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Abstract

Robustness had become in past years a central issue in system and control theory, focusing the attention of researchers from the stu
a single model to the investigation of a set of models, described by a set of perturbations of a “nominal” model. Such a set, often indicat
as an uncertainty model set or model set for short, has to be suitably constructed to describe the inherent uncertainty about the system t
consideration and to be used for analysis and design purpHsgsdentification methods deliver uncertainty model sets in a suitable form to
be used by well-established robust design techniques, basBd.0or 1 optimization methods. The literature @, identification is now very
extensive. In this paper, some of the most relevant contributions related to assumption validation, evaluation of bounds on unmodeled dynan
convergence analysis and optimality properties of linear, two-stage and interpolatory algorithms are surveyed from a deterministic point of vie
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction Consider in particular the control design problem. Typically,
the system to be controlled is not completely known and a
A quite general problem appearing in many scientific andcontrol law has to be designed, able to drive the plant to reach,
technical fields is to make some kind of inference on a dynamif possible, given performance specifications. The classical ap-
ical systemS?, starting from some general information on it proach consists in building a mathematical model of the plant,
and from a finite number of noisy measurements. Typical exen the basis of the available information (priors and measure-
amples of inference are smoothing, filtering, prediction, controments), and then designing a control that meets the desired
design, decision making, fault detection, diagnosis, etc. Theerformance specifications for the identified model. However,
usual approach is to estimate a modélof S° and to make this way it is not taken into account that any identified model
the inference onM. Due to the unavoidable discrepancies be-is only an approximation of the actual system. Indeed, the per-
tween the identified modéll and the actual systess?, itis of ~ formances actually achievable on the plant may be very poor,
paramount importance to evaluate the inference error, i.e. th&ccording to the size of the modeling error, and even the closed
error in making inference oll instead ofS°. loop stability may be missed. In order to face these problems,
robustness had become in past years a central issue in system
and control theory, focusing the attention of the researchers
?hispaper was not presented at any IFAC meeting. This paper was reconﬁom the study of a single moda to_th? Investigation .Of a
mended for publication in reviewed form by Associate Editor Brett NinnessS€t Of models.Z. Such a set, often indicated ascertainty
under the direction of Editor Manfred Morari. This research was supportednodel sebr model set for short, has to be suitably constructed
in part by funds of Ministero dellUniversita e della Ricerca Scientifica e to describe the inherent uncertainty about the system under

Tecnologica under the Project “Robustness and optimization techniques f‘lfonsideration and to be used for analysis and design purposes
control of uncertain systems”. '

* Corresponding author. Typlcall_y, model sets are (_jescrlbed by a set of perturbauons of
E-mail addressesmario.milanese@polito.iM. Milanese), a “nominal” model. Thus, in the control problem, the inference
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predicted on the nominal model and those actually achievablenportant issues are not reviewed as well, such as the struc-
on the real system. Since the real system is not known, theire of unfalsified models (see, e.@hou & Kimura, 1995;
actually achievable performances are unknown and then thoghou, 1998, 2000 the sample complexity (see, e.garrison,
guaranteed for all systems belonging to the uncertainty modéNard, & Gamble, 1996; Chen & Gu, 2002he probabilistic
set are used instead. and mixed probabilistic—deterministic approaches to model set
Since data are corrupted by noise and provide only limiteddentification (see, e.gGoodwin, Gevers, & Ninness, 1992; de
information, no finite bound on the inference error can be deVries & Van den Hof, 1995; Hakvoort & Van den Hof, 1997;
rived if no prior assumption o and on noise is made. In Milanese & Taragna, 1999; Ljung, 1999; Reinelt, Garulli, &
particular, some information of° is required, e.g. by assum- Ljung, 2003, the derivation of reduced order model sets (see,
ing that S° belongs to some subskt of dynamical systems. e.g.,Zhou & Kimura, 1995; Beck, Doyle, & Glover, 1996;
Different theories have been developed, according to differenlikuya & Kimura, 1998, 1999; Andersson, Rantzer, & Beck,
assumptions on the sitand the noise. 1999, the experiment design, the input selection, the presence
Classical statistical identification theory gives deep and exef outliers (Makila & Partington, 200 mixed time-frequency
tensive results for the case thatis a set of parametric mod- measurements. Moreover, only pointwise bounds on errors are
els M(p), p € R?, and that noise is stochastic with known considered, while other classes of bounded noisefg.gr. £1
p.d.f., possibly filtered by a parametric noise model. As a matbounded noise, have been investigated. Also, we are aware that
ter of fact, in most practical applications there existspfo  w.p.1 we have missed to reference some important contribution,
such thatS’ = M (p°) and the problem arises of considering and we apologize in advance with the authors. Finally, it must
that only approximated models can be estimated and that tHee remarked that some of the results reported in the paper are
effects of unmodeled dynamics have to be accounted for. ThispecificH,, instances of other more general referenced results.
appears to be a formidable problem. Some results are avail-
a_lble in statistical identifi(_:ation an_d Iearning. literature, esseNs ok and experimental information
tially related to asymptotic analysis, see, elgung and Yuan
cvaluaion of the dentifcation acsuracy wih a e nuber_ " Ui section, the main concepts of St identiicaion
of samples is of great importance. Set membership (SM) iderg - |ntr9duced: Ca'lusaI., discrete-time, smgle—lnput s!ngle-
tification methods have been de\./eloped in the last 20 year0 ytput, linear tlme-lnvarlan_tﬂz BIBO stable, possu_bly dis-
. . : - Fibuted parameter, dynamical systems are considered. Any
in order 1o de?' with unmode_led dynamlcs_; and finite SaMgch systensis uniquely determined by its impulse response
ples, see, e.gMilanese and Vicino (199165mith and Dahleh BS = (100 e : )
Ll . = {hy}72 o, Whose power-series representation of the trans
(1994) Makila, Partington, and Gustafsson (1998)nness and . i o 1S k
Goodwin (1995) Milanese, Norton, Piet-Lahanier, and Wal- €F function $(z) = 2i=ohyz" is an element of the Hardy
ter (1996) Partington (1997)Giarré, Milanese, and Taragna Spaces’ (D) defined as
(1997) Garulli, Tesi, and Vicino (1999)Xhen and Gu (2000)

and the references therein. H oo (D) = {f : D — C|f analytic inD and
H, identification, where the modeling error is measured by

the H,, norm, is among the most investigated SM methods in 1 flloo = SUP| £ (2)] < oo} ,

the literature. IndeedH,, identification methods deliver un- 2eD

certainty model sets in a suitable form to be used by well-
established robust design techniques, base# gnor i opti-  WhereD = {z € C : |z| < 1} is the open unit disk. Note that
mization methods. The literature di,, identification is now S(z) as defined here merely denotes the standarensform
very extensive, considering time and/or frequency domain meéef 15 evaluated at 2.
surements and under different prior assumptions. In this paper, Leét S € # (D) be the actual plant to be identified us-
some of the most relevant contributions related to assumptioilg both experimental information and prior information (or
validation, evaluation of bounds on unmodeled dynamics, conassumptions).
vergence analysis and optimality properties are surveyed from
a deterministic point of view. 2.1. Experimental information

Needless to say, any overview paper reflects the authors’ out-
look on the topic, and this paper is not an exception. Moreover, The noisy measurements are represented as
it is not the authors’ ambition to provide a complete coverage
of the literature, due to space limitations and uniformity of ex-y» = Fy (5°) + ¢V,
position. In particular, for model set validation results under
both deterministic and stochastic frameworks, closely relatesvhere y = [yo... yv_1]1" € R" is a known vector depend-
to the assumption validation problem investigated in this paing on the actual measurements; is a known operator called
per, the interested reader can refer, e.g.Stoith and Doyle “information operator” indicating how the measurements de-
(1992) Zhou and Kimura (1993)Poolla, Khargonekar, Tikku, pend ons?, ande” € R is an unknown vector representing
Krause, and Nagpal (1994Chen (1997)Zhou (2001) Zhou, the measurement noise. The following experimental settings
Wang, and Sun (2002and the references cited there. Otherare considered.
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e Time domain measurements bf samples of the output  Result 1.
of the systems?, initially at rest, fed by a known one-sided @ @
inputu (1 =0 for £ <0, ug # 0): 0] K,1 CK oy,

¢ (ii) K( c K9 fory = (pf’i)z,
= nlu , £=0,...,N—1. 1
Ve kZ;J k Ue—k + ey (1) (i) K§3) c k@,
In this case, the information operator is given By (S) = It has to be pointed out that the computational complexity
FxhS, where of the assumption validation and derivation of almost optimal
Moo algorithms is highly dependent on the assumed suksén
Fy=[T, Oyxec]€®R (2)  fact, as shown in Sections 3 and 7 and discussed in Section

8, the choice oK has a direct effect on the number of data

NXN ; i i
?”d Tta E :}:] '? thet IoX,ver triangular ToTeplltz MatX  that can be reasonably processed and on the tightness of the
ormed by the input vectar™ = [ug ... uy-1l". identified model sets.

e Measurements of real and |mag|nary part of the complex-

valued samples of the system frequency respdifsey), 2 3. Prior information on noise

k=1,...,N/2

Y22 = Re(S” (wn) + e2—2, Ve Bo={e" =Teo---en-11"T € RY 1 | AV <o),

yak—1=3IM(S’(wg)) + ezx—1. 3) )

In this case, the information operator is given By (S) = where

Fyh®, where 1A% = 1WA lloo = | max g l(AZ™)l,

_ T L T T N x 00

Fy =12 (o) Qonp] €N ' ) A € RN is a given matrix of raniy andW, =diag(w,.o, - - -
Q1(w) Re(P(@) ] _ quzxoo wey—1) € R is a given weighting matrix witho, ; > 0 Vk.

Qo) = Q) | = | ImP(w) € M, ®) By taking A = W, = Iy «n, Such an assumption accommo-

dates for constant magnitude bound on nojgg:<e Vk. By
P(w)=[1 d° &2 ...] eC*™®, (6)  suitably choosing¥.,, it is possible to consider noise bounds

dependent ork: |ex| <w, ke Yk, to account e.g. for relative

¢ Mixed time and frequency domain measurements, consistingheasurement errors. By suitably choosigit is possible to
of both (1) and (3), can be considered as well. In such &ccount for information on deterministic uncorrelation proper-

case, the information operator can be obtained by stackinges of the noise, see, e.gdakvoort and Van den Hof (1995)

together the information operators (2) and (4). Paganini (1996)Venkatesh and Dahleh (1997)
2.2. Prior information on plants® 3. Validation of prior assumptions
Assumption onS? is typically given asS® € K C # (D), As typical in any identification theory, the problem of check-

whereK is a nonfinitely parametrized subset of dynamical sysing the validity of prior assumptions arises. The only thing that
tems. The following subset§ investigated in the literature are can be actually done is to check if prior assumptions are in-

considered in the paper: validated by the data, evaluating if no system exists consistent
with data and assumptions. To this end it is useful to consider
(1) Kj, = {S € #oe(D) : sURp IS <L) the Feasible Systems Set, often calledalsified systems set

i.e. the set of all systems consistent with prior information and

with L >0, p>1andD, = {z € C : [z|<p} the closed measured data.

disk of radiusp.

(2) - . .
(2) K, =1{S € #oo(D) : IR |<Lp~*, Vk=0} Definition 1 (Feasible Systems $et
W|thL>0andp>1 v
(3) K2 = (S € # (D) : supp| BE| <), FSSK, #e. Fy. y7)
- N SN SN g
4) K(4) " (S € Ho(D) : SUFbelon]|dSR/l(w)|< ) {SekK:y Fn(S)+e", eV € A,}.
where the notation Sr(w) = WelS(e )] and Thus, prior assumptions are invalidateB8Sis empty. How-
Si(w) = IM[S(e71?)]isused. The notatiof)g , indicates ~ ever, it is usual to introduce the concept of prior assumption
both (-)g and(-),. validation as consistency with the measured data,ASSis

not empty.
The following result, derived by standard properties of analytic
functions, may prove useful to understand the relations amonDBefinition 2 (Validation of prior assumptiors Prior assump-
these sets. tions are consideredalidatedif FSS£ (.
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Note that the fact that the prior assumptions are consisterttii) ¢*<e is a necessary and sufficient condition for the case
with the present data does not exclude that they may be inval-  of time domain data, ifi > N is chosen.
idated by future data.
The following results show how to validate different prior ~Note that problem (10) can be solved by linear program-
assumptions. ming techniques. By choosing sufficiently large, the “gap”
between sufficient and necessary conditions can be made arbi-
Result 2 (Chen, Nett, & Fan, 1992, 1995Given N/2 trarily small.
frequency-domain measurements, the prior assumptiéns
Kﬁli andeV € %, with A = W, = Iy are validated if and Result 5 (Mllane_se, Novara, & Taragna, _2_0()).1G|ven N/2
frequency-domain measurements, conditions for validating

only if there is a vecton e 4, such that i ) @ )
prior assumptions” € K, ande € B, with A=Iyy are:

_ -1 _71-1p _ poH
[ i 0 L™(Dy — Dy) } <0, @) () érpx=hgy fork=1,...,N/2,is a necessary condi-
—L7(Dy — Dy) -0 tion, where
where Dy=diag{yx 2 + jya_1}r’2), Dy=diag({ny_» SRILK= lmm (hry11 + 7l — ox|),
. N/2 . 1 : Aok
+ Jna-1hzy) and Q=li7=z1 with 2 = e, for hp i = Y2k—2 — We,2k—28, Ny = Yoa—1 — We, 218,

il k=1...,NJ2.

, _ , hRk = Yok—2 + We2k—28,  hik = yoh—1+ We 21
Result 3(Chen & Nett, 1995 GivenN time-domain measure- _ o _
ments, the prior assumptior®s ¢ K% ande” e #, with () SRk >lg) i fOrk=1..... N/2,is a sufficient condi-
A=W, = Iyyy are validated if andﬂonly if there is a vector tion.

N e %, such that o » .
These latter validation conditions can be easily checked by

T straightforward computation.
[_TJD,EE, —(Tyz— Ty) ] <0 ©) 9 p
—Iy =Ty —L°D 4. Identification algorithms, model sets and identification

. . Ne1 . errors
with D,=diagd,p,...,p"") and T,, T, and T, given

by the lower triangular Toeplitz matrices associated with The FSSK, %,, Fy
e ’

Yo N i y") summarizes the overall informa-
, vy andn®, respectively.

tion on the system to be identified, i.e. prior assumptions on
o (1) system and noisek , 4.) and information coming from exper-
These two validation results fok = K are based jmental data(Fy, yV), thus describing the uncertainty about
on two different interpolation techniques, Nevanlmna—Pmkthe system to be identified. If prior assumptions are “tr&S
(see, e.g.Ball, Gohberg, & Rodman, 199@nd Carathéodory— jncludess® and, in the line with the robustness paradigm, con-
Fejér (see, e.gRosenblum & Rovnyak, 1985respectively. o] should be designed to be robust versus such an uncertainty
The interpolation conditions are converted into the LMI prob-model set. Some results on tE&Sstructure and the param-
lems (8) and (9), which appear to be computationally moresterization of all the unfalsified models for weekly corrupted

efficient. o . plants can be found, e.g., thou and Kimura (1995)Zhou
SLetSS" be tSheFIRn system with impulse response” = (1998, 2000) However,FSSis in general not represented in a
{hg: by, by 1,0, suitable form to be used by robust control design techniques,

and model sets with such a property have to be looked for. In
Result 4(Milanese & Taragna, 2000 Given time or frequency  order to be consistent with robust control design philosophy,
domain measurements, lebe a given positive integer. Condi- model sets including the set of unfalsified systeme to be
tions for validating prior assumptior$s’ € K( ande™ € .  looked for. This is formalized by the following definition.
are as follows:

_ ) o N _ _ Definition 3 (Model se}l. A set of models# C # (D) is
(i) e*<e is a sufficient condition, being* solution of the  3jled amodel sefor S° if:

problem:
M D FSS
& = min g. (10) ) . i
. S"eK(z) In this paper, additive model sets of the following form are
I1AG —FNhén)HWe <é. considered:
MM, W) ={M+A4:]4(w)|<W(w), Vo el0,2nr]},
(i)) e*<e + exllW,  A|l0o.00 IS @ Necessary condition, with (11)

_ Lp" —-1 o ) N-1 . . . .
en = 1=, and [W, Allwco = Ma%<i<i-12 k=g  whereM is called the nominal model. In this case, the following

|(We‘1A),»k|. result is an immediate consequence of Definition 3.
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Result 6. For a given nominal modeV!: Result 7 (Milanese & Tempo, 1985
e .//(M, W) is a model set fos? if and only if: Eg(d) = sup Ei(p(y™)).
y

> W = - ,
W@y =W M s?.igs's(‘“) M@ The local errorE; (¢), contrary to the global erraE, (¢), is

Vo € [0, 2], not worst-case with respect to the noise. This fact has important
implications in optimality and convergence properties, as shown

e .//(M, W¥) is the smallest model set f6f of the form (11),  in the next sections.

i.e. for any model set# (M, W) it results: In Section 7, bounds oA, (¢) for different prior assumptions
and algorithms are reported.
MM, W) C (M, W). For a given identification algorithrm, providing the model

M = ¢(yV), the evaluation of local erroE;(¢) is impor-
The nominal model can be obtained by some identificatiorfant because it represents the tightest bound on model error
algorithm, i.e. an operataf mapping the available information, 11S° — M |lec. Since E;(¢) = SUR,SURrss|S(@) — M(w)| =
represented by the quadrupl&, 4., Fy, y"), into a model  sup, W*(w, M), evaluation ofE;(¢) can be made by comput-

M € # o (D): ing W*(w, M) for a sufficiently coarse set of frequencies. The
following result shows how to comput®*(w, M) in the case
(K, Be, Fn, yN) =M. thatk = K ).
For notational simplicity, the dependence ot only will be Result 8 (Milanese & Taragna, 2002 Assume time or fre-
usually evidenced. quency domain measurements ang= K(z) Letm >3 andn
Some of the main features of an identification algorithm carnye gych that there existskiR, systemS” € FSS Then, for
be summarized as follows. given modelM:

Definition 4 (Linear/nonlinear, untuned/tuned, interpolatory Wi, (@, M) <W*(w, M) <W,, (0, M),
algorithmy. im W (o.M)= lm W (0, M) =W*(w, M),
n,m—oo

n,m—o0

e An algorithm ¢ is said to bdinear if it is a linear function
of the datay”'; otherwise, it is said to baonlinear.

e An algorithm ¢ is said to beuntunedif it does not depend 7 (0, M) = max 1M () — Te() 12 +
on plant and noise information, i.e. ff(K, %,, Fy, y") is mET T k=1, 1—
actually not dependent on the constants involvediand — yn (. 1/ max M(w) — ¢
A, definitions; otherwise, it is said to kaned Won (. M) = k=1,..., I1M(@) = (@) ll2,

e An algorithm¢' is said to benterpolatoryif it always gives ) 1
models conS|stent with prior information and measured datagy () = [ Sin(se)  COS(sk) }
e if M' =¢'(yV) e FSS Sm(Sk+'1) COS(sk+1) B

" [ [sin(si)  cosls) k(o) } (12)

[sin(sx+1)  COS(sk+1)fkt1(w)
s = 2nk/m,

where

n

Given an algorithmp, the error||S° — ¢(yV) |l cannot be
exactly known. The tightest upper bound on this efoorgiven
data recordis supycrsdlS — ¢(y)llo, While for any possible
system and noiss sUycx SURv .z, IS — P(Fn(S) +EV)lloo. k(@) = Q) argmin [~ () Sin(sk)

This motivates the definition of the following two identification s1cFSS
errors. + Qa(w) cossp)1h € K2, (13)
t =Q argmin [—Q sin
Definition 5 (Local and global identification errojs k(@) (@) S,lengs [=€a(@) sintse)
¢ Thelocal identification errorof the algorithm¢ and of the + Qo(w) cosls)1hS € K2, (14)
. o N o N )
identified madel = $G) Is FSS = (8" € K (W + W) AGY — Evi)llo<e),
Eig)=EM) = Sup 1S = Mlleo- FSS = (5" e K7} : IW M AGY = Fyh™)llwo <e),
e Theglobal identification errorof the algorithme is W = 1Lp" diag(laxll1, . .., lalln) € K>,
—p
Eq(¢p) =sup sup [|S — ¢(Fy(S) + M lo- with a, = £th row of A.

SeK ¢Ney,
Note that the optimization problems (13) and (14) are linear
Note thatE, (¢) > E;(¢), since the following result holds.  programs. Moreover, the value wfs required by the result can
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always be found, provided that prior assumptions are validatedResult 10 (Marchuk & Osipenko, 1975; Milanese & Tempo,
i.e.ESS # 0. 1989. There exist lineag-optimal algorithms.
From this result it follows that

E"(M)= sup W' (o, M)<E(M) Computing central or lineag-optimal algorithms is not

0<w<2n known in the presenH,, setting. This motivates the interest
< sup W' (w. M)y=E" (M), in deriving algorithms having lower complexity, at the expense
ogmgpzn m( ) m(M) of some degradation in the accuracy of the identified model
_ — _ set. The following definition is introduced to give a measure of
im E,(M) = lim_ E, (M) = E(M). such a degradation of the local error of a given algorithm with

respect to the minimal error obtained by a central algorithm.
The computation oW *(w, M) allows also one to derive, for

given nominal modeM, the smallest model set guaranteeing pefinition 8 (Algorithm deviatiof. The deviation deyp) of
to contain the Feasible Systems Set, according to Result 6. the algorithm¢ is

5. Optimality properties
dev¢) = sup Ei(9(y")) [ r(™).
Algorithms minimizing the global and local identification g

errors lead to the following optimality concepts. Note thatdeu$) >1 V¢ anddev(¢®) = 1. Higher values of

dev(¢) mean worse identified models when any possible set of
measurements is processed.

The following result shows that in the presdfit, setting,
linear algorithms, though possibly-optimal, may give large
Ej(¢*) = inf Ej(¢(K, Be, Fy, y™)) degradation of the local error with respect to the minimal error

¢ obtained by a central algorithm.

Definition 6 (Algorithm local and global optimaliy

e An algorithm¢* is called¢-optimalif for all K, ., Fy, yV:

ir(Ka '%67 FN? yN)u
Result 11(Traub et al., 1988; Kon & Tempo, 1989No linear

r(K, %, Fy, y") is calledlocal radius of information algorithm with finite deviation exists.

e Analgorithm¢? is calledg-optimalif for all K, %., Fy, yV:

E,(¢%) =inf Eg(¢(K, Be. Fy.y™)) = R(K. Be. Fy) The question arises if it is possible to derive computable al-
o gorithms with finite and possibly “small” deviation. This ques-

R(K, %., Fy) is calledglobal radius of information tion is answered by the following result.

Result 12(Traub et al., 1988 For any interpolatory algorithm

Local optimality is a stronger optimality concept than global "',
P y ger op y P ; ¢' it holds that

optimality. In fact, if an algorithm ig-optimal, then it isg-

optimal, but the converse implication is not true. de\(¢|) <2.
It is also useful to define the optimality of identified model
— (N . . . :
M = $(y") as follows: For this reason interpolatory algorithms are often cadled

most optimalMethods for computing interpolatory algorithms
for different prior assumptions are presented in Section 7.
A given algorithm¢, by processingny possible information

Definition 7 (Optimal modé)l. A model M = ¢(y") is called
optimalif for the givenk, 4., Fx, yV:

EM)= _inf  EGI) =r(K, B, Fy, yV). K. Be, Fy, N, gives an identified model =¢(y") for which
MeA o (D) the ratioE(M)/r is bounded as

A basic result in IBC relateg-optimal algorithms, optimal  £(M)/r <de\¢).

model and thed,, Chebicheff centeM® of FSS defined as . . . ] .
& S Howeverfor given informationk , %,., Fy, y" , theactual ratio

MC=arg _inf  sup |IS— M| E(M)/r may be significantly lower thadev(¢). Then, for
MeA (D) seFSS given identified model, it is of interest to evaluate the actual

Result 9 (Traub, Wasilkowski, & Wofiakowski, 1088 If M¢ value of this ratio, called model optimality level.

exists, then it is an optimal model and the algorittfity”) = pefinition 9 (Model optimality level The optimality level
M€, calledcentral is an¢-optimal algorithm. 2(M) of a modelM = ¢p(yV) is

Note that central algorithrp® is g-optimal, but there exist «(M) = E(M)/r.
otherg-optimal algorithms. In particular, whilé® is nonlinear,
linear g-optimal algorithms exist, as given by the following Note thata(M)>1VM € # (D) and a(M® = 1. The
result. model optimality level is actually a measure of the degradation
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of the identification accuracy: the highefM) is, the worse is The following strong negative result holds for linear algo-
the modelM meant to be, on the basis of the available infor-rithms.

mation.
A result on evaluation of model optimality level is available Result 15 (Partington, 1992 No robustly convergent linear
for K = K,§2>L algorithm exists.

Let V c %2 be a polytope. Its radius [V] in the Euclidean
norm is defined ag[V]= i”fxemz sup,cy IIs —v|l2 and can be
easily computed via standard algorithms available in comput
tional geometry literature.

This implies that any untuned linear algorithm is not conver-
gent. In particular, least squares algorithms are not convergent,
since they are linear and untuned, i.e. not dependent on prior
assumptions on system and noise.

Result 13 (Milanese & Taragna, 2002 Assume time or fre- Convergent algorithms can be obtained by interpolation, as
quency domain measurements aia= K(Z) Letm >3 andn shown by the next result.

be such that there existsFR, systemS" € FSS Then, for

given modelM: Result 16(Chen & Gu, 200D Any interpolatory algorithm is

convergent.
%y (M) <o (M) <70 (M),

In Section 7, interpolatory algorithms are presented for the
where different prior assumptions. These algorithms are tuned and
o (M) then they are not robustly convergent.

Lp" Two questions may be of interest:
= max{ 1ENM)/ [ sup  r2[VOL(w)]+ “ ,
Osos2n 1- e Do there exist convergent linear algorithms?

— ' ' 2
7 (M) = E;(M)/ sup  ra[VI" ()] e Do there exist robustly convergent algorithms?

0<w<2n . . . . .
The answer is affirmative for both questions, as shown in

with V Oy, (w) and VI, (w) the convex hulls of point$;(w)  Section 7 where convergent tuned linear and robustly conver-
andz (w), k=1, ..., m, defined in (12) and (14), respectively. gent nonlinear algorithms are presented.
In contrast to the global erraE,(¢), the local errork; (¢)
PolytopesV O}, (w) and V I}, (w) are outer and inner con- may converge to zero for finite values afunder suitable de-
vergent apprOX|mat|o_ns of the value Sétw), the set in the  terministic uncorrelation assumptions on noise and for suitable

complex plane ofs(e”)) for all § € FSS inputs. This may happen because the local eBakp), con-
) trary to the global erro,(¢), is not the worst case with re-
6. Convergence properties spect to the noise, and then can account for information on its

uncorrelation properties. In particular, by suitably choosig

In order to |nvest|gate algorithm convergence when applleqde the noise set, can arbitrarily approximate the set:
to anyS € K and anye" e 4,, conditions for convergence of

the global error to zero a8 — oo are looked for. In general,

i N-1
’;g:lsé)\?vti):vergence cannot hold, unless> 0, as shown by the §e ) R sup Z e d| NT<s os 12l
g result. o | &

Result 14(Traub et al., 198
( B which is composed of deterministic counterparts of uncorre-

E¢(¢) = sup [1Slloc >0, VN. lated noise. For example, sequences of i.i.d. bounded random
$eFSSK, #..Fy.0) variables asymptotically belong t8, with probability 1, see,

e.g. Hakvoort and Van den Hof (1995nd Venkatesh and

Dahleh (1997)If noise in time domain experiments belongs to

this set, theFSSasymptotically shrinks to a singleton for any

¢, as shown by the following result.

Different kinds of algorithm convergence can be defined.

Definition 10 (Algorithm convergence and robust conver-

gence.

« An algorithm ¢ is said to beconvergentf: Re§ult 17 (Venkatesh & Dahleh, 1997 L.et measurements be
_ . in time domain and" e %,. Then, an input sequenececan
lim lim E,(¢)=0. be found such that:
e—>0 N—oo

e An algorithm ¢ is said to berobustly convergenif it con- ) N
verges regardless of a priori information. Nlinoo r(y7)=0

By Definition 4, tuned algorithms are not robustly Looking for convergence to zero of local error for given
convergent. leads to the following convergence concept.
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Definition 11 (Strong convergenge An algorithmd is said to Linear algorithms are simple and easy to be computed, but

be strongly convergeni: have some important drawbacks. In particular, they cannot be
robustly convergent (Result 15) and do not have finite devia-

N|Lmoo Ei(¢) =0. tion (Result 11), i.e. give identified models whose optimality

properties can be arbitrarily bad. In order to have robust con-

Results 17 and 12 imply that, in case of deterministic unvergence or finite deviation, it is necessary to resort to more
correlated noise belonging t@,, an input sequence can be  sophisticated nonlinear algorithms.
found such that any central and interpolatory algorithm using

such an input is strongly convergent. 7.2. Nonlinear “two-stage” algorithms

7. ldentification algorithm properties In order to overcome the robust convergence limitations of
linear algorithms, nonlinear untuned algorithms have been de-

In this section, the main algorithms available in literature arerived in case of frequency-domain measurements, performing

reviewed, starting from the simplest ones (linear algorithms}he following “two-step” procedure:

and finishing with the most performing ones (nonlinear inter-

polatory algorithms). The features analyzed are convergence, Stagel: A noncausal preliminary mode#©@ ¢ Z, is

tightness in error evaluation, order of the identified model, com- derived through a “untuned” linear algorithm performing a

putational complexity. bilateral interpolation in%~, by means of trigonometric

polynomials

7.1. Linear algorithms

n—1

The linear algorithms operate linearly on the experimental 37 ;) = Z W n MK,
data.Untunedinear algorithms, based on least squares or poly- k=—n+1
nomial approximation techniques (see, eRarker & Bitmead,
1987, are independent of the prior information available on i - o ) )
system and noise and, as a consequence of Result 15, they canWhere{wi . };_g is a weighting (owindow) sequence inde-
not be convergent. Indeed, their global identification error may Pe&ndent of prior information.
be divergent for finite: (Akgay & Hjalmarsson, 1994; Parting- ® Stage2: The 'de”t)f'(?d_ model is chosen as the best (causal)
ton & Makila, 1995; Akcay & Ninness, 1998 appro>_<|mat|on.of1\4_( ) in # (D), by solving the nonlinear

Convergentunediinear algorithms have been obtained based Nehari approximation problem
on least squares optimization, with constraints or penalty terms

depending on plant and noise prior informatiddu(& Khar- M) = argmin [MQ — M.
gonekar, 1992b; Helmicki, Jacobson, & Nett, 1993; Gu, Chu, MeH 5 (D)
& Kim, 1994).

The following result is obtained by minimizing least squares

. : The solution is given by Nehari’'s theoreriNd€hari, 1957:
with a quadratic penalty term. 9 y ¢ J

Result 18 (Helmicki et al., 1993; Gu et al., 1994Assume
= Kl()l)L eN e B, with A=W, =1Iy,y andN /2 equispaced
frequency-domain measurements. Then, the linear algorithm:

-1 k
Z:l l//n—kZ

M(z) = MO (z) — g-=h=t 02
1Y Gk

R n(N)-1 L M) where{ = [{q, ..., {,_1]" andy = [y, ..., ¥,_411" are the
M) = Z W Ak =7 L+ pn(N2 2k right and left singular vectors of the Hankel matrix associated
k=0 +/ P )P to the coefficientswy, cx (YY), k= -1, -2,...,—n + 1,

) 2 N/2 _ 1k _ andg is the corresponding maximum singular value.
with ¢e(y") = £ 3711 (a2 + jya- )@ M) 7D the in- _ | _ _
verse DFT coefficients of", has global error which, for The two-stage algorithms proposed in the literature differ

N/2>n(N) >0, is bounded as: from one another in the first step, since the approximation in
Z+ Can be performed using different weighting sequences,
V) p+1 a2 even symmetric with respect to(i.e., sinc-square, triangular,
Eg(p)<Lp +1+V2)L 1 (e/L+p ) cosine, trapezoidal windows) and truncated /s n.

Result 19 (Helmicki, Jacobson, & Nett, 1991Gu & Khar-
gonekar, 1992a,b Partington, 1992 Assume S° < K,ﬁl)L
The result can be extended to nonuniformly space@d” e %, with A=W, =1y, y andN/2 equispaced frequency-

frequency-domain measurements. domain measurements. Then, the global identification error of

If im y_ 00 n(N) = 00, the algorithm is convergent.
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a two-stage algorithm is bounded as follows: To summarize the positive features of “two-stage” nonlinear
. . 5 5 algorithms, they are robustly convergent if the weighting se-
() If we, = sin@kn/N)*/(2kn/N)* for |k|<n and  quence{wy.,} is even symmetric with respect tg truncated

wi,n = 0 for [k| >n (sinc-square window), then for k>n and thus independent of the prior information. Their
identification error bound and model order are highly dependent
. 8Ln  4AL7%(p+1) on the chosen window sequence. The computational complex-
Eq(¢)<2|min , . . . . .
N(p—1)" N2(p-—1)? ity of these algorithms is relatively small. As main drawbacks,
N2(L + ¢) their deviation is unknown and, even more relevant, the identi-
“on? ] fied model may not belong to the $e5Sof systems consistent

with the overall priors available on the system to be identified.

(i) If we, =1~ Ll for (k| <n andwy., = 0 for [k| >n (tri-

7.3. Interpolatory algorithms
; N+2
angular window), then, for any < ==

These nonlinear tuned algorithms identify models belonging

L Lp(l—p™™
Eg(¢)<2[8+2_m+ pi p1)2 )] to theFSS
’ " ¢ (K, Be, Fy, yV) = M" € FSS
(iii) If wy, = coS5:2%;) for |k| <n andwy, =0 for [k|>n  and they are able to interpolate the experimental data in an
(cosine window), then, for anyg < NT’“Z approximated way, taking explicitly into account the available
prior information. From Result 12, their deviation is not greater
L L m2Lp(L+ p) than 2 and for this reason they are often called “almost optimal”
Eq(9)<2 [p_m +((m—-1 (8 + p_m> + m} - or “2-optimal”. Moreover, these interpolatory algorithms are

convergent but not robustly, since they are tuned.

(V) If wy, is a trapezoidal window defined by In general, a two-step procedure is carried out:

e Stepl: Validation of prior information.

1+k —n<k<-—1, e ~
1+ /n OZ;@;— 1 e Step2: Identification of a modeM' ¢ FSSby means of
- k— 1 ’ nonlinear interpolation techniques.
Whon l—L m<k<n+m—1,
n
0 elsewherg Result 20(Gu, Xiong, & Zhou, 1993; Chen et al., 1995Assume
S° e K(’l)L, eN e %, with A = W, = Iy,n and N/2 equis-
wherem +n<N/2+ 1, then paced f?equency-domain measurements. Then, an interpolatory
algorithm is given by the following procedure:
2N 2N\ L
Eg(¢) < et 1+ rra e Stepl: Find a solutiom? e %, of the consistency problem

represented by the LMI (8) in Result 2.

From the above result it turns out that, to achieve robust con® Step2: By means of the standgrd Nevanlinna—Pick's algo-

vergence, the numbaerof inverse DFT samples to be computed rithm, build a functionM (z) & K;,L interpolatingy™' = v+
(and successively smoothed) varies significantly according to #" and use it as the identified model.

the chosen window sequence. With the sinc-square window,

must be such that lif_, . N2/n(N)=0: this condition is met, The global identification error is bounded by

for example, for any choice afsuch thak(N)=((N3). In the

other cases, the idgntification error ap_proaches Q/as_]J/_n2 E () <2e [L+m 4 2Lp~@n+D <1+ l+_’"> ,

and /N /n, respectively; then, in the first two cases it is only I—m I—m

requested that — oo, while in the latter casa can be chosen ) ) o

such thai = n(N) = O(N?). Since the order of the identified Wherel, mare arbitrary integers satisfyingm </ <N /2—m.
model M(z) is 2n — 3, it can be well understood the benefit @

obtained by suitably smoothing the inverse DFT coefficients oRResult 21(Chen & Nett, 1995 Assumes® € K7, ¢" € %,
data. At the same time, it can be observed the trade-off betwea#ith A=W, = Iy y and time domain measurements. Then, an
the rate of convergence of the identification error bound as #terpolatory algorithm is given by the following procedure:
function of the number of data and the magnitude of the bound ) o )
on the worst-case error of the approximation algorithm. It turns® Step1: Find a solutiom™ & 7, of the consistency problem
out that, similar to what happens in classical statistical spectral "éPresented by the LMI (9) in Result 3. B
analysis, while sophisticated windows providing fast conver-* St€p2: By means of the standa{d Carathéodory—Fejér proce-
gence on the algorithm can be found, they necessarily imply dure, build a function (z) € K ) interpolatingy" = y" +
worse errors than simpler windows for a small number of data. #" and use it as the identified model.
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The global identification error is bounded by W.=1Inxn , an interpolatory algorithm ig' (yV') = M,,, where
N—1 f M, is the FIR, model whose impulse response is obtained as
. L L i .
Eqd<2| > mine > jul, = b+ —— = solution of the problem:
P = p P p =1

n—

1
, My _ i " kO
where{z;}N "} are the elements of the first columnBf *. W =arg min  max 1) ki e
" k=0
The order of the identified model is equal to the number of n-l §1_j2knt /N )
dataN, except in singular cases where the order may be lower. s.t. Z hi € — (y2e—2 +]y2e-1)
k=0

Under the computational point of view, these two interpola-
tory algorithms are very much burdensome when the number <ety (} n /L> e [O N 1}
of data is high. Moreover, the Pick’s matrix may easily result = n 2nN )’ T2 '
to be ill-conditioned, while similar comments hold for the time _ o )

domain algorithm. In order to significantly reduce the computa-The global identification error is bounded by
tional complexity for the case that the model ordés selected

to be substantially lower thaN, suboptimal algorithms have £, (¢)<2e +y (E + X4 /i) _

been proposed, which are simpler but are not interpolatory and n N n

produce identified models with a typically small quantifiable : L
increment in the identification error, see, e@u (1994) Gu The above polynomial minimization problem can be solved
and Chen (2001) ’ ’ by standard convex optimization methods.

Result 24 (Milanese et al., 2001 Given N/2 frequency-
domain data,K = K}(,4) and A = Iyxn, let n be a positive
integer such that there existd=#R, systemS” € FSS Then,

for given positive integerg, an interpolatory algorithm is
¢*(yN) = M¥, where M} is the FIR, model whose impulse
response is obtained as solution of the problem:

Result 22 (Milanese & Taragna, 2001 Given time or fre-
quency domain data ankl = Ké?)L, let n be a positive inte-
ger such that there existsFdR, systemsS”" € FSS Then, for
given positive integersn andq, an interpolatory algorithm is
" (M) = M]°, whereM"’ is theFIR, model whose impulse

response is obtained as solution of the problem:

M —arg min ||s* — @85 |, 15) h*=arg min _|s* — Q7% ||, 16
g min s lloo (15) g mi I lloo (16)
where where
r max N ™ - ~
s=[j%}evo"m(w) s* =[Re[$"(@01)], IM[S"(D1)], ...,
max 5 Re[S" (0g)],
s* (1) s=[1]evon @ 3IM[S" (@)1,
st= | SN o) = | B .
¥ (@) [ n]evon @ ! §"(@) = 3{Sr(@) + Sg(®) +][5| (@) + S} (@)1},
min §2 Spa(@) = max  (hg, , — 7l — wxl),
s=[1]evon@) / k=1,...N/2 T/
— 32 m -
Q" (& S = min (I - ,
) ('wl) ) 0" () R/ (@) k:l,...,N/Z( R/Lk F 7@ — k)
Q= : s Q ((,U): Qn((]))
Q*(@g) Q" (w1)
with @ € [0, 7] for k =1,...,q; VO, the convex hull of Q= : '
pointsv; (w), k=1, ..., m, defined in (12) in Result 8" (w) Q" (g)

given by the firsih columns of the matriX2(w) defined in (5). _
with @, € [0, ] fork=1,...,¢; he)k andig) x defined as
Solution of problem (15) can be performed by linear pro-in Result 5;Q" (w) defined as in Result 22.
gramming. Sincep" is interpolatory, it follows from Result ~ The local identification error is bounded by
12 thato(M}}°) < 2. Indeed, the actual value efM)?) can be 1
evaluated from Result 13 and it can be expected to be near to E; (¢) < 5 sup \/[S*R(w) — S5 + IS (@) — SFHw)]?

since modelM)? is derived as an approximation of the optimal O<w<2n
model M°. <V2Ei(¢).
Result 23 (Glaum, Lin, & Zames, 1996 Given N/2 equi- Solution of problem (16) can be obtained by linear

spaced frequency-domain measuremekits: K§3) and A = programming.
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8. Discussion noise (Definition 4). A significant drawback of linear algorithms
is that they have no finite deviation (Result 11), i.e., the local
Some main features of the presented results are now digdentification error of the identified models may be arbitrarily

cussed from a user point of view. larger than the minimal possible one.
The main ingredients on which the different results are built Nonlinear two-stage algorithms have been devised, which
are as follows: are robustly convergent, i.e., the convergence is guaranteed

for any value of the constants appearing in the prior assump-
e type of experimentime domain (Egs. (1)—(2)), frequency tions on the system to be identified and on noise (Result 19).

domain (Egs. (3)—(6)); Their computational effort is still relatively low, since they re-
o type of algorithmlinear or nonlinear, tuned or untuned, in- quire, in addition to the computation of a linear untuned al-
terpolatory (Definition 4); gorithm, the solution of Nehari problem. Thus, two-stage al-
e type of prior information on plani.e., type of subséf such  gorithms can process quite large amount of data (up to some
that S’ € K; thousands). No optimality property of two-stage algorithms is

e type of prior information on noisén this survey, for the rea- known. In particular, no bound on their deviation is known, so
sons discussed in Section 1, methods assuming only pointhat it is unknown how far from being optimal the identified
wise bounded noise as described by Eq. (7) are presentechodels are.

Thus, the main distinction between the methods is their abil- For both types of algorithms, linear and two-stage, bounds
ity in dealing with A # Iyxy, allowing one to account Eg(qS)gF on their global error are provided assuming that

for information on deterministic uncorrelation properties of go ¢ K/()l)L andA =1y y in noise assumption (7). These bounds
noise. are useful to prove their convergence properties. However, their
. . tightness is unknown and, in view of Result 7, they cannot
The main features on which the “goodness” of the methods i§e tight bounds on the local errdf,(¢). Thus, model sets
evaluated are as follows: MM, E)={M+4:|A(w)|<E, Yo € [0, 2]} derived from
. _ . these bounds may be largely conservative.
° cp'rwerger?cesmple, robust (Definition 10) or strong (Defi-  \gpjinear interpolatory algorithms are convergent (Result
‘r‘utlon_ 11) o . _ . 16), but not robustly, since they are tuned to the prior assump-
e “a priori” optimality: measured by the algorithm deviation ong on the system to be identified and on noise. However, in
dev(¢) (Definition 8), which gives the maximal degradation .,qe of deterministic uncorrelated noise, they are strongly con-

for any possible set of measurements of the local identificagegent, since from Results 17 and 12 it follows that the local
tloln'error guarantged by the algont_l“qh/\nth re;pect to the error E(M) of identified models converges to zero for finite
rmmmal error achlevable.by an'optlr.n'al allgorlthm;' values ofe. Another important property of interpolatory algo-

e tightness in error evaluatiarthe identification algorithm, i mq s that their deviation is bounded by 2 (Result 12), thus
afte}rvprocessmg the available datd, gives a model/ = guaranteeing that also the optimality level of identified models
¢(y") and the local erroE, (¢) represents the tightest bound g ot greater than 2. For this reason, interpolatory algorithms

on the model errof|S? — M|oc. If this information is used 5 often indicated as almost-optimal, since deviation 1 is guar-
e.g. for robust control design, the tighter the evaluation of,

. o . anteed by optimal algorithms.
E;(¢) is, the less conservative is the design;

; ) . In conclusion, interpolatory algorithms have excellent con-
¢ frequency shaping of uncertaintynany methods provide vergence and optimality features. Their properties in relation
only upper bounds on the identification errBg (¢) <E.

to the other features (computational complexity, tightness in

This way, model sets of the form (11) Wil (0)=E, Yo € error evaluation, frequency shaping, “a posteriori” optimality)
[0, 27], are obtained. According to Result 6, methods ableyre highly dependent on the assumedkset

to obtain tight evaluation oW *(w, M) allow one to deliver
smaller model sets, which in turn, if used for robust control,, computational complexity
give rise to less conservative design;

e “a posteriorl optimality: measured by the model optimality
level a(M) (Definition 9), which gives the actual value of
the identification error degradation of the mobieidentified
using the available datd’ with respect to the optimal model;

e computational complexity

olf K= Kgl)L algorithms based on Nevanlinna—Pick and
Carathéodory—Fejér interpolation are used for both steps,
validation (Results 2 and 3) and algorithm computation
(Results 20 and 21). Computational problems may arise
in processing more than moderate number of data (some
decades).

o If K= KIgZ)L linear programming optimization has to be
performed both in validation (Result 4) and algorithm

Linear algorithms require low computational effort, allowing computation (Result 22). The required computational ef-
one to work with very large number of data (up to several fort aIIov(\g to process _up. to _several hundreds of data.
thousands), but they are not robustly convergent (Result 15), © If K=K;™, convex optimization methods are used (Result
i.e., in order to guarantee convergence they have to be tuned 23)- Also in this case several hundreds of data may be
to the prior assumptions on the system to be identified and on  Processed with a reasonable computational effort.

Let us now summarize the main properties of the different types
of algorithms.
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Table 1
Algorithm Convergence “A priori” Error Frequency “A posteriori” Computational
optimality tightness shaping optimality complexity
Linear “untuned” No No No No No Low
Linear “tuned” Simple No No No No Low
Nonlinear “two-stage” Robust No No No No Low
Nonlinear “interpolatory”
with K = K<1z Simple/stron§ Almost No No No High
P,
with K = Klizz Simple/stron§ Almost Yes Yes Yes Medium
with K = K}@ Simple/stron§ Almost No No No Medium
with K = K7f4) Simple/stron§ Almost NG No No Low

3If deterministically uncorrelated noise is assumed.

o If K = K\”, the validation is computationally trivial (Re- References
sult 5) and the algorithm computation requires the solution
of one linear programming problem (Result 24). Then,Akcay, H., & Hjalmarsson, H. (1994). The least-squares identification of
very Iarge number of data (up to several thousands) can FIR systems subject to worst-case noiSgstems & Control Letter23,

b d 329-338.
~ be processed. _ Akcay, H., & Ninness, B. (1998). On the worst-case divergence of the least-
e tightness in error evaluation squares algorithmSystems & Control Letter83, 19-24.

o If K = K;(;l)L’ only boundsEg(¢)<E on their global er- And.erss.o.n, L Rantzerz A., & Beck, C. (1999). Model_ comparison and
ror are provided (Results 20 and 21). Their tightness is ilsrr;plgg:ftlon.Internatlonal Journal of Robust and Nonlinear Contr8|
unknown and, in view of Result 7, they cannot be tlghtBaII, J. A., Gohberg, I., & Rodman, L. (1990)nterpolation of rational
bounds on the local err_df;(d)). Mor_e(_)v_er, these bOL_md§ matrix functions Basel: Birkhauser.
do not account for possible deterministic uncorrelation in-Beck, C. L., Doyle, J., & Glover, K. (1996). Model reduction of
formation on noise. multidimensional and uncertain systentiSEE Transactions on Automatic

o If K=K, the errorE (M) of the modeM identified by ~_ Control AC-4410), 1466-1477. o ,

- ’ - Gchen, J. (1997). Frequency-domain tests for validation of linear fractional
the interpolatory algorithm of Result 22 can be evaluate . ; :
. . . . uncertain modeldEEE Transactions on Automatic Contré{C-426), 748
as tightly as desired by means of Result 8, possibly taking _7go.
into account noise uncorrelation properties. Chen, J., & Gu, G. (2000)Control-oriented system identification: aHso
o If K=K>, only a boundt, (¢) <E on the global erroris ~_ approach New York: Wiley.

: ; P : hen, J., & Gu, G. (2002). Worst-case asymptotic propertiesHg
rovi Result 23). Possibl rministic uncorrelatior®
pro ded ( esult 3) ossible dete stic uncorrelatio identification.|EEE Transactions on Circuits and Systems—I: Fundamental

mformat}%n on noise is not accounted for. _ _ Theory and Applicationsi9(4), 437—446.
o If K=K,", an upper bound on the local error is provided, chen, J., & Nett, C. N. (1995). The Carathéodory—Fejér problemagadé,
whose overbounding is not greater th@(ﬁ (Result 24). identification: A time domain approactEEE Transactions on Automatic

Also in this case, possible uncorrelation information on_ Controb AC-4Q4), 729-735. o
.. Chen, J., Nett, C. N., & Fan, M. K. H. (1992). Worst-case system identification
noise Is not alccounted for. . in Hxo: Validation ofa priori information, essentially optimal algorithms,
o frequency shaping of uncertainty and error bounds. IrProceedings of the American control conference
Methods for tight evaluation of the frequency shaping of (pp. 251-257), Chicago, IL.
uncertainty of the identified model are available only for theChen, J., Netlt_,d C.N, K;Fan; M'.K]; H. (1995). Worst_clallse Sy_sterln ilden_tirf]ication
2 in Hso: Validation of a priori information, essentially optimal algorithms,
casek = Kl(’ )L (Result 8). and error boundleEI‘E) Transactions on Automat?,c 20nt,ro4\(34(17),

e “a posteriorf optimality 1260-1265.
Methods for evaluating the optimality level of the identified de vries, D. K., & Van den Hof, P. M. J. (1995). Quantification of uncertainty
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8aru|li, A., Tesi, A, & Vicino, A. (Eds.). (1999)Robustness in identification

Table 1summarizes the main results here presented an and contro] Lecture notes in control and information sciend®¥sl. 445).

discussed. Godalming, UK: Springer.
Giarré, L., Milanese, M., & Taragna, M. (1997, identification and model
quality evaluation.|EEE Transactions on Automatic ContfoAC-422),
188-199.
Acknowlegments Glaum, M., Lin, L., & Zames, G. (1996). Optimal», approximation by

systems of prescribed order using frequency response da@aodeedings

The authors would like to thank the anonymous reviewers and ©f the 35th IEEE conference on decision and conffp. 2318-2321),
. . . . Kobe, Japan.
the Associate Editors for the careful reading of the manuscript  quin G c. Gevers M. & Ninness. B (1992). Quantifying the error
and their invaluable criticisms and suggestions, which were in estimated transfer functions with application to model order selection.

helpful in the improvement of this paper. IEEE Transactions on Automatic ContrdkC-377), 913-928.



M. Milanese, M. Taragna / Automatica 41 (2005) 2019-2032 2031

Gu, G. (1994). Suboptimal algorithms for worst case identificatiorHi Milanese, M., & Taragna, M. (2001). Nearly optimal model setsHg,

and model validationlEEE Transactions on Automatic Contréd{C-398), identification. InProceedings of the European control conference 2001
1657-1661. (pp. 1704-1709), Porto, Portugal.

Gu, G., & Chen, J. (2001). A nearly interpolatory algorithm féf Milanese, M., & Taragna, M. (2002). Optimality, approximation, and
identification with mixed time and frequency response dd&EE complexity in set membershipls, identification. IEEE Transactions on
Transactions on Automatic ControAC-463), 464—469. Automatic Contrgl AC-4710), 1682—-1690.

Gu, G, Chu, C. -C., & Kim, G. (1994). Linear algorithms for worst case Milanese, M., & Tempo, R. (1985). Optimal algorithms theory for
identification inH, with applications to flexible structures. Rroceedings estimation and predictiofEEE Transactions on Automatic ContréiC-3Q
of the American control conferendpp. 112-116), Baltimore, MD. 730-738.

Gu, G., & Khargonekar, P. P. (1992a). A class of algorithms for identificationpjjanese, M., & Vicino, A. (1991). Optimal estimation theory for dynamic
in Heo. Automatica 2§(2), 299-312. systems with set membership uncertainty: An overvieutomatica 27(6),

Gu, G., & Khargonekar, P. P. (1992b). Linear and nonlinear algorithms for gg97_1009.
identification in Hy, with error boundslEEE Transactions on Automatic Nehari, Z. (1957). On bounded bilinear formsanals of Mathematicss5,
Control, AC-377), 953-963. 153162, ’

Gu, G., Xiong, D., & Zhou, K. (1993). Identification iffl», using Pick's
interpolation.Systems & Control Letter®0, 263-272.

Ha'g‘éﬂ?\g;n;'i oo &V ?ir”|iEﬁ:{ni’pxa}]{eﬁfﬁ)ﬁ(ife'?ss'iiiﬂfmp;???Eterpagani“" F. (1996). A set-based approach for white noise modefEEE

Transactions on Automatic ContfoAC-41(10), 1453—-1465.

31(7), 957-969. . .

Hakvf)o)rt, R. G.,, & Van den Hof, P. M. J. (1997). Identification of Pal_'ker,_l_?. ‘] & Bltmead,_ R. R. (1987). Adaptive frequency respo_nse
probabilistic system uncertainty regions by explicit evaluation of bias identification. In Proceedings of the 26th IEEE conference on decision

and variance errordEEE Transactions on Automatic Contyé\C-4211), and control (pp. 348-353).

Ninness, B., & Goodwin, G. C. (1995). Estimation of model quality.
Automatica 31(12), 1771-1797.

1516—1528. Partington, J. R. (1992). Robust identificationdR, . Journal of Mathematical
Harrison, K. J., Ward, J. A., & Gamble, D. K. (1996). Sample complexity  Analysis and Applicationsl66, 428-441. _

of worst-case Hso-identification. Systems & Control Letters27(4), Partington, J. R. (1997)nterpolation identification and sampling London

255-260. mathematical society monographs new sefiés. 17). Oxford, New York:

Helmicki, A. J., Jacobson, C. A., & Nett, C. N. (1991). Control oriented ~ Clarendon Press.

system identification: A worst-case/deterministic approactiig. IEEE  Partington, J. R., & Makila, P. M. (1995). Worst-case analysis of the least-

Transactions on Automatic ContfoAC-3610), 1163-1176. squares method and related identification meth@jstems & Control
Helmicki, A. J., Jacobson, C. A., & Nett, C. N. (1993). Least squares Letters 24, 193-200.

methods forHy, control-oriented system identificatiofEEE Transactions ~ Poolla, K., Khargonekar, P., Tikku, A., Krause, J., & Nagpal, K. (1994).

on Automatic ContrqlAC-3§5), 819-826. A time-domain approach to model validatiofEEE Transactions on
Jikuya, I., & Kimura, H. (1998). Reduction of model sets with inclusion. In  Automatic Contral AC-395), 951-959.

Proceedings of the 37th IEEE conference on decision and cofpml Reinelt, W., Garulli, A., & Ljung, L. (2002). Comparing different approaches

2201-2206), Tampa, FL. to model error modeling in robust identificatioMutomatica 38(5),
Jikuya, 1., & Kimura, H. (1999). Representation and reduction of model sets. 787-803.

In Proceedings of the 38th IEEE conference on decision and cofil  Rosenblum, M., & Rovnyak, J. (1985jardy classes and operator theory

1482-1487), Phoenix, AZ. New York: Oxford University Press.
Kon, M. A., & Tempo, R. (1989). On linearity of spline algorithmlournal  smith, R. S., & Dahleh, M. (Eds.). (1994Fhe modeling of uncertainty in
of Complexity 5(2), 251-259. control systemsLecture notes in control and information scienc@®l.

Ljung, L. (1999). Model validation and model error modeling. In B. 192). London, UK: Springer.
Wittenmark, & A. Rantzer (Eds.)The Astrsm Symposium on Conttpb. Smith, R. S., & Doyle, J. C. (1992). Model validation: A connection between

~15-42). Lund, Sweden, Studentlitteratur. o . robust control and identificatiohEEE Transactions on Automatic Contyol
Ljung, L., & Guo, L. (1997). The role of model validation for assessing the AC-37(7), 942-952.

size of the unmodeled dynamidEEE Transactions on Automatic Contyol Traub, J. F., Wasilkowski, G. W., & Wafiakowski, H. (1988)Information-

) AC'42(9)’&1230_1239' 08 . . ¢ black-b based complexityNew York: Academic Press.
Lju_ng, L . Yuan, Z. D. (1 5.)' Asymptotic prop_ertles ot black-box Venkatesh, S. R., & Dahleh, M. A. (1997). Identification in the presence of
identification of transfer functionslEEE Transactions on Automatic ) . :
classes of unmodeled dynamics and ndiEEE Transactions on Automatic
Control, AC-3Q06), 514-530.
Makila, P. M., & Partington, J. R. (2000). RobustnessHg, identification Control, AC-4212), 1620-1635.
R, gton, .. . ' % " Vidyasagar, M. (1996). A theory of learning and generalization

Automatica 36(11), 1685-1691. ith licati i | work d trol temBerlin:
Mékila, P. M., Partington, J. R., & Gustafsson, T. K. (1995). Worst-case VSv;:)ring{j:eprp ication 1o neural networks and control systemiserin.

control-relevant identificationAutomatica 31(12), 1799-1819. h o ¢ all th talsif | |
Marchuk, A. G., & Osipenko, K. Yu. (1975). Best approximation of functions Zhou, T. (1998). A parameterlzatlop of all the un.a sified plant models
for MIMO systems.IEEE Transactions on Automatic ContrdAC-431),

specified with an error at a finite number of poirlathematische Zametki

17, 359-368 (in Russian; English TransMathematical NotgsVol. 17, 18-30. - o

pp. 207-212, 1975). Zhou, T. (2000). Unfalsified model parametrization based on frequency
Milanese, M., Norton, J., Piet-Lahanier, H., & Walter, E. (Eds). domain noise mformatlorAu.tomatlca 36(5), 685-696. _

(1996). Bounding approaches to system identificatioNew York: Zhou, T. (2001). On the consistency between an LFT described model set

Plenum Press. and frequency domain datdEEE Transactions on Automatic Contyol
Milanese, M., Novara, C., & Taragna, M. (2001). “Fast” set membership AC-4§12), 2001-2007.
identification from frequency-domain data. Rroceedings of European Zhou, T., & Kimura, H. (1993). Time domain identification for robust control.
control conference ECC 200(pp. 1698-1703), Porto, Portugal. Systems & Control Letter20(3), 167-178.
Milanese, M., & Taragna, M. (1999¥/, identification of “soft” uncertainty ~ Zhou, T., & Kimura, H. (1995). Structure of model uncertainty for a weakly
models.Systems & Control Letter87(4), 217-228. corrupted plant.IEEE Transactions on Automatic ControAC-404),
Milanese, M., & Taragna, M. (2000). Set membership identificationHgs 639-655.

robust control design. IProceedings of 12th IFAC symposium on system Zhou, T., Wang, L., & Sun, Z. (2002). Closed-loop model set validation under
identification SYSID 20Qanta Barbara, CA. a stochastic frameworkAutomatica 38(9), 1449-1461.



2032 M. Milanese, M. Taragna / Automatica 41 (2005) 2019-2032

Mario Milanese graduated in Electronic Engi-
neering at Politecnico di Torino in 1967. From
1968 to 1972 he was Teaching Assistant at Po-
litecnico di Torino, from 1972 to 1980 Associate
Professor of System Theory at Universita
di Torino. From 1980 he is Full Professor
of System Theory at Politecnico di Torino.
From 1982 to 1987 he was head of the Depart-
ment of Automatica e Informatica at Politecnico
di Torino. His research interests include robust

Michele Taragna was born in Torino (ltaly)
in 1964. He received the Laurea degree in
Electronic Engineering (1992) and the Ph.D.
in Systems Engineering (1996), both from
the Politecnico di Torino (ltaly). Since 1995,
he has been a Research Associate at the
Dipartimento di Automatica e Informatica
/ (Control and Computer Engineering Depart-

ment) of the Politecnico di Torino, where
he is teaching systems and control theory as

identification, prediction and control of uncer- Associate Professor since 2002. His research
tain systems, and applications to biomedical, interests include the robustness field (in partic-
automotive, aerospace, financial and environmental problems. He is author of ular, set-membership identification and robust

more than 200 papers in international journals and conference proceedingsontrol) and the interaction issues between identification and control. He is
He is editor of the books “Robustness in Identification and Control”, Plenumcurrently serving as Associate Editor on the Conference Editorial Board of
Press, 1989, and “Bounding Approaches to System ldentification”, Plenunthe IEEE Control System Society.

Press, 1996.



	H set membership identification: A survey62626262
	Introduction
	Prior and experimental information
	Experimental information
	Prior information on plant So
	Prior information on noise eN

	Validation of prior assumptions
	Identification algorithms, model sets and identification errors
	Optimality properties
	Convergence properties
	Identification algorithm properties
	Linear algorithms
	Nonlinear ``two-stage'' algorithms
	Interpolatory algorithms

	Discussion
	References


