FNhSn

)‖∞ �ε},

W̃ = L�n

1− �
diag(‖a1‖1, . . . , ‖al‖1) ∈ Rl×l ,

with a	 = 	th row ofA.

Note that the optimization problems (13) and (14) are linear
programs. Moreover, the value ofnas required by the result can
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always be found, provided that prior assumptions are validated,
i.e. FSSn �= ∅.
From this result it follows that

En
m(M) =̇ sup

0���2�
Wn

m(�,M)�E(M)

� sup
0���2�

W
n

m(�,M)=̇E
n

m(M),

lim
n,m→∞ E

n

m(M) = lim
n,m→∞ En

m(M) = E(M).

The computation ofW ∗(�,M) allows also one to derive, for
given nominal modelM, the smallest model set guaranteeing
to contain the Feasible Systems Set, according to Result 6.

5. Optimality properties

Algorithms minimizing the global and local identification
errors lead to the following optimality concepts.

Definition 6 (Algorithm local and global optimality).

• An algorithm�∗ is called	-optimalif for all K,Be, FN, yN :

El(�
∗) = inf

�
El(�(K,Be, FN, yN))

.= r(K,Be, FN, yN),

r(K,Be, FN, yN) is calledlocal radius of information.
• An algorithm�g is calledg-optimalif for all K,Be, FN, yN :

Eg(�
g) = inf

�
Eg(�(K,Be, FN, yN))

.= R(K,Be, FN)

R(K,Be, FN) is calledglobal radius of information.

Local optimality is a stronger optimality concept than global
optimality. In fact, if an algorithm is	-optimal, then it isg-
optimal, but the converse implication is not true.
It is also useful to define the optimality of identified model

M = �(yN) as follows:

Definition 7 (Optimal model). A modelM = �(yN) is called
optimal if for the givenK,Be, FN, yN :

E(M) = inf
M̃∈H∞(D)

E(M̃) = r(K,Be, FN, yN).

A basic result in IBC relates	-optimal algorithms, optimal
model and theH∞ Chebicheff centerMc of FSS, defined as

Mc = arg inf
M̃∈H∞(D)

sup
S∈FSS

‖S − M̃‖∞.

Result 9 (Traub, Wasilkowski, & Wo´zniakowski, 1988). If Mc

exists, then it is an optimal model and the algorithm�c(yN)=
Mc, calledcentral, is an	-optimal algorithm.

Note that central algorithm�c is g-optimal, but there exist
otherg-optimal algorithms. In particular, while�c is nonlinear,
linear g-optimal algorithms exist, as given by the following
result.

Result 10 (Marchuk & Osipenko, 1975; Milanese & Tempo,
1985). There exist linearg-optimal algorithms.

Computing central or linearg-optimal algorithms is not
known in the presentH∞ setting. This motivates the interest
in deriving algorithms having lower complexity, at the expense
of some degradation in the accuracy of the identified model
set. The following definition is introduced to give a measure of
such a degradation of the local error of a given algorithm with
respect to the minimal error obtained by a central algorithm.

Definition 8 (Algorithm deviation). The deviation dev(�) of
the algorithm� is

dev(�) = sup
yN

El(�(yN))

/
r(yN).

Note thatdev(�)�1 ∀� anddev(�c) = 1. Higher values of
dev(�) mean worse identified models when any possible set of
measurements is processed.
The following result shows that in the presentH∞ setting,

linear algorithms, though possiblyg-optimal, may give large
degradation of the local error with respect to the minimal error
obtained by a central algorithm.

Result 11(Traub et al., 1988; Kon & Tempo, 1989). No linear
algorithm with finite deviation exists.

The question arises if it is possible to derive computable al-
gorithms with finite and possibly “small” deviation. This ques-
tion is answered by the following result.

Result 12(Traub et al., 1988). For any interpolatory algorithm
�I it holds that

dev(�I)�2.

For this reason interpolatory algorithms are often calledal-
most optimal. Methods for computing interpolatory algorithms
for different prior assumptions are presented in Section 7.
A given algorithm�, by processingany possible information

K,Be, FN, yN , gives an identifiedmodelM=�(yN) for which
the ratioE(M)/r is bounded as

E(M)/r�dev(�).

However,for given informationK,Be, FN, yN , theactual ratio
E(M)/r may be significantly lower thandev(�). Then, for
given identified model, it is of interest to evaluate the actual
value of this ratio, called model optimality level.

Definition 9 (Model optimality level). The optimality level
�(M) of a modelM = �(yN) is

�(M) = E(M)/r.

Note that�(M)�1 ∀M ∈ H∞(D) and �(Mc) = 1. The
model optimality level is actually a measure of the degradation
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of the identification accuracy: the higher�(M) is, the worse is
the modelM meant to be, on the basis of the available infor-
mation.
A result on evaluation of model optimality level is available

for K = K
(2)
�,L.

Let V ⊂ R2 be a polytope. Its radiusr2 [V ] in the Euclidean
norm is defined asr2[V ]= inf

s∈R2 supv∈V ‖s −v‖2 and can be
easily computed via standard algorithms available in computa-
tional geometry literature.

Result 13 (Milanese & Taragna, 2002). Assume time or fre-
quency domain measurements andK = K

(2)
�,L. Letm�3 andn

be such that there exists aFIRn systemSn ∈ FSS. Then, for
given modelM:

�n
m(M)��(M)��n

m(M),

where

�n
m(M)

= max

{
1, En

m(M)
/[

sup
0���2�

r2[VOn
m(�)] + L�n

1− �

]}
,

�n
m(M) = E

n

m(M)/ sup
0���2�

r2[V In
m(�)]

with VOn
m(�) andV In

m(�) the convex hulls of pointsvk(�)

andtk(�), k =1, . . . , m, defined in (12) and (14), respectively.

PolytopesVOn
m(�) andV In

m(�) are outer and inner con-
vergent approximations of the value setV (�), the set in the
complex plane ofS(e−j�) for all S ∈ FSS.

6. Convergence properties

In order to investigate algorithm convergence when applied
to anyS ∈ K and anyeN ∈ Be, conditions for convergence of
the global error to zero asN → ∞ are looked for. In general,
this convergence cannot hold, unlessε → 0, as shown by the
following result.

Result 14(Traub et al., 1988).

Eg(�)� sup
S∈FSS(K,Be,FN ,0)

||S||∞ >0, ∀N .

Different kinds of algorithm convergence can be defined.

Definition 10 (Algorithm convergence and robust conver-
gence).

• An algorithm� is said to beconvergentif:

lim
ε→0

lim
N→∞ Eg(�) = 0.

• An algorithm� is said to berobustly convergentif it con-
verges regardless of a priori information.

By Definition 4, tuned algorithms are not robustly
convergent.

The following strong negative result holds for linear algo-
rithms.

Result 15 (Partington, 1992). No robustly convergent linear
algorithm exists.

This implies that any untuned linear algorithm is not conver-
gent. In particular, least squares algorithms are not convergent,
since they are linear and untuned, i.e. not dependent on prior
assumptions on system and noise.
Convergent algorithms can be obtained by interpolation, as

shown by the next result.

Result 16(Chen & Gu, 2000). Any interpolatory algorithm is
convergent.

In Section 7, interpolatory algorithms are presented for the
different prior assumptions. These algorithms are tuned and
then they are not robustly convergent.
Two questions may be of interest:

• Do there exist convergent linear algorithms?
• Do there exist robustly convergent algorithms?

The answer is affirmative for both questions, as shown in
Section 7 where convergent tuned linear and robustly conver-
gent nonlinear algorithms are presented.
In contrast to the global errorEg(�), the local errorEl(�)

may converge to zero for finite values ofε, under suitable de-
terministic uncorrelation assumptions on noise and for suitable
inputs. This may happen because the local errorEl(�), con-
trary to the global errorEg(�), is not the worst case with re-
spect to the noise, and then can account for information on its
uncorrelation properties. In particular, by suitably choosingA
andWe, the noise setBe can arbitrarily approximate the set:

B̃e =
{
eN ∈ RN : sup

�

∣∣∣∣∣
N−1∑
k=0

eke
j�k

∣∣∣∣∣N−� �ε, �>1/2

}
,

which is composed of deterministic counterparts of uncorre-
lated noise. For example, sequences of i.i.d. bounded random
variables asymptotically belong tõBe with probability 1, see,
e.g. Hakvoort and Van den Hof (1995)and Venkatesh and
Dahleh (1997). If noise in time domain experiments belongs to
this set, theFSSasymptotically shrinks to a singleton for any

, as shown by the following result.

Result 17(Venkatesh & Dahleh, 1997). Let measurements be
in time domain andeN ∈ B̃e. Then, an input sequenceu can
be found such that:

lim
N→∞ r(yN) = 0.

Looking for convergence to zero of local error for givenε
leads to the following convergence concept.
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Definition 11 (Strong convergence). An algorithm� is said to
bestrongly convergentif:

lim
N→∞ El(�) = 0.

Results 17 and 12 imply that, in case of deterministic un-
correlated noise belonging tõBe, an input sequenceu can be
found such that any central and interpolatory algorithm using
such an input is strongly convergent.

7. Identification algorithm properties

In this section, the main algorithms available in literature are
reviewed, starting from the simplest ones (linear algorithms)
and finishing with the most performing ones (nonlinear inter-
polatory algorithms). The features analyzed are convergence,
tightness in error evaluation, order of the identifiedmodel, com-
putational complexity.

7.1. Linear algorithms

The linear algorithms operate linearly on the experimental
data.Untunedlinear algorithms, based on least squares or poly-
nomial approximation techniques (see, e.g.,Parker & Bitmead,
1987), are independent of the prior information available on
system and noise and, as a consequence of Result 15, they can-
not be convergent. Indeed, their global identification error may
be divergent for finiteε (Akçay & Hjalmarsson, 1994; Parting-
ton & Mäkilä, 1995; Akçay & Ninness, 1998).
Convergenttunedlinear algorithms have been obtained based

on least squares optimization, with constraints or penalty terms
depending on plant and noise prior information (Gu & Khar-
gonekar, 1992b; Helmicki, Jacobson, & Nett, 1993; Gu, Chu,
& Kim, 1994).
The following result is obtained by minimizing least squares

with a quadratic penalty term.

Result 18 (Helmicki et al., 1993; Gu et al., 1994). Assume
So ∈ K

(1)
�,L, e

N ∈ Be with A=We=IN×N andN/2 equispaced
frequency-domain measurements. Then, the linear algorithm:

M̂(z) =
n(N)−1∑
k=0

q∗
k z

k, q∗
k = ck(y

N)

1+ (ε/L + �−n(N))2�2k

with ck(y
N) = 2

N

∑N/2
l=1 (y2l−2 + jy2l−1)(e

j4�/N )(l−1)k the in-
verse DFT coefficients ofyN , has global error which, for
N/2�n(N)>0, is bounded as:

Eg(�)�L�−n(N) + (1+ √
2)L

√
� + 1

� − 1
(ε/L + �−n(N))1/2.

If lim N→∞ n(N) = ∞, the algorithm is convergent.

The result can be extended to nonuniformly spaced
frequency-domain measurements.

Linear algorithms are simple and easy to be computed, but
have some important drawbacks. In particular, they cannot be
robustly convergent (Result 15) and do not have finite devia-
tion (Result 11), i.e. give identified models whose optimality
properties can be arbitrarily bad. In order to have robust con-
vergence or finite deviation, it is necessary to resort to more
sophisticated nonlinear algorithms.

7.2. Nonlinear “two-stage” algorithms

In order to overcome the robust convergence limitations of
linear algorithms, nonlinear untuned algorithms have been de-
rived in case of frequency-domain measurements, performing
the following “two-step” procedure:

• Stage1: A noncausal preliminary model̂M(0) ∈ L∞ is
derived through a “untuned” linear algorithm performing a
bilateral interpolation inL∞ by means of trigonometric
polynomials

M̂(0)(z) =
n−1∑

k=−n+1

wk,n ck(y
N)zk,

where{wk,n}n−1
k=0 is a weighting (orwindow) sequence inde-

pendent of prior information.
• Stage2: The identified model is chosen as the best (causal)
approximation ofM̂(0) in H∞(D), by solving the nonlinear
Nehari approximation problem

M̂(z) = argmin
M∈H∞(D)

‖M̂(0) − M‖∞.

The solution is given by Nehari’s theorem (Nehari, 1957):

M̂(z) = M̂(0)(z) − �̄

∑n−1
k=1 �n−kz

k

zn−1
∑n−1

k=1 �kzk
,

where� = [�1, . . . , �n−1]T and� = [�1, . . . ,�n−1]T are the
right and left singular vectors of the Hankel matrix associated
to the coefficientswk,n ck(y

N), k = −1,−2, . . . ,−n + 1,
and�̄ is the corresponding maximum singular value.

The two-stage algorithms proposed in the literature differ
from one another in the first step, since the approximation in
L∞ can be performed using different weighting sequences,
even symmetric with respect tok (i.e., sinc-square, triangular,
cosine, trapezoidal windows) and truncated fork�n.

Result 19 (Helmicki, Jacobson, & Nett, 1991; Gu & Khar-
gonekar, 1992a,b; Partington, 1992). AssumeSo ∈ K

(1)
�,L,

eN ∈ Be with A=We =IN×N andN/2 equispaced frequency-
domain measurements. Then, the global identification error of
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a two-stage algorithm is bounded as follows:

(i) If wk,n = sin(2k�/N)2/(2k�/N)2 for |k|<n and
wk,n = 0 for |k|�n (sinc-square window), then

Eg(�)�2

[
min

(
8L�

N(� − 1)
,
4L�2(� + 1)

N2(� − 1)2

)
+N2(L + ε)

2n�2
+ ε

]
.

(ii) If wk,n = 1− |k|
n

for |k|<n andwk,n = 0 for |k|�n (tri-
angular window), then, for anym� N+2

4

Eg(�)�2

[
ε + 2

L

�m
+ L�(1− �−m)

n(� − 1)2

]
.

(iii) If wk,n = cos( k�
2n+1) for |k|<n andwk,n = 0 for |k|�n

(cosine window), then, for anym� N+2
4

Eg(�)�2

[
L

�m
+ (� − 1)

(
ε + L

�m

)
+ �2L�(1+ �)

8n2(� − 1)3

]
.

(iv) If wk,n is a trapezoidal window defined by

wk,n =


1+ k/n −n<k < − 1,
1 0�k�m − 1,

1− k − m + 1

n
m�k�n + m − 1,

0 elsewhere,

wherem + n�N/2+ 1, then

Eg(�)�
√
2N

n
ε +

(
1+

√
2N

n

)
L

�m
.

From the above result it turns out that, to achieve robust con-
vergence, the numbernof inverse DFT samples to be computed
(and successively smoothed) varies significantly according to
the chosen window sequence. With the sinc-square window,n
must be such that limN→∞ N2/n(N)=0: this condition is met,
for example, for any choice ofn such thatn(N)=O(N3). In the
other cases, the identification error approaches 0 as 1/n, 1/n2

and
√

N/n, respectively; then, in the first two cases it is only
requested thatn → ∞, while in the latter casen can be chosen
such thatn = n(N) = O(N2). Since the order of the identified
model M̂(z) is 2n − 3, it can be well understood the benefit
obtained by suitably smoothing the inverse DFT coefficients of
data. At the same time, it can be observed the trade-off between
the rate of convergence of the identification error bound as a
function of the number of data and the magnitude of the bound
on the worst-case error of the approximation algorithm. It turns
out that, similar to what happens in classical statistical spectral
analysis, while sophisticated windows providing fast conver-
gence on the algorithm can be found, they necessarily imply
worse errors than simpler windows for a small number of data.

To summarize the positive features of “two-stage” nonlinear
algorithms, they are robustly convergent if the weighting se-
quence{wk,n} is even symmetric with respect tok, truncated
for k�n and thus independent of the prior information. Their
identification error bound andmodel order are highly dependent
on the chosen window sequence. The computational complex-
ity of these algorithms is relatively small. As main drawbacks,
their deviation is unknown and, even more relevant, the identi-
fied model may not belong to the setFSSof systems consistent
with the overall priors available on the system to be identified.

7.3. Interpolatory algorithms

These nonlinear tuned algorithms identify models belonging
to theFSS:

�I(K,Be, FN, yN) = M̂ I ∈ FSS

and they are able to interpolate the experimental data in an
approximated way, taking explicitly into account the available
prior information. From Result 12, their deviation is not greater
than 2 and for this reason they are often called “almost optimal”
or “2-optimal”. Moreover, these interpolatory algorithms are
convergent but not robustly, since they are tuned.
In general, a two-step procedure is carried out:

• Step1: Validation of prior information.
• Step2: Identification of a modelM̂ I ∈ FSSby means of

nonlinear interpolation techniques.

Result 20(Gu, Xiong, & Zhou, 1993; Chen et al., 1995). Assume
So ∈ K

(1)
�,L, e

N ∈ Be with A = We = IN×N andN/2 equis-
paced frequency-domain measurements. Then, an interpolatory
algorithm is given by the following procedure:

• Step1: Find a solution�N ∈ Be of the consistency problem
represented by the LMI (8) in Result 2.

• Step2: By means of the standard Nevanlinna–Pick’s algo-
rithm, build a functionM̂(z) ∈ K

(1)
�,L interpolatingỹN =̇ yN+

�N and use it as the identified model.

The global identification error is bounded by

Eg(�)�2ε

√
l + m

l − m
+ 2L�−(2m+1)

(
1+

√
l + m

l − m

)
,

wherel,mare arbitrary integers satisfying 0<m< l�N/2−m.

Result 21(Chen & Nett, 1995). AssumeSo ∈ K
(1)
�,L, e

N ∈ Be

with A=We =IN×N and time domain measurements. Then, an
interpolatory algorithm is given by the following procedure:

• Step1: Find a solution�N ∈ Be of the consistency problem
represented by the LMI (9) in Result 3.

• Step2: By means of the standard Carathéodory–Fejér proce-
dure, build a functionM̂(z) ∈ K

(1)
�,L interpolatingỹN =̇ yN +

�N and use it as the identified model.
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The global identification error is bounded by

Eg(�)�2

[
N−1∑
k=0

min

{
ε

k∑
i=0

|�i |, L

�k

}
+ L

�N−1(� − 1)

]
,

where{�k}N−1
k=0 are the elements of the first column ofT −1

u .

The order of the identified model is equal to the number of
dataN, except in singular cases where the order may be lower.
Under the computational point of view, these two interpola-
tory algorithms are very much burdensome when the number
of data is high. Moreover, the Pick’s matrix may easily result
to be ill-conditioned, while similar comments hold for the time
domain algorithm. In order to significantly reduce the computa-
tional complexity for the case that the model ordern is selected
to be substantially lower thanN, suboptimal algorithms have
been proposed, which are simpler but are not interpolatory and
produce identified models with a typically small quantifiable
increment in the identification error, see, e.g.,Gu (1994), Gu
and Chen (2001).

Result 22 (Milanese & Taragna, 2001). Given time or fre-
quency domain data andK = K

(2)
�,L, let n be a positive inte-

ger such that there exists aFIRn systemSn ∈ FSS. Then, for
given positive integersm andq, an interpolatory algorithm is
�no(yN)=Mno

n , whereMno
n is theFIRn model whose impulse

response is obtained as solution of the problem:

hMno
n = arg min

Sn∈FSS
‖s∗ − �∗hSn‖∞, (15)

where

s∗ =
 s∗(�̃1)

...

s∗(�̃q)

 , s∗(�) =



max
s=
[
s1
s2

]
∈VOn

m(�)

s1

max
s=
[
s1
s2

]
∈VOn

m(�)

s2

min
s=
[
s1
s2

]
∈VOn

m(�)

s1

min
s=
[
s1
s2

]
∈VOn

m(�)

s2


,

�∗ =
�∗(�̃1)

...

�∗(�̃q)

 , �∗(�) =
[
�n(�)

�n(�)

]
with �̃k ∈ [0, �] for k = 1, . . . , q; VOn

m the convex hull of
pointsvk(�), k = 1, . . . , m, defined in (12) in Result 8;�n(�)

given by the firstn columns of the matrix�(�) defined in (5).

Solution of problem (15) can be performed by linear pro-
gramming. Since�no is interpolatory, it follows from Result
12 that�(Mno

n )�2. Indeed, the actual value of�(Mno
n ) can be

evaluated from Result 13 and it can be expected to be near to 1,
since modelMno

n is derived as an approximation of the optimal
modelMc.

Result 23 (Glaum, Lin, & Zames, 1996). Given N/2 equi-
spaced frequency-domain measurements,K = K

(3)
� andA =

We =IN×N , an interpolatory algorithm is�I(yN)=Mn, where
Mn is theFIRn model whose impulse response is obtained as
solution of the problem:

hMn = arg min
Sn∈FSS max

�∈[0,�)

∣∣∣∣∣
n−1∑
k=0

khSn

k ejk�
∣∣∣∣∣

s.t.

∣∣∣∣∣
n−1∑
k=0

hSn

k ej2k�	/N − (y2	−2 + jy2	−1)

∣∣∣∣∣
�ε + �

(
1

n
+
√

�

2nN

)
, 	 ∈

[
0,

N

2
− 1

]
.

The global identification error is bounded by

Eg(�)�2ε + �

(
1

n
+ �

N
+
√

�

nN

)
.

The above polynomial minimization problem can be solved
by standard convex optimization methods.

Result 24 (Milanese et al., 2001). Given N/2 frequency-
domain data,K = K

(4)
� andA = IN×N , let n be a positive

integer such that there exists aFIRn systemSn ∈ FSS. Then,
for given positive integerq, an interpolatory algorithm is
�∗(yN) = M∗

n , whereM
∗
n is theFIRn model whose impulse

response is obtained as solution of the problem:

h∗ = arg min
Sn∈FSS

‖s∗ − �∗hSn‖∞, (16)

where

s∗ = [Re[Sno(�̃1)],Im[Sno(�̃1)], . . . ,
Re[Sno(�̃q)],
Im[Sno(�̃q)]]T,

Sno(�) = 1
2{S

∗
R(�) + S∗

R(�) + j[S∗
I (�) + S∗

I (�)]},
S∗
R/I(�) = max

k=1,...,N/2
(hR/I,k − �|� − �k|),

S
∗
R/I(�) = min

k=1,...,N/2
(hR/I,k + �|� − �k|),

�∗ =
�n(�̃1)

...

�n(�̃q)

 ,

with �̃k ∈ [0, �] for k = 1, . . . , q; hR/I,k andhR/I,k defined as
in Result 5;�n(�) defined as in Result 22.
The local identification error is bounded by

El(�)� 1

2
sup

0���2�

√
[S∗

R(�) − S∗
R(�)]2 + [S∗

I (�) − S∗
I (�)]2

�
√
2El(�).

Solution of problem (16) can be obtained by linear
programming.
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8. Discussion

Some main features of the presented results are now dis-
cussed from a user point of view.
The main ingredients on which the different results are built

are as follows:

• type of experiment: time domain (Eqs. (1)–(2)), frequency
domain (Eqs. (3)–(6));

• type of algorithm: linear or nonlinear, tuned or untuned, in-
terpolatory (Definition 4);

• type of prior information on plant, i.e., type of subsetK such
thatSo ∈ K;

• type of prior information on noise. In this survey, for the rea-
sons discussed in Section 1, methods assuming only point-
wise bounded noise as described by Eq. (7) are presented.
Thus, the main distinction between the methods is their abil-
ity in dealing with A �= IN×N , allowing one to account
for information on deterministic uncorrelation properties of
noise.

The main features on which the “goodness” of the methods is
evaluated are as follows:

• convergence: simple, robust (Definition 10) or strong (Defi-
nition 11);

• “a priori ” optimality: measured by the algorithm deviation
dev(�) (Definition 8), which gives the maximal degradation
for any possible set of measurements of the local identifica-
tion error guaranteed by the algorithm� with respect to the
minimal error achievable by an optimal algorithm;

• tightness in error evaluation: the identification algorithm�,
after processing the available datayN , gives a modelM =
�(yN) and the local errorEl(�) represents the tightest bound
on the model error||So − M||∞. If this information is used
e.g. for robust control design, the tighter the evaluation of
El(�) is, the less conservative is the design;

• frequency shaping of uncertainty: many methods provide
only upper bounds on the identification errorEg(�)�E.
This way, model sets of the form (11) withW(�)=E, ∀� ∈
[0,2�], are obtained. According to Result 6, methods able
to obtain tight evaluation ofW ∗(�,M) allow one to deliver
smaller model sets, which in turn, if used for robust control,
give rise to less conservative design;

• “a posteriori” optimality: measured by the model optimality
level �(M) (Definition 9), which gives the actual value of
the identification error degradation of the modelM identified
using the available datayN with respect to the optimal model;

• computational complexity.

Let us now summarize the main properties of the different types
of algorithms.
Linear algorithms require low computational effort, allowing

one to work with very large number of data (up to several
thousands), but they are not robustly convergent (Result 15),
i.e., in order to guarantee convergence they have to be tuned
to the prior assumptions on the system to be identified and on

noise (Definition 4).A significant drawback of linear algorithms
is that they have no finite deviation (Result 11), i.e., the local
identification error of the identified models may be arbitrarily
larger than the minimal possible one.
Nonlinear two-stage algorithms have been devised, which

are robustly convergent, i.e., the convergence is guaranteed
for any value of the constants appearing in the prior assump-
tions on the system to be identified and on noise (Result 19).
Their computational effort is still relatively low, since they re-
quire, in addition to the computation of a linear untuned al-
gorithm, the solution of Nehari problem. Thus, two-stage al-
gorithms can process quite large amount of data (up to some
thousands). No optimality property of two-stage algorithms is
known. In particular, no bound on their deviation is known, so
that it is unknown how far from being optimal the identified
models are.
For both types of algorithms, linear and two-stage, bounds

Eg(�)�E on their global error are provided assuming that

So ∈ K
(1)
�,L andA=IN×N in noise assumption (7). These bounds

are useful to prove their convergence properties. However, their
tightness is unknown and, in view of Result 7, they cannot
be tight bounds on the local errorEl(�). Thus, model sets
M(M,E)={M +
 : |
(�)|�E, ∀� ∈ [0,2�]} derived from
these bounds may be largely conservative.
Nonlinear interpolatory algorithms are convergent (Result

16), but not robustly, since they are tuned to the prior assump-
tions on the system to be identified and on noise. However, in
case of deterministic uncorrelated noise, they are strongly con-
vergent, since from Results 17 and 12 it follows that the local
error E(M) of identified models converges to zero for finite
values ofε. Another important property of interpolatory algo-
rithms is that their deviation is bounded by 2 (Result 12), thus
guaranteeing that also the optimality level of identified models
is not greater than 2. For this reason, interpolatory algorithms
are often indicated as almost-optimal, since deviation 1 is guar-
anteed by optimal algorithms.
In conclusion, interpolatory algorithms have excellent con-

vergence and optimality features. Their properties in relation
to the other features (computational complexity, tightness in
error evaluation, frequency shaping, “a posteriori” optimality)
are highly dependent on the assumed setK:

• computational complexity
◦ If K = K

(1)
�,L, algorithms based on Nevanlinna–Pick and

Carathéodory–Fejér interpolation are used for both steps,
validation (Results 2 and 3) and algorithm computation
(Results 20 and 21). Computational problems may arise
in processing more than moderate number of data (some
decades).

◦ If K = K
(2)
�,L, linear programming optimization has to be

performed both in validation (Result 4) and algorithm
computation (Result 22). The required computational ef-
fort allows to process up to several hundreds of data.

◦ If K=K
(3)
� , convex optimization methods are used (Result

23). Also in this case several hundreds of data may be
processed with a reasonable computational effort.
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Table 1

Algorithm Convergence “A priori” Error Frequency “A posteriori” Computational
optimality tightness shaping optimality complexity

Linear “untuned” No No No No No Low
Linear “tuned” Simple No No No No Low
Nonlinear “two-stage” Robust No No No No Low
Nonlinear “interpolatory”

with K = K
(1)
�,L Simple/stronga Almost No No No High

with K = K
(2)
�,L Simple/stronga Almost Yes Yes Yes Medium

with K = K
(3)
� Simple/stronga Almost No No No Medium

with K = K
(4)
� Simple/stronga Almost

√
2 No No Low

aIf deterministically uncorrelated noise is assumed.

◦ If K =K
(4)
� , the validation is computationally trivial (Re-

sult 5) and the algorithm computation requires the solution
of one linear programming problem (Result 24). Then,
very large number of data (up to several thousands) can
be processed.

• tightness in error evaluation
◦ If K = K

(1)
�,L, only boundsEg(�)�E on their global er-

ror are provided (Results 20 and 21). Their tightness is
unknown and, in view of Result 7, they cannot be tight
bounds on the local errorEl(�). Moreover, these bounds
do not account for possible deterministic uncorrelation in-
formation on noise.

◦ If K =K
(2)
�,L, the errorE(M) of the modelM identified by

the interpolatory algorithm of Result 22 can be evaluated
as tightly as desired by means of Result 8, possibly taking
into account noise uncorrelation properties.

◦ If K=K
(3)
� , only a boundEg(�)�E on the global error is

provided (Result 23). Possible deterministic uncorrelation
information on noise is not accounted for.

◦ If K=K
(4)
� , an upper bound on the local error is provided,

whose overbounding is not greater than
√
2 (Result 24).

Also in this case, possible uncorrelation information on
noise is not accounted for.

• frequency shaping of uncertainty
Methods for tight evaluation of the frequency shaping of
uncertainty of the identified model are available only for the
caseK = K

(2)
�,L (Result 8 ).

• “a posteriori” optimality
Methods for evaluating the optimality level of the identified
model are available only for the caseK =K

(2)
�,L (Result 13).

Table 1 summarizes the main results here presented and
discussed.
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