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Estimation problem

The estimation problem refers to the empirical evaluation of an uncertain variable, like
an unknown characteristic parameter or a remote signal, on the basis of observations

and experimental measurements of the phenomenon under investigation.

An estimation problem always assumes a suitable mathematical description (model)

of the phenomenon:

e in the classical statistics, the investigated problems usually involve static models,

characterized by instantaneous (or algebraic) relationships among variables;

® in this course, estimation methods are introduced also for phenomena that are

adequately described by discrete-time dynamic models, characterized by
relationships among variables that can be represented by means of difference

equations (i.e., for simplicity, the time variable is assumed to be discrete).

Estimation Theory 1



% politecnico di Torino - DET M. Taragna

Estimation problem

6(t) : real variable to be estimated, scalar or vector, constant or time-varying;
d(t): available data, acquired at N time instants t1,%s, ..., tN;

T = {t1,ta,...,tN} : setof time instants used for observations, distributed with

regularity (in this case, T' = {1, 2, ..., N }) or non-uniformly;

d={d(t1),d(ts),...,d(tn)} : observation set.

An estimator (or estimation algorithm ) is a function f() that, starting from data,

associates a value to the variable to be estimated:

The estimate term refers to the particular value given by the estimator when applied

to the particular observed data.
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Estimation problem classification

1) O(t) is constant => parametric identification  problem:
e the estimator is denoted by 9 or by 9T;

e the true value of the unknown variable (if makes sense) is denoted by 6,;

2) 0(t) is a time-varying function:

e the estimator is denoted by 6 (¢t|T°) , or by 0 (t|/N') if the time instants for

observations are uniformly distributed;
e according to the temporal relationship between t and the last time instant £y :
2.a) if ¢ > €y => prediction problem;
2.b) if ¢ = € => filtering problem,;

2.c) if t1 <t <tpn => regularization or interpolation or smoothing problem.
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Example of prediction problem: time series analysis

Given a sequence of observations (time series or historical data set) of a variable y:

y(1),y(2),..-,y(t)
the goal is to evaluate the next value y(t + 1) of this variable

4

it is necessary to find a good predictor (¢ + 1|t), i.e., a function of available data

that provides the most accurate evaluation of the next value of the variable y:
gt +10t) = f (y(@),y(t =1),...,y(1)) =yt +1)

A predictor is said to be linear if it is a linear function of data:

3(t+111) = ar(Dy(t) +aa(t(t = 1. +ar(y(1) =3 an(Olylt—Fk+1)
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A linear predictor has a finite memory n if it is a linear function of the last n data only:
n
y(t+1|t)=a1(t)y(t)+az(t)y(t—1)+...Fa,(t)y(t—n+1)=> at)y(t—k+1)
k=1

If all the parameters a;(t) are constant, the predictor is also time-invariant:

ary(t —k+1)
=1

g(t+1{t) = ar1y(t) + a2y(t—1) + ... + apy(t—n+1)=
2

and it is characterized by the vector of constant parameters

0=[a ay - a,] €R"

4

The prediction problem becomes a parametric identification problem.

Questions:
e how to measure the predictor quality?
e how to derive the “best” predictor?
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If the predictive model is linear, time-invariant, with finite memory n much shorter
than the total number of data measured up to time instant ¢, its predictive capability

over the available data y(7), 7 = 1,2, ..., t, can be evaluated in the following way:
e at eachinstant¢ > n, the prediction ¢j(7 + 1|7) of the next value is computed:
G(i+1li)=a1y(i)+ay(i—1)+.. . +apy(i—n+1)=>",_ apy(i—k+1)
and its prediction error € (7 4 1) with respect to (7 + 1) is evaluated:
e(t+1)=y(t+1)—g(e+1]2)
e the model described by 6 is a good predictive model if the error € is “small” over

all the available data = the following figure of merit is introduced:

S (k) (sum of squares of prediction errors)
k=n-+1

e the best predictor is the one that minimizes J and the value of its parameters is:

0" = arg min J(0)

OcR”
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For example, ift = 100 and n = 10 < t,foragiven§ = [qy - -+ ayg ] it results:
§(11]10) = a1y(10) + ... + a10y(1) = e(11) =y(11) — g(11]10)
9(12]11) = a1y(11) 4+ ... 4 a10y(2) = e(12) =y(12) — g(12|11)

| 9(100|99) = a1y(99) + ... + a10y(90) = £(100) = y(100) — §(100]|99)
and then the behaviour of the prediction error sequence 5() IS plotted:

4

I
90 {=100
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Fundamental question: is the predictor minimizing J necessarily a “good” model?

The predictor quality depends on the fact that the temporal behaviour of the

prediction error sequence £(-) has the following characteristics:
® its mean value is zero, i.e., it does not show a systematic error,

e itis “fully random?”, I.e., it does not contain any regularity element.

In probabilistic terms, this corresponds to require that the behaviour of the error £(-)

is that of a white noise (W IN) process, i.e., a sequence of independent random
2.

variables with zero mean value and constant variance o
e(-) =WN (0,0°)

A predictor is a “good” model if 5() has the white noise probabilistic characteristics.
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Example #1: prediction error with constant systematic error

! &0 ! ! ! ! ! !
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Example #2: prediction error with sinusoidal systematic error
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Example #3: "fully random" prediction error, with no systematic error
4 !
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Then, the prediction problem can be recast as the study of a stochastic system , i.e.,
a dynamic system whose inputs are probabillistic signals; in fact:

g(tlt —1) = ary(t —1) +a2y(t —2)+ ...+ any(t —n)
e(t) = y() —g(t)t —1)

y(t) = g(tlt = 1) +e(t) = ary(t = 1) + a2yt = 2) + ... + any(t —n) +£(t)

=

represents a discrete-time LTI dynamic system with output ¥(¢) and input £(t)

4

Z-transforming, with Z[y(t—k)] = 27*Y(z) and 27! the unitary delay operator:
Y(2) =a127 Y (2) + a2z %Y (2) + ... + anz  "Y(2) + &(2)

4

1 2™
H(Z) — — —1 —2 “n T n n—1 n—2
e(z) l—arz7l—agz72—...—anz Z"— a1z —anz — . ..—an

represents the transfer function of a LTI dynamic system = in order to be a “good”

model, its input £(-) shall have the white noise probabilistic characteristics.
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Classification of data descriptions

e The actually available information is always:
— bounded = the measurement number /N is necessarily finite;

— corrupted by different kinds of uncertainty (e.g., measurement noise).

e The uncertainty affecting the data can be described:

— In probabilistic terms = we talk about statistical or classical estimation ;

— In terms of set theory, as a member of some bounded set =

we talk about Set Membership or Unknown But Bounded (UBB)estimation .
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Probabilistic description of data

In the probabilistic (or classical or statistical) framework, data d are assumed to be
produced by a random source of data S, influenced by:
e the outcome s of a random experiment £

e the “true” value 6, of the unknown variable to be estimated
d=d(s,0,)
Y

data d are random variables, since they are functions of the outcome s

Y
A full probabilistic description of data is constituted by
e its probability distribution  F'(q) = Prob{d(s,0,) < q} or
_ dF(q)
dgq

e its probability density function  f(q)

, often denoted by p.d.f.

Estimation Theory 12
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Random source of data;

Random
experiment

Outcome of £

“True” G
(0)

Random

variable (noise)

bf >

d (t) U “Re_al” actual datum
O (noise-corrupted)

parameter l

7 ()

Parametric model “ldeal” datum
of the system (noise-free)
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Estimator characteristics

A random source of data S, influenced by the outcome s of a random experiment £

and by the “true” value 6, of the unknown variable to be estimated, produces data d:

d=d(s,0,)
4

data d are random variables, since they are functions of the outcome s

4

the estimator f(-) and the estimate € are random variables too, being functions of d:

é: f(d) — f(d(S,HO))

4

the quality of f() and 9 depends on their probabllistic characteristics.
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Estimator probabilistic characteristics

e No bias (in order to avoid to introduce any systematic estimation error)

e Minimum variance (smaller scattering around the mean value guarantees higher

probability of obtaining values close to the “true” value 0,)

e Asymptotic characteristics (for N — 00):

— guadratic-mean convergence
— almost-sure convergence

— consistency

Estimation Theory 15
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Estimator probabilistic characteristics

An estimator is said to be unbiased (or correct) if

B 0] =0,

0
-2

An unbiased estimator does not introduce any systematic estimation error.
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Estimator probabilistic characteristics

. . AL . e . .
An unbiased estimator 6 is said to be efficient (or with mlnlmum varlance ) if
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Smaller scattering around the mean value = higher probability of approaching 6,,.
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Estimator probabilistic characteristics

An unbiased estimator converges in quadratic meanto @, i.e., {sz On=0,,if
— 00

lim E [||9N _ 90||2} — 0
N — o0

where ||z|| = \/2?21 x?, Vx € R™,is the Euclidean norm.

1

An unbiased estimator such that ]\}im Var {HN} = 0 converges in quadratic mean:
— 00

N = 10000
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Sure and almost-sure convergence, consistency

An estimator is function of both the outcome s of a random experiment £ and 6,:
0=f(d)=f(d(s,0,) = 0=80(s,0,)

If a particular outcome s € S'is considered and the sequence of estimates 6y (s,0,,)

is evaluated for increasing IV, a numerical series 01 (3,0, ), 62(35,0,), . . ., is derived

that may converge to 8, for some s, and may not converge for some other s.

Let A be the set of outcomes S guaranteeing the convergence to 6,:
e if A = 5, then we have sure convergence , since it holds Vs € S’

o if A C S, considering A like an event, the probability P(A) may be defined;
if A is such that P(A) = 1, we say that 9N converges to 8, with probability 1:

lim Oy =6, w.p.1
N —o0

we have almost-sure convergence = the algorithm is said to be consistent .

Estimation Theory 19
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Example

Problem: NN scalar data d; with the same mean value F' |d;| = 6, with variances
Var [d;] possibly different but bounded (o € R : Var[d;] < 0% < oo, Vi);

data are uncorrelated, I.e.:

E{d; — E|d;]}{d; — Eld;]}] =0, Vi#j

Estimator #1 (sample mean):

® |t IS an unbiased estimator:
Blon| =85 Sidi| =%

® it converges in quadratic mean:

Estimation Theory 20
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x> inq di — «90)2} =

= H TN ) | =B [(RER @ -0)| 5
5 N (di — 90))2} = -LE {(Zf\;l (di — «90))2} =

B[S = 007 + S =0 3~ 00)] =

J=1,5#
N {ZLE [(di—eo)ﬂ +30, E[(di—eo) SN 2 _90)} }
LN Var[d] < 2 SN, 02 = 0%/ N
’
A 0.2
i Var [o] < Jim T =0

Y

the algorithm converges in quadratic mean, since it is unbiased and with lim n_, o Var [ ] = 0.
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Estimator #2;

On = d;

® it is an unbiased estimator:

E [éN] = Ed;] = 6,

e it does not converge in quadratic mean:

Var [éN] —E {(éN _E [éNDQ} —E [(dj —90)2} = Var[d;] < o

and then it does not vary with the number [V of data

4

the estimation uncertainty is constant and, in particular, it does not decrease

when the number of data grows.
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Estimator #3 (weighted sample mean):

. N
On = Z o d;

1=1

e itis an unbiased estimator if and only if Z,ﬁil a; = 1, because

Blon| = B|ZY, aidi| = TN, i Bldi] = 60 T i = 00 & T 00 =1

Note: the algorithm #1 corresponds to the case o; = % V1;

the algorithm #2 corresponds to the case ov; = 1 and o; = 0, Vi # j

® it can be proven that the minimum variance unbiased estimator has weights
—1
Q ﬁ\f: 1
Q; = o =
" Varld]’ =1 Var|d;]

Intuitively, more uncertain data are considered as less trusted, with lower weights
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e the variance of the minimum variance unbiased estimator is

Var[in] = 8 [ (o~ 2 [13])"] = B [(£2s 0] =

=E (Zfll aidi — Y0, Owﬁo)Q} =K |:(Z7];\L1 i (di — 0

= B |3l of (di—00)" +30;0 1 oi(di —00) 35514 4 ej(dj—0o

= 2N a2 B[~ 02| + N 0B [(di =05, 0 (ds —00)| =
° 1

=N 03Var i)=Y, ——— Var[d] = a*> 1 =

=Var[d;)? = yvar(d;]

—e= [Z’f’il vaj[di]} e {Zﬁil %}_1 -5

e the minimum variance unbiased algorithm converges in quadratic mean, since

2

lim Var {9]\7} < lim 7 =0
N —00 N—ooo N
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Maximum Likelihood estimators

The actual data are generated by a random source, which depends on the outcome s
of a random experiment and on the “true” value 6, of the unknown to be estimated.
However, if a generic value 6 of the unknown parameter is considered, the data can

be seen as function of both the value 6 and the outcome s =
the data can be denoted by d(?) (s), with p.d.f. f(g, ) that is function of 6 too.

Let 0 be the particular data observation that corresponds to a particular outcome s of

the random experiment:

5 = d9(3)
The so-called likelihood function is given by the p.d.f. of the data evaluated in 0:

L) = (a.0)],_s

The Maximum Likelihood (ML) estimate is defined as:

QML: arg max L(@)
OcR”
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Random source of data for a generic value 6 of the unknown parameter:

Random
experiment

Outcome of £

Generic 0

Random
! noise
. >
n ( ) J d(g) “Effective”

) e deal it generic datum
arametric model generic datum (noise-corrupted)

of the system (noise-free)

parameter l
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Example : a scalar parameter 0, € R is estimated using a uniqgue measurement

(i.e., N = 1), corrupted by a zero-mean Gaussian disturbance with variance 0%

—> the random source of data has the following structure:
y=20,+v
where the noise v is a scalar zero-mean Gaussian random variable with p.d.f.

2
@) = N (0.0%) = <L —exp (5]

2O
Since v = y — 0, = the p.d.f. of data y generated by a random source where
a generic value 6 is considered instead of 8, is then given by

f(q,0) = \/%UU eXP<_(gg_%9) )z/\/(ﬁ,a%) =

LO) = £(0.0)], s = —— exp(‘<5‘9>):N(5,ai)

2
20%

f(q, 0) translates when the value of 6 changes = L(0) = f(q,0) |q:5 varies too.

270,
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Maximum Likelihood estimator properties

The estimate 0, is:

e asymptotically unbiased: E (@ML) . 0,
N — 0o

e asymptotically efficient: ZéML < X, Vunbiased ) =~ 9ML, if N — oo

=0

e consistent: lim Zé
N — 00 ML

e asymptotically Gaussian (for N — 00)

Estimation Theory 29
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Example : let us assume that the random source of data has the following structure:
y(t) = (t,0,) +ot), t=1,2,....N < y=U(0,)+v

where (%, 8, ) is a generic nonlinear function of 6, and the disturbance v is a
vector of zero-mean Gaussian random variables with variance >, and p.d.f.

0=V = );d — exp (—30"%19)
(s € v

Sincev =y — \11(6’0) — the p.d.f. of data generated by a random source where a

generic value @ is considered instead of 6, is then given by

o) E——— R 107 (S R ()

V@m)Y det =,

1
V@m)N det £,

L(0) = f(q,0)],—s =
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1
J@mY dets,
U

f(q,0)|,—s is an exponential function of 6

L(0) = f(q,0)|=s =

exp (~3 16— w(O) 2, [5 - w(6))

0yrp= arg max L(f) = arg min
HcR™ HER"™

R(0)
Problem: the global minimum of 2(6) has to be found with respect to 8, but R(6)
may have many local minima if ¥ (8) is a generic nonlinear function of the unknown

variable; the standard nonlinear optimization algorithms do not guarantee to find

always the global minimum.
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Particular case: W(6) = linear function of the unknown parameters = ®¢

4
R (6) is a quadratic function of @ : R (0) = [6 — ®0]" X1 [6 — BO]
4
there exists a unique minimum of R (6), if det(®1 X 1®) # 0

$

_1 .
— ((I)Tijlq)) (I)TZ;15 — Gauss-Markov estimate = Oy =

Weighted Least Squares estimate using the disturbance variance 2.,

If 2, = O',%IN, i.e., independent identically distributed (i.i.d.) disturbance:

. . —1
Onir, = Oan = (CIDTCID) d1'§ = Least Squares estimate
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Gauss-Markov estimate properties

If the disturbance v is Gaussian and W (#) is linear, then the estimate 9GM IS:
e unbiased: F (@GM) =0,

o efficient: X = @'Y 1P~ <X,V unbiased 0+ Ocn

e consistent: lim Zé =
N — 00 GM

e (Gaussian

If the disturbance v is not Gaussian and W () is linear, then the estimate 0 is

the minimum variance estimator among all unbiased and linear estimators.
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e Note that the variance 0,(2) of the disturbance v is usually unknown =-

If the random source of data has the following linear structure

y@t) =) 0, +ov(), t=1,2,....N & y=9&60,+v
where v € RY is a vector of zero-mean random variables that are uncorrelated
and with the same variance o (i.e., Varv] = E|vv! | = 021y),
as in the case of disturbance v(-) given by a white noise W N (0, 02),
then a “reasonable” unbiased estimate 63 (such that E[&%] = 012)) can be

directly derived from data as

o J0)
Y N —n
where N = measurement number, n = number of unknown parameters of 0,

2

vo = 2yt o) 0] = [y — @8] [y — 2f)

> (1)’

N ‘ N
t=1
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