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Estimation problem
The estimation problem refers to the empirical evaluation of an uncertain variable, like

an unknown characteristic parameter or a remote signal, on the basis of observations

and experimental measurements of the phenomenon under investigation.

An estimation problem always assumes a suitable mathematical description (model)

of the phenomenon:

• in the classical statistics, the investigated problems usually involve static models,

characterized by instantaneous (or algebraic) relationships among variables;

• in this course, estimation methods are introduced also for phenomena that are

adequately described by discrete-time dynamic models, characterized by

relationships among variables that can be represented by means of difference

equations (i.e., for simplicity, the time variable is assumed to be discrete).
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Estimation problem
θ(t) : real variable to be estimated, scalar or vector, constant or time-varying;

d(t) : available data, acquired at N time instants t1, t2, . . . , tN ;

T = {t1, t2, . . . , tN} : set of time instants used for observations, distributed with

regularity (in this case, T = {1, 2, . . . , N}) or non-uniformly;

d = {d(t1) , d(t2) , . . . , d(tN )} : observation set.

An estimator (or estimation algorithm ) is a function f(·) that, starting from data,

associates a value to the variable to be estimated:

θ(t) = f(d)

The estimate term refers to the particular value given by the estimator when applied

to the particular observed data.
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Estimation problem classification

1) θ(t) is constant => parametric identification problem:

• the estimator is denoted by θ̂ or by θ̂T ;

• the true value of the unknown variable (if makes sense) is denoted by θo;

2) θ(t) is a time-varying function:

• the estimator is denoted by θ̂ (t|T ) , or by θ̂ (t|N) if the time instants for

observations are uniformly distributed;

• according to the temporal relationship between t and the last time instant tN :

2.a) if t > tN => prediction problem;

2.b) if t = tN => filtering problem;

2.c) if t1<t<tN => regularization or interpolation or smoothing problem.
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Example of prediction problem: time series analysis

Given a sequence of observations (time series or historical data set) of a variable y:

y(1) , y(2) , . . . , y(t)

the goal is to evaluate the next value y(t+ 1) of this variable

⇓

it is necessary to find a good predictor ŷ(t+ 1|t), i.e., a function of available data

that provides the most accurate evaluation of the next value of the variable y:

ŷ(t+ 1|t) = f (y(t) , y(t− 1) , . . . , y(1)) ∼= y(t+ 1)

A predictor is said to be linear if it is a linear function of data:

ŷ(t+1|t) = a1(t)y(t)+a2(t)y(t− 1)+. . .+at(t)y(1) =
t∑

k=1

ak(t)y(t−k+1)
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A linear predictor has a finite memory n if it is a linear function of the last n data only:

ŷ(t+1|t)=a1(t)y(t)+a2(t)y(t−1)+. . .+an(t)y(t−n+1)=
n∑

k=1

ak(t)y(t−k+1)

If all the parameters ai(t) are constant, the predictor is also time-invariant :

ŷ(t+1|t)= a1y(t) + a2y(t−1) + . . .+ any(t−n+1)=
n∑

k=1

aky(t− k + 1)

and it is characterized by the vector of constant parameters

θ = [ a1 a2 · · · an ]T ∈ R
n

⇓

The prediction problem becomes a parametric identification problem.

Questions:

• how to measure the predictor quality?

• how to derive the “best” predictor?
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If the predictive model is linear, time-invariant, with finite memory n much shorter

than the total number of data measured up to time instant t, its predictive capability

over the available data y(i), i = 1, 2, . . . , t, can be evaluated in the following way:

• at each instant i ≥ n, the prediction ŷ(i+ 1|i) of the next value is computed:

ŷ(i+1|i)=a1y(i)+a2y(i−1)+. . .+any(i−n+1)=
∑n

k=1aky(i−k+1)

and its prediction error ε (i+ 1) with respect to y(i+ 1) is evaluated:

ε(i+ 1) = y(i+ 1)− ŷ(i+1|i)

• the model described by θ is a good predictive model if the error ε is “small” over

all the available data ⇒ the following figure of merit is introduced:

J(θ) =
t∑

k=n+1

ε(k)
2

(sum of squares of prediction errors)

• the best predictor is the one that minimizes J and the value of its parameters is:

θ∗ = argmin
θ∈Rn

J(θ)
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For example, if t = 100 and n = 10 ≪ t, for a given θ = [a1 · · · a10 ]
T it results:































ŷ(11|10) = a1y(10) + . . .+ a10y(1) ⇒ ε(11) = y(11)− ŷ(11|10)

ŷ(12|11) = a1y(11) + . . .+ a10y(2) ⇒ ε(12) = y(12)− ŷ(12|11)

.

.

.
.
.
.

ŷ(100|99) = a1y(99) + . . .+ a10y(90) ⇒ ε(100) = y(100)− ŷ(100|99)

and then the behaviour of the prediction error sequence ε(·) is plotted:
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Fundamental question: is the predictor minimizing J necessarily a “good” model?

The predictor quality depends on the fact that the temporal behaviour of the

prediction error sequence ε(·) has the following characteristics:

• its mean value is zero, i.e., it does not show a systematic error;

• it is “fully random”, i.e., it does not contain any regularity element.

In probabilistic terms, this corresponds to require that the behaviour of the error ε(·)

is that of a white noise (WN ) process, i.e., a sequence of independent random

variables with zero mean value and constant variance σ2:

ε(·) =WN
(
0, σ2

)

⇓

A predictor is a “good” model if ε(·) has the white noise probabilistic characteristics.
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Then, the prediction problem can be recast as the study of a stochastic system , i.e.,
a dynamic system whose inputs are probabilistic signals; in fact:







ŷ(t|t− 1) = a1y(t− 1) + a2y(t− 2) + . . .+ any(t−n)

ε(t) = y(t)− ŷ(t|t− 1)
⇒

y(t) = ŷ(t|t− 1) + ε (t) = a1y(t− 1) + a2y(t− 2) + . . .+ any(t−n) + ε(t)

represents a discrete-time LTI dynamic system with output y(t) and input ε(t)

⇓

Z-transforming, with Z[y(t−k)] = z−kY(z) and z−1 the unitary delay operator:

Y (z) = a1z
−1Y (z) + a2z

−2Y (z) + . . .+ anz
−nY (z) + ε(z)

⇓

H(z)=
Y(z)

ε(z)
=

1

1− a1z−1− a2z−2−. . .− anz−n
=

zn

zn− a1zn−1− a2zn−2−. . .− an

represents the transfer function of a LTI dynamic system ⇒ in order to be a “good”

model, its input ε(·) shall have the white noise probabilistic characteristics.

Estimation Theory 10



Politecnico di Torino - DET M. Taragna

Classification of data descriptions

• The actually available information is always:

– bounded ⇒ the measurement number N is necessarily finite;

– corrupted by different kinds of uncertainty (e.g., measurement noise).

• The uncertainty affecting the data can be described:

– in probabilistic terms ⇒ we talk about statistical or classical estimation ;

– in terms of set theory, as a member of some bounded set ⇒

we talk about Set Membership or Unknown But Bounded (UBB) estimation .
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Probabilistic description of data

In the probabilistic (or classical or statistical) framework, data d are assumed to be

produced by a random source of data S , influenced by:

• the outcome s of a random experiment E

• the “true” value θo of the unknown variable to be estimated

d = d (s, θo)

⇓
data d are random variables, since they are functions of the outcome s

⇓

A full probabilistic description of data is constituted by

• its probability distribution F (q) = Prob {d (s, θo) ≤ q} or

• its probability density function f(q) =
dF (q)

dq
, often denoted by p.d.f.

Estimation Theory 12
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Random source of data:

ϕ (·)

E
Random
experiment

s(t) Outcome of E

v(t) Random
variable (noise)

M (·)

θo

d(t) “Real” actual datum
(noise-corrupted)

do(t)
“Ideal” datum
(noise-free)

Parametric model
of the system

“True”
parameter ϕ (·)

E
Random
experiment

s(t) Outcome of E

v(t) Random
variable (noise)

M (·)

θo

d(t) “Real” actual datum
(noise-corrupted)

do(t)
“Ideal” datum
(noise-free)

Parametric model
of the system

“True”
parameter
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Estimator characteristics

A random source of data S , influenced by the outcome s of a random experiment E

and by the “true” value θo of the unknown variable to be estimated, produces data d:

d = d (s, θo)

⇓

data d are random variables, since they are functions of the outcome s

⇓

the estimator f(·) and the estimate θ̂ are random variables too, being functions of d:

θ̂ = f(d) = f(d (s, θo))

⇓

the quality of f(·) and θ̂ depends on their probabilistic characteristics.
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Estimator probabilistic characteristics

• No bias (in order to avoid to introduce any systematic estimation error)

• Minimum variance (smaller scattering around the mean value guarantees higher

probability of obtaining values close to the “true” value θo)

• Asymptotic characteristics (for N → ∞):

– quadratic-mean convergence

– almost-sure convergence

– consistency

Estimation Theory 15
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Estimator probabilistic characteristics
An estimator is said to be unbiased (or correct ) if

E
[

θ̂
]

= θo
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An unbiased estimator does not introduce any systematic estimation error.
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Estimator probabilistic characteristics

An unbiased estimator θ̂
(1)

is said to be efficient (or with minimum variance ) if

V ar[θ̂
(1)

] ≤ V ar[θ̂
(2)

], ∀ unbiased θ̂
(2)

6= θ̂
(1)
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Smaller scattering around the mean value ⇒ higher probability of approaching θo.
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Estimator probabilistic characteristics
An unbiased estimator converges in quadratic mean to θo, i.e., l.i.m.

N→∞

θ̂N =θo, if

lim
N→∞

E
[

‖θ̂N − θo‖
2
]

= 0

where ‖x‖ =
√

∑n
i=1

x2

i , ∀x ∈ R
n, is the Euclidean norm.

An unbiased estimator such that lim
N→∞

V ar
[

θ̂N

]

= 0 converges in quadratic mean:
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Sure and almost-sure convergence, consistency

An estimator is function of both the outcome s of a random experiment E and θo:

θ̂ = f(d) = f(d (s, θo)) ⇒ θ̂ = θ̂ (s, θo)

If a particular outcomes∈S is considered and the sequence of estimates θ̂N (s,θo)

is evaluated for increasing N , a numerical series θ̂1(s,θo), θ̂2(s,θo), . . ., is derived

that may converge to θo for some s, and may not converge for some other s.

Let A be the set of outcomes s guaranteeing the convergence to θo:

• if A ≡ S, then we have sure convergence , since it holds ∀s ∈ S;

• if A ⊂ S, considering A like an event, the probability P (A) may be defined;

if A is such that P (A) = 1, we say that θ̂N converges to θo with probability 1:

lim
N→∞

θ̂N = θo w.p.1

we have almost-sure convergence ⇒ the algorithm is said to be consistent .

Estimation Theory 19
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Example

Problem: N scalar data di with the same mean value E [di] = θo, with variances

V ar [di] possibly different but bounded (∃σ ∈ R+ : V ar [di] ≤ σ2 <∞, ∀i);

data are uncorrelated, i.e.:

E [{di − E [di]} {dj −E [dj ]}] = 0, ∀i 6= j

Estimator #1 (sample mean):

θ̂N =
1

N

N∑

i=1

di

• it is an unbiased estimator:

E
[

θ̂N

]

= E
[

1

N

∑N
i=1

di

]

= 1

N

∑N
i=1

E [di] =
1

N

∑N
i=1

θo = θo

• it converges in quadratic mean:
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V ar
[

θ̂N

]

= E

[

(

θ̂N − E
[

θ̂N

])

2
]

= E

[

(

1

N

∑N
i=1

di − θo

)

2
]

=

= E

[

(

1

N

∑N
i=1

di −
1

N

∑N
i=1

θo

)

2
]

= E

[

(

1

N

∑N
i=1

(di − θo)
)

2
]

=

= E

[

1

N2

(

∑N
i=1

(di − θo)
)

2
]

= 1

N2
E

[

(

∑N
i=1

(di − θo)
)

2
]

=

= 1

N2
E

[

∑N
i=1

(di − θo)
2 +

∑N
i=1

(di − θo)
∑N

j=1,j 6=i (dj − θo)
]

=

= 1

N2

{

∑N
i=1

E
[

(di−θo)
2

]

+
∑N

i=1
E
[

(di−θo)
∑N

j=1,j 6=i(dj−θo)
]}

=

= 1

N2

∑N
i=1

V ar [di] ≤
1

N2

∑N
i=1

σ2 = σ2
/

N

⇓

lim
N→∞

V ar
[

θ̂N

]

≤ lim
N→∞

σ2

N
= 0

⇓

the algorithm converges in quadratic mean, since it is unbiased and with limN→∞ V ar
[

θ̂N

]

= 0.
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Estimator #2:

θ̂N = dj

• it is an unbiased estimator:

E
[

θ̂N

]

= E [dj ] = θo

• it does not converge in quadratic mean:

V ar
[

θ̂N

]

= E

[

(

θ̂N − E
[

θ̂N

])

2
]

= E
[

(dj − θo)
2

]

= V ar [dj ] ≤ σ2

and then it does not vary with the number N of data

⇓

the estimation uncertainty is constant and, in particular, it does not decrease

when the number of data grows.
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Estimator #3 (weighted sample mean):

θ̂N =
N∑

i=1

αidi

• it is an unbiased estimator if and only if
∑N

i=1 αi = 1, because

E
[

θ̂N

]

= E
[

∑N
i=1

αidi

]

=
∑N

i=1
αiE [di] = θo

∑N
i=1

αi = θo ⇔
∑N

i=1
αi = 1

Note: the algorithm #1 corresponds to the case αi =
1
N

, ∀i;

the algorithm #2 corresponds to the case αj = 1 and αi = 0, ∀i 6= j

• it can be proven that the minimum variance unbiased estimator has weights

αi =
α

V ar [di]
, α =

[
N∑

i=1

1

V ar [di]

]−1

intuitively, more uncertain data are considered as less trusted, with lower weights
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• the variance of the minimum variance unbiased estimator is

V ar
[

θ̂N

]

= E

[

(

θ̂N − E
[

θ̂N

])

2
]

= E

[

(

∑N
i=1

αidi − θo

)

2
]

=

= E

[

(

∑N
i=1

αidi −
∑N

i=1
αiθo

)

2
]

= E

[

(

∑N
i=1

αi (di − θo)
)

2
]

=

= E
[

∑N
i=1

α2

i (di−θo)
2 +

∑N
i=1

αi(di−θo)
∑N

j=1,j 6=i αj(dj−θo)
]

=

=
∑N

i=1
α2

iE
[

(di−θo)
2

]

+
∑N

i=1
αiE

[

(di−θo)
∑N

j=1,j 6=iαj(dj−θo)
]

=

=
∑N

i=1
α2

i V ar [di]=
∑N

i=1

α2

V ar[di]
2
V ar[di]= α2

∑N
i=1

1

V ar[di]
=

= α =

[

∑N
i=1

1

V ar [di]

]−1

≤

[

∑N
i=1

1

σ2

]−1

=
σ2

N

• the minimum variance unbiased algorithm converges in quadratic mean, since

lim
N→∞

V ar
[

θ̂N

]

≤ lim
N→∞

σ2

N
= 0
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Maximum Likelihood estimators
The actual data are generated by a random source, which depends on the outcome s

of a random experiment and on the “true” value θo of the unknown to be estimated.

However, if a generic value θ of the unknown parameter is considered, the data can

be seen as function of both the value θ and the outcome s ⇒

the data can be denoted by d(θ)(s), with p.d.f. f(q, θ) that is function of θ too.

Let δ be the particular data observation that corresponds to a particular outcome s of

the random experiment:
δ = d(θ)(s)

The so-called likelihood function is given by the p.d.f. of the data evaluated in δ:

L(θ) = f(q, θ)|q=δ

The Maximum Likelihood (ML) estimate is defined as:

θ̂ML= argmax
θ∈Rn

L(θ)

Estimation Theory 25
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Random source of data for a generic value θ of the unknown parameter:

ϕ (·)

E
Random
experiment

s Outcome of E

v Random
noise

M (·)

θ

d(θ ) “Effective”
generic datum
(noise-corrupted)

“Ideal”
generic datum
(noise-free)

Parametric model
of the system

Generic
parameter ϕ (·)

E
Random
experiment

s Outcome of E

v Random
noise

M (·)

θ

d(θ ) “Effective”
generic datum
(noise-corrupted)

“Ideal”
generic datum
(noise-free)

Parametric model
of the system

Generic
parameter
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Example : a scalar parameter θo ∈ R is estimated using a unique measurement

(i.e., N = 1), corrupted by a zero-mean Gaussian disturbance with variance σ2
v

⇒ the random source of data has the following structure:

y = θo + v

where the noise v is a scalar zero-mean Gaussian random variable with p.d.f.

f(q) = N
(

0, σ2

v

)

=
1√
2πσv

exp

(−q2

2σ2
v

)

Since v = y − θo ⇒ the p.d.f. of data y generated by a random source where

a generic value θ is considered instead of θo is then given by

f(q, θ) =
1√
2πσv

exp

(− (q − θ)2

2σ2
v

)

= N
(

θ, σ
2

v

)

⇒

L(θ) = f(q, θ)|
q=δ

=
1√
2πσv

exp

(− (δ − θ)2

2σ2
v

)

= N
(

δ, σ
2

v

)

f(q, θ) translates when the value of θ changes ⇒ L(θ) = f(q, θ)|q=δ varies too.
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Maximum Likelihood estimator properties

The estimate θ̂ML is:

• asymptotically unbiased: E
(

θ̂ML

)

−−−−−−→
N → ∞

θo

• asymptotically efficient: Σ
θ̂ML

≤ Σ
θ̂
, ∀ unbiased θ̂ 6= θ̂ML, if N → ∞

• consistent: lim
N→∞

Σ
θ̂ML

= 0

• asymptotically Gaussian (for N → ∞)
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Example : let us assume that the random source of data has the following structure:

y(t) = ψ(t, θo) + v(t) , t = 1, 2, . . . , N ⇔ y = Ψ(θo) + v

where ψ(t, θo) is a generic nonlinear function of θo and the disturbance v is a

vector of zero-mean Gaussian random variables with variance Σv and p.d.f.

f(q) = N (0,Σv) =
1

√

(2π)N detΣv

exp
(

− 1

2
q
TΣ−1

v q
)

Since v = y −Ψ(θo)⇒ the p.d.f. of data generated by a random source where a

generic value θ is considered instead of θo is then given by

f(q, θ) =
1

√

(2π)N detΣv

exp
(

− 1

2
[q −Ψ(θ)]T Σ−1

v [q −Ψ(θ)]
)

⇓
L(θ) = f(q, θ)|

q=δ
=

1
√

(2π)N detΣv

exp
(

− 1

2
[δ −Ψ(θ)]T Σ−1

v [δ −Ψ(θ)]
)
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L(θ) = f(q, θ)|
q=δ

=
1

√

(2π)N detΣv

exp
(

− 1

2
[δ −Ψ(θ)]T Σ−1

v [δ −Ψ(θ)]
)

⇓

f(q, θ)|q=δ is an exponential function of θ

⇓

θ̂ML= argmax
θ∈Rn

L(θ) = argmin
θ∈Rn

{

[δ −Ψ(θ)]
T
Σ−1

v [δ −Ψ(θ)]

︸ ︷︷ ︸

R(θ)

}

Problem: the global minimum of R(θ) has to be found with respect to θ, but R(θ)

may have many local minima if Ψ(θ) is a generic nonlinear function of the unknown

variable; the standard nonlinear optimization algorithms do not guarantee to find

always the global minimum.
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Particular case: Ψ(θ) = linear function of the unknown parameters = Φθ

⇓

R (θ) is a quadratic function of θ : R (θ) = [δ − Φθ]
T
Σ−1

v [δ − Φθ]

⇓

there exists a unique minimum of R (θ), if det
(
ΦTΣ−1

v Φ
)
6= 0

⇓

θ̂ML =
(
ΦTΣ−1

v Φ
)−1

ΦTΣ−1
v δ = Gauss-Markov estimate = θ̂GM =

= Weighted Least Squares estimate using the disturbance variance Σv

If Σv = σ2
vIN , i.e., independent identically distributed (i.i.d.) disturbance:

θ̂ML = θ̂GM =
(
ΦTΦ

)−1
ΦT δ = Least Squares estimate
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Gauss-Markov estimate properties

If the disturbance v is Gaussian and Ψ(θ) is linear, then the estimate θ̂GM is:

• unbiased: E
(

θ̂GM

)

= θo

• efficient: Σ
θ̂GM

= [ΦTΣ−1
v Φ]−1 ≤ Σ

θ̂
, ∀ unbiased θ̂ 6= θ̂GM

• consistent: lim
N→∞

Σ
θ̂GM

= 0

• Gaussian

If the disturbance v is not Gaussian and Ψ(θ) is linear, then the estimate θ̂GM is

the minimum variance estimator among all unbiased and linear estimators.
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• Note that the variance σ2
v of the disturbance v is usually unknown ⇒

if the random source of data has the following linear structure

y(t) = ϕ(t)
T
θo + v(t) , t = 1, 2, . . . , N ⇔ y = Φθo + v

where v ∈ R
N is a vector of zero-mean random variables that are uncorrelated

and with the same variance σ2
v (i.e., V ar[v] = E

[
vvT

]
= σ2

vIN ),

as in the case of disturbance v(·) given by a white noise WN(0, σ2
v),

then a “reasonable” unbiased estimate σ̂2
v (such that E[σ̂2

v] = σ2
v) can be

directly derived from data as

σ̂2
v =

J(θ̂)

N − n
where N = measurement number, n = number of unknown parameters of θ,

J(θ̂) =
N∑

t=1
ε(t)

2
∣
∣
∣
θ=θ̂

=
N∑

t=1

[

y(t)− ϕ(t)
T
θ̂
]2

= [y − Φθ̂]T [y − Φθ̂]
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