ESTIMATION THEORY

Michele TARAGNA

Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino michele.taragna@polito.it

III Level Course 02LCPRV / 01LCPRV / 01LCPIU "Experimental modeling: model building from experimental data"

Estimation problem

The estimation problem refers to the empirical evaluation of an uncertain variable, like an unknown characteristic parameter or a remote signal, on the basis of observations and experimental measurements of the phenomenon under investigation.

An estimation problem always assumes a suitable mathematical description (*model*) of the phenomenon:

- in the classical statistics, the investigated problems usually involve *static models*, characterized by instantaneous (or algebraic) relationships among variables;
- in this course, estimation methods are introduced also for phenomena that are adequately described by *discrete-time dynamic models*, characterized by relationships among variables that can be represented by means of difference equations (i.e., for simplicity, the time variable is assumed to be discrete).

Estimation problem

 $\theta(t)$: real variable to be estimated, scalar or vector, constant or time-varying;

- d(t): available data, acquired at N time instants t_1, t_2, \ldots, t_N ;
- $T = \{t_1, t_2, \dots, t_N\}$: set of time instants used for observations, distributed with regularity (in this case, $T = \{1, 2, \dots, N\}$) or non-uniformly;
- $d = \{d(t_1), d(t_2), \dots, d(t_N)\}$: observation set.

An estimator (or estimation algorithm) is a *function* $f(\cdot)$ that, starting from data, associates a value to the variable to be estimated:

$$\theta(t) = f(d)$$

The **estimate** term refers to the particular *value* given by the estimator when applied to the particular observed data.

Estimation problem classification

- 1) $\theta(t)$ is constant => parametric identification problem:
 - the estimator is denoted by $\hat{\theta}$ or by $\hat{\theta}_T$;
 - the true value of the unknown variable (if makes sense) is denoted by θ_o ;
- 2) $\theta(t)$ is a time-varying function:
 - the estimator is denoted by $\hat{\theta}(t|T)$, or by $\hat{\theta}(t|N)$ if the time instants for observations are uniformly distributed;
 - according to the temporal relationship between t and the last time instant t_N :

2.a) if $t > t_N =$ prediction problem;

2.b) if $t = t_N =>$ filtering problem;

2.c) if $t_1 < t < t_N =$ regularization or interpolation or smoothing problem.

Example of prediction problem: time series analysis

Given a sequence of observations (time series or historical data set) of a variable y:

$$y(1), y(2), \ldots, y(t)$$

the goal is to evaluate the next value y(t+1) of this variable

it is necessary to find a good **predictor** $\hat{y}(t+1|t)$, i.e., a function of available data that provides the most accurate evaluation of the next value of the variable y: $\hat{y}(t+1|t) = f(y(t), y(t-1), \dots, y(1)) \cong y(t+1)$

A predictor is said to be *linear* if it is a linear function of data:

$$\hat{y}(t+1|t) = a_1(t)y(t) + a_2(t)y(t-1) + \ldots + a_t(t)y(1) = \sum_{k=1}^t a_k(t)y(t-k+1)$$

A linear predictor has a finite memory n if it is a linear function of the last n data only: $\hat{y}(t+1|t) = a_1(t)y(t) + a_2(t)y(t-1) + \ldots + a_n(t)y(t-n+1) = \sum_{k=1}^n a_k(t)y(t-k+1)$

If all the parameters $a_i(t)$ are constant, the predictor is also *time-invariant*:

$$\hat{y}(t+1|t) = a_1 y(t) + a_2 y(t-1) + \ldots + a_n y(t-n+1) = \sum_{k=1}^n a_k y(t-k+1)$$

and it is characterized by the vector of constant parameters

$$\theta = [\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array}]^T \in \mathbb{R}^n$$

$$\Downarrow$$

The prediction problem becomes a parametric identification problem.

Questions:

- how to measure the predictor quality?
- how to derive the "best" predictor?

If the predictive model is linear, time-invariant, with finite memory n much shorter than the total number of data measured up to time instant t, its predictive capability over the available data y(i), i = 1, 2, ..., t, can be evaluated in the following way:

• at each instant $i \ge n$, the prediction $\hat{y}(i+1|i)$ of the next value is computed: $\hat{y}(i+1|i) = a_1y(i) + a_2y(i-1) + \ldots + a_ny(i-n+1) = \sum_{k=1}^n a_ky(i-k+1)$ and its prediction error ε (i+1) with respect to y(i+1) is evaluated:

$$\varepsilon(i+1) = y(i+1) - \hat{y}(i+1|i)$$

• the model described by θ is a good predictive model if the error ε is "small" over all the available data \Rightarrow the following figure of merit is introduced:

 $J(\theta) = \sum_{k=n+1}^{t} \varepsilon(k)^2$ (sum of squares of prediction errors)

• the best predictor is the one that minimizes J and the value of its parameters is:

$$\theta^* = \underset{\theta \in \mathbb{R}^n}{\arg\min} J(\theta)$$

For example, if t = 100 and $n = 10 \ll t$, for a given $\theta = [a_1 \cdots a_{10}]^T$ it results: $\begin{cases} \hat{y}(11|10) = a_1 y(10) + \ldots + a_{10} y(1) \implies \varepsilon(11) = y(11) - \hat{y}(11|10) \\ \hat{y}(12|11) = a_1 y(11) + \ldots + a_{10} y(2) \implies \varepsilon(12) = y(12) - \hat{y}(12|11) \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots$

 $\hat{y}(100|99) = a_1y(99) + \ldots + a_{10}y(90) \Rightarrow \varepsilon(100) = y(100) - \hat{y}(100|99)$ and then the behaviour of the prediction error sequence $\varepsilon(\cdot)$ is plotted:

Fundamental question: is the predictor minimizing J necessarily a "good" model?

The predictor quality depends on the fact that the temporal behaviour of the prediction error sequence $\varepsilon(\cdot)$ has the following characteristics:

- its mean value is zero, i.e., it does not show a systematic error;
- it is "fully random", i.e., it does not contain any regularity element.

In probabilistic terms, this corresponds to require that the behaviour of the error $\varepsilon(\cdot)$ is that of a **white noise** (WN) process, i.e., a sequence of independent random variables with zero mean value and constant variance σ^2 :

$$\varepsilon(\cdot) = WN\left(0,\sigma^2\right)$$

 \Downarrow

A predictor is a "good" model if $\varepsilon(\cdot)$ has the white noise probabilistic characteristics.

Then, the prediction problem can be recast as the study of a **stochastic system**, i.e., a dynamic system whose inputs are probabilistic signals; in fact:

$$\begin{cases} \hat{y}(t|t-1) = a_1 y(t-1) + a_2 y(t-2) + \ldots + a_n y(t-n) \\ \varepsilon(t) = y(t) - \hat{y}(t|t-1) \end{cases} \Rightarrow$$

$$y(t) = \hat{y}(t|t-1) + \varepsilon(t) = a_1 y(t-1) + a_2 y(t-2) + \ldots + a_n y(t-n) + \varepsilon(t)$$

represents a discrete-time LTI dynamic system with output $\,y(t)$ and input arepsilon(t)

Classification of data descriptions

- The actually available information is always:
 - bounded \Rightarrow the measurement number N is necessarily finite;
 - corrupted by different kinds of uncertainty (e.g., measurement noise).
- The uncertainty affecting the data can be described:
 - in probabilistic terms \Rightarrow we talk about **statistical** or **classical estimation**;
 - in terms of set theory, as a member of some bounded set \Rightarrow we talk about **Set Membership** or **Unknown But Bounded** (UBB) **estimation**.

Probabilistic description of data

In the *probabilistic* (or *classical* or *statistical*) framework, data d are assumed to be produced by a random source of data S, influenced by:

- the outcome s of a random experiment ${\mathcal E}$
- the "true" value θ_o of the unknown variable to be estimated

$$d = d\left(s, \theta_o\right)$$

data d are random variables, since they are functions of the outcome s

A full probabilistic description of data is constituted by

- its probability distribution $F(q) = Prob \{ d(s, \theta_o) \le q \}$ or
- its probability density function $f(q) = \frac{dF(q)}{dq}$, often denoted by p.d.f.

M. Taragna

Estimator characteristics

A random source of data S, influenced by the outcome s of a random experiment \mathcal{E} and by the "true" value θ_o of the unknown variable to be estimated, produces data d:

$$d = d\left(s, \theta_o\right)$$

data d are random variables, since they are functions of the outcome s

the estimator $f(\cdot)$ and the estimate $\hat{ heta}$ are random variables too, being functions of d:

$$\hat{\theta} = f(d) = f(d(s, \theta_o))$$

the quality of $f(\cdot)$ and $\hat{ heta}$ depends on their probabilistic characteristics.

- No bias (in order to avoid to introduce any systematic estimation error)
- Minimum variance (smaller scattering around the mean value guarantees higher probability of obtaining values close to the "true" value θ_o)
- Asymptotic characteristics (for $N \to \infty$):
 - quadratic-mean convergence
 - almost-sure convergence
 - consistency

An estimator is said to be unbiased (or correct) if

An unbiased estimator does not introduce any systematic estimation error.

Estimation Theory

M. Taragna

An unbiased estimator converges in quadratic mean to θ_o , i.e., $l.i.m. \hat{\theta}_N = \theta_o$, if

$$\lim_{N \to \infty} E\left[\|\hat{\theta}_N - \theta_o\|^2\right] = 0$$

where $\|x\| = \sqrt{\sum_{i=1}^n x_i^2}, \quad \forall x \in \mathbb{R}^n$, is the Euclidean norm.
An unbiased estimator such that $\lim_{N \to \infty} Var\left[\hat{\theta}_N\right] = 0$ converges in quadratic mean:

Sure and almost-sure convergence, consistency

An estimator is function of both the outcome s of a random experiment $\mathcal E$ and θ_o :

$$\hat{\theta} = f(d) = f(d(s, \theta_o)) \quad \Rightarrow \quad \hat{\theta} = \hat{\theta}(s, \theta_o)$$

If a particular outcome $\overline{s} \in S$ is considered and the sequence of estimates $\hat{\theta}_N(\overline{s}, \theta_o)$ is evaluated for increasing N, a numerical series $\hat{\theta}_1(\overline{s}, \theta_o)$, $\hat{\theta}_2(\overline{s}, \theta_o)$, ..., is derived that may converge to θ_o for some \overline{s} , and may not converge for some other \overline{s} .

Let A be the set of outcomes \overline{s} guaranteeing the convergence to θ_o :

- if $A \equiv S$, then we have sure convergence, since it holds $\forall \overline{s} \in S$;
- if $A \subset S$, considering A like an event, the probability P(A) may be defined; if A is such that P(A) = 1, we say that $\hat{\theta}_N$ converges to θ_o with probability 1:

$$\lim_{\mathbf{N}\to\infty}\hat{\theta}_N = \theta_o \qquad w.p.1$$

we have **almost-sure convergence** \Rightarrow the algorithm is said to be **consistent**.

Example

Problem: N scalar data d_i with the same mean value $E[d_i] = \theta_o$, with variances $Var[d_i]$ possibly different but bounded ($\exists \sigma \in \mathbb{R}_+ : Var[d_i] \leq \sigma^2 < \infty, \forall i$); data are uncorrelated, i.e.:

$$E[\{d_i - E[d_i]\} \{d_j - E[d_j]\}] = 0, \quad \forall i \neq j$$

Estimator #1 (sample mean):

$$\hat{\theta}_N = \frac{1}{N} \sum_{i=1}^N d_i$$

• it is an unbiased estimator:

$$E\left[\hat{\theta}_N\right] = E\left[\frac{1}{N}\sum_{i=1}^N d_i\right] = \frac{1}{N}\sum_{i=1}^N E\left[d_i\right] = \frac{1}{N}\sum_{i=1}^N \theta_o = \theta_o$$

• it converges in quadratic mean:

Politecnico di Torino - DET

Estimator #2:

$$\hat{\theta}_N = d_j$$

• it is an unbiased estimator:

$$E\left[\hat{\theta}_N\right] = E\left[d_j\right] = \theta_o$$

• it does not converge in quadratic mean:

$$Var\left[\hat{\theta}_{N}\right] = E\left[\left(\hat{\theta}_{N} - E\left[\hat{\theta}_{N}\right]\right)^{2}\right] = E\left[\left(d_{j} - \theta_{o}\right)^{2}\right] = Var\left[d_{j}\right] \le \sigma^{2}$$

and then it does not vary with the number ${\cal N}$ of data

 \downarrow

the estimation uncertainty is constant and, in particular, it does not decrease when the number of data grows.

Estimator #3 (weighted sample mean):

$$\hat{\theta}_N = \sum_{i=1}^N \alpha_i d_i$$

• it is an unbiased estimator if and only if $\sum_{i=1}^{N} \alpha_i = 1$, because

$$E\left[\hat{\theta}_{N}\right] = E\left[\sum_{i=1}^{N} \alpha_{i} d_{i}\right] = \sum_{i=1}^{N} \alpha_{i} E\left[d_{i}\right] = \theta_{o} \sum_{i=1}^{N} \alpha_{i} = \theta_{o} \iff \sum_{i=1}^{N} \alpha_{i} = 1$$

Note: the algorithm #1 corresponds to the case $\alpha_i = \frac{1}{N}$, $\forall i$; the algorithm #2 corresponds to the case $\alpha_j = 1$ and $\alpha_i = 0$, $\forall i \neq j$

• it can be proven that the minimum variance unbiased estimator has weights

$$\alpha_{i} = \frac{\alpha}{Var\left[d_{i}\right]}, \quad \alpha = \left[\sum_{i=1}^{N} \frac{1}{Var\left[d_{i}\right]}\right]^{-1}$$

1

intuitively, more uncertain data are considered as less trusted, with lower weights

• the variance of the minimum variance unbiased estimator is

$$\begin{aligned} \operatorname{Var}\left[\hat{\theta}_{N}\right] &= E\left[\left(\hat{\theta}_{N} - E\left[\hat{\theta}_{N}\right]\right)^{2}\right] = E\left[\left(\sum_{i=1}^{N} \alpha_{i}d_{i} - \theta_{o}\right)^{2}\right] = \\ &= E\left[\left(\sum_{i=1}^{N} \alpha_{i}d_{i} - \sum_{i=1}^{N} \alpha_{i}\theta_{o}\right)^{2}\right] = E\left[\left(\sum_{i=1}^{N} \alpha_{i}\left(d_{i} - \theta_{o}\right)\right)^{2}\right] = \\ &= E\left[\sum_{i=1}^{N} \alpha_{i}^{2}(d_{i} - \theta_{o})^{2} + \sum_{i=1}^{N} \alpha_{i}(d_{i} - \theta_{o})\sum_{j=1, j\neq i}^{N} \alpha_{j}(d_{j} - \theta_{o})\right] = \\ &= \sum_{i=1}^{N} \alpha_{i}^{2}E\left[\left(d_{i} - \theta_{o}\right)^{2}\right] + \sum_{i=1}^{N} \alpha_{i}E\left[\left(d_{i} - \theta_{o}\right)\sum_{j=1, j\neq i}^{N} \alpha_{j}(d_{j} - \theta_{o})\right] = \\ &= \sum_{i=1}^{N} \alpha_{i}^{2}Var\left[d_{i}\right] = \sum_{i=1}^{N} \frac{\alpha^{2}}{Var\left[d_{i}\right]^{2}}Var\left[d_{i}\right] = \alpha^{2}\sum_{i=1}^{N} \frac{1}{Var\left[d_{i}\right]} = \\ &= \alpha = \left[\sum_{i=1}^{N} \frac{1}{Var\left[d_{i}\right]}\right]^{-1} \leq \left[\sum_{i=1}^{N} \frac{1}{\sigma^{2}}\right]^{-1} = \frac{\sigma^{2}}{N}\end{aligned}$$

• the minimum variance unbiased algorithm converges in quadratic mean, since

$$\lim_{N \to \infty} Var\left[\hat{\theta}_N\right] \le \lim_{N \to \infty} \frac{\sigma^2}{N} = 0$$

Maximum Likelihood estimators

The actual data are generated by a random source, which depends on the outcome s of a random experiment and on the "true" value θ_o of the unknown to be estimated. However, if a generic value θ of the unknown parameter is considered, the data can be seen as function of both the value θ and the outcome $s \Rightarrow$ the data can be denoted by $d^{(\theta)}(s)$, with p.d.f. $f(q, \theta)$ that is function of θ too. Let δ be the particular data observation that corresponds to a particular outcome \overline{s} of the random experiment:

$$\delta = d^{(\theta)}(\overline{s})$$

The so-called **likelihood function** is given by the p.d.f. of the data evaluated in δ :

$$L(\theta) = \left. f(q,\theta) \right|_{q=\delta}$$

The Maximum Likelihood (ML) estimate is defined as:

$$\hat{\theta}_{ML} = \underset{\theta \in \mathbb{R}^n}{\arg \max} L(\theta)$$

Random source of data for a generic value θ of the unknown parameter:

Example: a scalar parameter $\theta_o \in \mathbb{R}$ is estimated using a unique measurement (i.e., N = 1), corrupted by a zero-mean Gaussian disturbance with variance $\sigma_v^2 \Rightarrow$ the random source of data has the following structure:

$$y = \theta_o + v$$

where the noise v is a scalar zero-mean Gaussian random variable with p.d.f.

$$f(q) = \mathcal{N}\left(0, \sigma_v^2\right) = \frac{1}{\sqrt{2\pi\sigma_v}} \exp\left(\frac{-q^2}{2\sigma_v^2}\right)$$

Since $v = y - \theta_o \Rightarrow$ the p.d.f. of data y generated by a random source where a generic value θ is considered instead of θ_o is then given by

$$f(q,\theta) = \frac{1}{\sqrt{2\pi\sigma_v}} \exp\left(\frac{-(q-\theta)^2}{2\sigma_v^2}\right) = \mathcal{N}\left(\theta,\sigma_v^2\right) \Rightarrow$$
$$L(\theta) = \left.f(q,\theta)\right|_{q=\delta} = \frac{1}{\sqrt{2\pi\sigma_v}} \exp\left(\frac{-(\delta-\theta)^2}{2\sigma_v^2}\right) = \mathcal{N}\left(\delta,\sigma_v^2\right)$$

 $f(q,\theta)$ translates when the value of θ changes $\Rightarrow L(\theta) = \left. f(q,\theta) \right|_{q=\delta}$ varies too.

Maximum Likelihood estimator properties

The estimate $\hat{\theta}_{ML}$ is:

- asymptotically unbiased: $E\left(\hat{\theta}_{ML}\right) \xrightarrow[N \to \infty]{} \theta_o$
- asymptotically efficient: $\Sigma_{\hat{\theta}_{ML}} \leq \Sigma_{\hat{\theta}}$, \forall unbiased $\hat{\theta} \neq \hat{\theta}_{ML}$, if $N \to \infty$
- consistent: $\lim_{N \to \infty} \Sigma_{\hat{\theta}_{ML}} = 0$
- asymptotically Gaussian (for $N \to \infty$)

Example: let us assume that the random source of data has the following structure:

$$y(t) = \psi(t, \theta_o) + v(t), \quad t = 1, 2, \dots, N \quad \Leftrightarrow \quad y = \Psi(\theta_o) + v$$

where $\psi(t, \theta_o)$ is a generic *nonlinear* function of θ_o and the disturbance v is a vector of zero-mean Gaussian random variables with variance Σ_v and p.d.f.

$$f(q) = \mathcal{N}(0, \Sigma_v) = \frac{1}{\sqrt{(2\pi)^N \det \Sigma_v}} \exp\left(-\frac{1}{2}q^T \Sigma_v^{-1}q\right)$$

Since $v = y - \Psi(\theta_o) \Rightarrow$ the p.d.f. of data generated by a random source where a generic value θ is considered instead of θ_o is then given by

$$L(\theta) = f(q,\theta)|_{q=\delta} = \frac{1}{\sqrt{(2\pi)^N \det \Sigma_v}} \exp\left(-\frac{1}{2} \left[\delta - \Psi(\theta)\right]^T \Sigma_v^{-1} \left[\delta - \Psi(\theta)\right]\right)$$

$$\downarrow$$

$$f(q,\theta)|_{q=\delta} \text{ is an exponential function of } \theta$$

$$\downarrow$$

$$\hat{\theta}_{ML} = \underset{\theta \in \mathbb{R}^n}{\arg \max} L(\theta) = \underset{\theta \in \mathbb{R}^n}{\arg \min} \left\{ \underbrace{\left[\delta - \Psi(\theta)\right]^T \Sigma_v^{-1} \left[\delta - \Psi(\theta)\right]\right\}}_{R(\theta)}$$

Problem: the global minimum of $R(\theta)$ has to be found with respect to θ , but $R(\theta)$ may have many local minima if $\Psi(\theta)$ is a generic nonlinear function of the unknown variable; the standard nonlinear optimization algorithms do not guarantee to find always the global minimum.

M. Taragna

Particular case: $\Psi(\theta) = linear$ function of the unknown parameters $= \Phi \theta$ $R\left(\theta\right)$ is a quadratic function of $\theta: R\left(\theta\right) = \left[\delta - \Phi\theta\right]^T \Sigma_{n}^{-1} \left[\delta - \Phi\theta\right]^T$ there exists a unique minimum of $R(\theta)$, if $det(\Phi^T \Sigma_n^{-1} \Phi) \neq 0$ $\hat{\theta}_{ML} = \left(\Phi^T \Sigma_v^{-1} \Phi\right)^{-1} \Phi^T \Sigma_v^{-1} \delta = \text{Gauss-Markov estimate} = \hat{\theta}_{GM} = \hat{\theta}_{GM}$ = Weighted Least Squares estimate using the disturbance variance Σ_v If $\Sigma_v = \sigma_v^2 I_N$, i.e., independent identically distributed (*i.i.d.*) disturbance: $\hat{\theta}_{ML} = \hat{\theta}_{GM} = \left(\Phi^T \Phi\right)^{-1} \Phi^T \delta = \text{Least Squares estimate}$

Gauss-Markov estimate properties

If the disturbance v is Gaussian and $\Psi(\theta)$ is linear, then the estimate $\hat{\theta}_{GM}$ is:

• unbiased:
$$E\left(\hat{\theta}_{GM}
ight)= heta_{o}$$

- efficient: $\Sigma_{\hat{\theta}_{GM}} = [\Phi^T \Sigma_v^{-1} \Phi]^{-1} \leq \Sigma_{\hat{\theta}}, \quad \forall \text{ unbiased } \hat{\theta} \neq \hat{\theta}_{GM}$
- consistent: $\lim_{N \to \infty} \Sigma_{\hat{\theta}_{GM}} = 0$
- Gaussian

If the disturbance v is not Gaussian and $\Psi(\theta)$ is linear, then the estimate $\hat{\theta}_{GM}$ is the minimum variance estimator among all unbiased and linear estimators.

• Note that the variance σ_v^2 of the disturbance v is usually unknown \Rightarrow if the random source of data has the following linear structure

$$y(t) = \varphi(t)^T \theta_o + v(t), \quad t = 1, 2, \dots, N \quad \Leftrightarrow \quad y = \Phi \theta_o + v$$

where $v \in \mathbb{R}^N$ is a vector of zero-mean random variables that are uncorrelated and with the same variance σ_v^2 (i.e., $Var[v] = E[vv^T] = \sigma_v^2 I_N$), as in the case of disturbance $v(\cdot)$ given by a white noise $WN(0, \sigma_v^2)$, then a "reasonable" unbiased estimate $\hat{\sigma}_v^2$ (such that $E[\hat{\sigma}_v^2] = \sigma_v^2$) can be directly derived from data as

$$\hat{\sigma}_v^2 = \frac{J(\theta)}{N-n}$$

where N = measurement number, n = number of unknown parameters of θ , $J(\hat{\theta}) = \sum_{t=1}^{N} \varepsilon(t)^2 \Big|_{\theta=\hat{\theta}} = \sum_{t=1}^{N} \Big[y(t) - \varphi(t)^T \,\hat{\theta} \Big]^2 = [y - \Phi \hat{\theta}]^T [y - \Phi \hat{\theta}]$