FUNDAMENTALS OF DYNAMIC SYSTEM IDENTIFICATION

Michele TARAGNA
Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino
michele.taragna@polito.it

III Level Course 02LCPRV / 01LCPRV / 01LCPIU
"Experimental modeling: model building from experimental data"

Model building

- A real system \mathcal{S} is studied for a certain aim or goal:
- prediction/simulation
- control
- understanding/comprehension
- design
- diagnostics
- Two kinds of information are available:
- "a priori" info : previous knowledge, plausible assumptions, physical laws, ...
- "a posteriori" info: experimental measurements
- "a priori" information \Rightarrow theoretical structure of the mathematical model:

$$
M(p), \quad \text { with } p: \text { unknown parameters }
$$

- "a posteriori" information \Rightarrow estimate of the parameters p
- Problem issues:
- "consistency" evaluation of "a priori" and "a posteriori" informations
- evaluation of estimation errors
- Typology of models:
- physical (or "white box") model: reproduction of the inner structure of \mathcal{S}
- black box model: reproduction of the input-output behaviour of \mathcal{S}
- grey box model: suitable combination of physical and black box model

Example \#1: car suspension system

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

m_{2} : overall mass of the body of car with passengers, engine, etc.
k_{2}, β_{2} : spring and damper representing the suspension system
m_{1} : mass of the axis with the rigid part of the wheel
k_{1} : spring representing the tyre

Example \#1: car suspension system

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Goal: for low-frequency vertical movements, study the effects of the road profile p on:

- the body vertical acceleration $\ddot{w}=\frac{d^{2} w}{d t^{2}}$ (to optimize the passenger comfort)
- the wheel vertical acceleration $\ddot{z}=\frac{d^{2} z}{d t^{2}}$

Example \#1: car suspension system

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Further assumptions:
\qquad

1) nonlinear characteristic of $\beta_{2} \Rightarrow$ nonlinear characteristic between the body vs wheel relative speed $\dot{w}-\dot{z}$ and the damper force $\beta_{2}(\dot{w}-\dot{z})$ ($\dot{w}=\frac{d w}{d t}:$ body vertical speed; $\dot{z}=\frac{d z}{d t}:$ wheel vertical speed)

Example \#1: car suspension system

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Further assumptions:

Example \#1: car suspension system

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Further assumptions:都

3) vertical weight forces $m_{1} g$ and $m_{2} g$ due to gravitational field are constant \Rightarrow they are neglected, to focus only on the variations induced by the road profile

Example \#1: car suspension system

Assumption: the car chassis is rigid \Rightarrow a "quarter car" model is used

Using Newton's laws of the vertical dynamics, a continuous-time model is derived:

$$
\left\{\begin{aligned}
m_{1} \ddot{z} & =-\left[k_{1}(z-p)+k_{2}(z-w)+\beta_{2}(\dot{z}-\dot{w})\right] \\
m_{2} \ddot{w} & =-\left[k_{2}(w-z)+\beta_{2}(\dot{w}-\dot{z})\right]
\end{aligned}\right.
$$

A more general model is obtained by introducing the so-called state variables:

$$
\left\{\begin{array}{l}
x_{1}=z \\
x_{2}=\dot{z} \\
x_{3}=w \\
x_{4}=\dot{w}
\end{array}, \quad x(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]\right.
$$

\Downarrow
the two second-order differential equations of the physical model are transformed into four first-order differential equations:

$$
\begin{cases}\dot{x}_{1}=x_{2} & =f_{1}(x(t), u(t)) \\ \dot{x}_{2}=-\frac{k_{1}+k_{2}}{m_{1}} x_{1}-\frac{\beta_{2}}{m_{1}} x_{2}+\frac{k_{2}}{m_{1}} x_{3}+\frac{\beta_{2}}{m_{1}} x_{4}+\frac{k_{1}}{m_{1}} u & =f_{2}(x(t), u(t)) \\ \dot{x}_{3}=x_{4} & =f_{3}(x(t), u(t)) \\ \dot{x}_{4}=\frac{k_{2}}{m_{2}} x_{1}+\frac{\beta_{2}}{m_{2}} x_{2}-\frac{k_{2}}{m_{2}} x_{3}-\frac{\beta_{2}}{m_{2}} x_{4} & =f_{4}(x(t), u(t))\end{cases}
$$

where $u(t)=p(t)$: input variable of the system \Rightarrow
a system of first-order differential equations called state equations is then derived:

$$
\dot{x}(t)=f(x(t), u(t))=\left[\begin{array}{c}
f_{1}(x(t), u(t)) \\
f_{2}(x(t), u(t)) \\
f_{3}(x(t), u(t)) \\
f_{4}(x(t), u(t))
\end{array}\right]
$$

About the variables of interest (body and wheel accelerations):

$$
\begin{cases}y_{1}=\ddot{w}=\frac{k_{2}}{m_{2}} x_{1}+\frac{\beta_{2}}{m_{2}} x_{2}-\frac{k_{2}}{m_{2}} x_{3}-\frac{\beta_{2}}{m_{2}} x_{4} & =\eta_{1}(x(t), u(t)) \\ y_{2}=\ddot{z}=-\frac{k_{1}+k_{2}}{m_{1}} x_{1}-\frac{\beta_{2}}{m_{1}} x_{2}+\frac{k_{2}}{m_{1}} x_{3}+\frac{\beta_{2}}{m_{1}} x_{4}+\frac{k_{1}}{m_{1}} u & =\eta_{2}(x(t), u(t))\end{cases}
$$

where $y(t)$: output variables of the system \Rightarrow
a system of static (or instantaneous) equations called output equations is derived:

$$
y(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\eta(x(t), u(t))=\left[\begin{array}{l}
\eta_{1}(x(t), u(t)) \\
\eta_{2}(x(t), u(t))
\end{array}\right]
$$

- In general, state and output equations are nonlinear (with respect to x and u)
- If k_{1}, k_{2}, β_{2} are constant (i.e., the system works in linearity conditions), while m_{1} and m_{2} are time-varying \Rightarrow a linear time-variant (LTV) model is derived:

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t) \\
y(t) & =C(t) x(t)+D(t) u(t)
\end{aligned}
$$

where $A(t), B(t), C(t)$ and $D(t)$ are suitable time-varying matrices:

$$
\begin{array}{ll}
A(t)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k_{1}+k_{2}}{m_{1}(t)} & -\frac{\beta_{2}}{m_{1}(t)} & \frac{k_{2}}{m_{1}(t)} & \frac{\beta_{2}}{m_{1}(t)} \\
0 & 0 & 0 & 1 \\
\frac{k_{2}}{m_{2}(t)} & \frac{\beta_{2}}{m_{2}(t)} & -\frac{k_{2}}{m_{2}(t)} & -\frac{\beta_{2}}{m_{2}(t)}
\end{array}\right], & B(t)=\left[\begin{array}{c}
0 \\
\frac{k_{1}}{m_{1}(t)} \\
0 \\
0
\end{array}\right] \\
C(t)=\left[\begin{array}{cccc}
\frac{k_{2}}{m_{2}(t)} & \frac{\beta_{2}}{m_{2}(t)} & -\frac{k_{2}}{m_{2}(t)} & -\frac{\beta_{2}}{m_{2}(t)} \\
-\frac{k_{1}+k_{2}}{m_{1}(t)} & -\frac{\beta_{2}}{m_{1}(t)} & \frac{k_{2}(t)}{m_{1}(t)} & \frac{\beta_{2}}{m_{1}(t)}
\end{array}\right], & D(t)=\left[\begin{array}{c}
0 \\
\frac{k_{1}}{m_{1}(t)}
\end{array}\right]
\end{array}
$$

- If $k_{1}, k_{2}, \beta_{2}, m_{1}, m_{2}$ are constant (e.g., for short distances) \Rightarrow a linear time-invariant (LTI) model is derived:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

where A, B, C and D are suitable constant matrices:

$$
\begin{array}{lll}
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k_{1}+k_{2}}{m_{1}} & -\frac{\beta_{2}}{m_{1}} & \frac{k_{2}}{m_{1}} & \frac{\beta_{2}}{m_{1}} \\
0 & 0 & 0 & 1 \\
\frac{k_{2}}{m_{2}} & \frac{\beta_{2}}{m_{2}} & -\frac{k_{2}}{m_{2}} & -\frac{\beta_{2}}{m_{2}}
\end{array}\right], & B=\left[\begin{array}{c}
0 \\
\frac{k_{1}}{m_{1}} \\
0 \\
0
\end{array}\right] \\
C=\left[\begin{array}{cccc}
\frac{k_{2}}{m_{2}} & \frac{\beta_{2}}{m_{2}} & -\frac{k_{2}}{m_{2}} & -\frac{\beta_{2}}{m_{2}} \\
-\frac{k_{1}+k_{2}}{m_{1}} & -\frac{\beta_{2}}{m_{1}} & \frac{k_{2}}{m_{1}} & \frac{\beta_{2}}{m_{1}}
\end{array}\right], & D=\left[\begin{array}{c}
0 \\
\frac{k_{1}}{m_{1}}
\end{array}\right]
\end{array}
$$

Example \#2: car cooling system

Assumption: data are acquired \Rightarrow variables are know only at the sampling times \Rightarrow discrete-time variables must be considered

T_{i} : air temperature inside the car
T_{e} : external environment temperature
T_{c} : cooling system temperature
T_{b} : temperature of the body of the car
Goal: study the effects on T_{i} due to (small) time variations of T_{e} and T_{c}

Example \#2: car cooling system

Assumption: data are acquired \Rightarrow variables are know only at the sampling times \Rightarrow discrete-time variables must be considered

Further (simplifying) assumptions:

1) all the temperatures are not too much different
2) the air temperature T_{i} is constant inside the car
3) the temperature gradients of T_{e}, T_{c} and T_{b} are neglected

Example \#2: car cooling system

Assumption: data are acquired \Rightarrow variables are know only at the sampling times \Rightarrow discrete-time variables must be considered

Considering all the thermal exchanges, a discrete-time model is derived:

$$
\left\{\begin{array}{l}
c_{i} m_{i}\left[T_{i}((j+1) \Delta t)-T_{i}(j \Delta t)\right]= \\
\quad=-\left\{k_{i c}\left[T_{i}(j \Delta t)-T_{c}(j \Delta t)\right]^{m}+k_{i b}\left[T_{i}(j \Delta t)-T_{b}(j \Delta t)\right]\right\} \\
\quad c_{b} m_{b}\left[T_{b}((j+1) \Delta t)-T_{b}(j \Delta t)\right]= \\
\quad=-\left\{k_{i b}\left[T_{b}(j \Delta t)-T_{i}(j \Delta t)\right]+k_{b e}\left[T_{b}(j \Delta t)-T_{e}(j \Delta t)\right]\right\}
\end{array}\right.
$$

Considering all the thermal exchanges, a discrete-time model is derived:

$$
\left\{\begin{array}{l}
c_{i} m_{i}\left[T_{i}((j+1) \Delta t)-T_{i}(j \Delta t)\right]= \\
\quad=-\left\{k_{i c}\left[T_{i}(j \Delta t)-T_{c}(j \Delta t)\right]^{m}+k_{i b}\left[T_{i}(j \Delta t)-T_{b}(j \Delta t)\right]\right\} \\
\quad c_{b} m_{b}\left[T_{b}((j+1) \Delta t)-T_{b}(j \Delta t)\right]= \\
\quad=-\left\{k_{i b}\left[T_{b}(j \Delta t)-T_{i}(j \Delta t)\right]+k_{b e}\left[T_{b}(j \Delta t)-T_{e}(j \Delta t)\right]\right\}
\end{array}\right.
$$

Δt : sampling time
c_{i} : thermal capacity of the air inside the car (almost constant at 20°)
m_{i} : mass of the air inside the car
$k_{i c}$: thermal conductivity between the air inside the car and the cooling system
$m \in[1,1.5]$: parameter depending on the kind of cooling system and on how it is placed
$k_{i b}$: thermal conductivity between the air inside the car and the body of the car
c_{b} : thermal capacity of the body of the car
m_{b} : mass of the body of the car
$k_{b e}$: thermal conductivity between the body of the car and the external environment

A more general model is obtained by introducing the so-called state variables:

$$
\left\{\begin{array}{l}
x_{1}(j)=T_{i}(j \Delta t) \\
x_{2}(j)=T_{b}(j \Delta t)
\end{array}, \quad x(j)=\left[\begin{array}{l}
x_{1}(j) \\
x_{2}(j)
\end{array}\right]\right.
$$

and the input variables:

$$
\left\{\begin{array}{c}
u_{1}(j)=T_{c}(j \Delta t) \\
u_{2}(j)=T_{e}(j \Delta t)
\end{array}, \quad u(j)=\left[\begin{array}{l}
u_{1}(j) \\
u_{2}(j)
\end{array}\right]\right.
$$

two first-order difference equations are obtained:

$$
\left\{\begin{aligned}
x_{1}(j+1) & =x_{1}(j)-\frac{1}{c_{i} m_{i}}\left\{k_{i c}\left[x_{1}(j)-u_{1}(j)\right]^{m}+k_{i b}\left[x_{1}(j)-x_{2}(j)\right]\right\}= \\
& =\frac{c_{i} m_{i}-k_{i b}}{c_{i} m_{i}} x_{1}(j)+\frac{k_{i b}}{c_{i} m_{i}} x_{2}(j)-\frac{k_{i c}}{c_{i} m_{i}}\left[x_{1}(j)-u_{1}(j)\right]^{m}=f_{1}(x(j), u(j)) \\
x_{2}(j+1) & =x_{2}(j)-\frac{1}{c_{b} m_{b}}\left\{k_{i b}\left[x_{2}(j)-x_{1}(j)\right]+k_{b e}\left[x_{2}(j)-u_{2}(j)\right]\right\}= \\
& =\frac{k_{i b}}{c_{b} m_{b}} x_{1}(j)+\frac{c_{b} m_{b}-k_{i b}-k_{b e}}{c_{b} m_{b}} x_{2}(j)+\frac{k_{b e}}{c_{b} m_{b}} u_{2}(j)=f_{2}(x(t), u(t))
\end{aligned}\right.
$$

a system of first-order difference equations called state equations is then derived:

$$
x(j+1)=f(x(j), u(j))=\left[\begin{array}{l}
f_{1}(x(j), u(j)) \\
f_{2}(x(j), u(j))
\end{array}\right]
$$

About the variable of interest (air temperature T_{i}), the output equation is:

$$
y(j)=T_{i}(j \Delta t)=x_{1}(j)=\eta(x(j), u(j))
$$

where $y(j)$: output variable of the system

- If $m \neq 1$, state equations are nonlinear (with respect to x and u)
- If all the coefficients are constant and $m=1 \Rightarrow$ a linear time-invariant (LTI) model is derived:

$$
\begin{aligned}
x(j+1) & =A x(j)+B u(j) \\
y(j) & =C x(j)+D u(j)
\end{aligned}
$$

where A, B, C and D are suitable constant matrices:

$$
\begin{array}{ll}
A=\left[\begin{array}{cc}
\frac{c_{i} m_{i}-k_{i b}-k_{i c}}{c_{i} m_{i}} & \frac{k_{i b}}{c_{i} m_{i}} \\
\frac{k_{i b}}{c_{b} m_{b}} & \frac{c_{b} m_{b}-k_{i b}-k_{b e}}{c_{b} m_{b}}
\end{array}\right], & B=\left[\begin{array}{cc}
\frac{k_{i c}}{c_{i} m_{i}} & 0 \\
0 & \frac{k_{b e}}{c_{b} m_{b}}
\end{array}\right] \\
C=\left[\begin{array}{ccc}
1 & 0
\end{array}\right], & D=\left[\begin{array}{cc}
0 & 0
\end{array}\right] \tag{0}
\end{array}
$$

Input-output representations

- At first, linear dynamics systems will be considered (much simpler case); later, also nonlinear dynamic systems will be analyzed
- Some mathematical instruments are necessary:
- the Laplace transform for continuous-time linear time-invariant systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \quad \forall t \in \mathbb{R}
$$

- the z-transform for discrete-time linear time-invariant systems

$$
\begin{aligned}
x(j+1) & =A x(j)+B u(j) \\
y(j) & =C x(j)+D u(j)
\end{aligned}
$$

- Input-output representation can be directly derived from state variable models

(Unilateral) Laplace transform

Laplace transform takes as argument a continuous-time real function $f(t): \mathbb{R} \rightarrow \mathbb{R}$ and returns a complex valued function $F(s): \mathbb{C} \rightarrow \mathbb{C}$ defined as:

$$
F(s)=\mathcal{L}[f(t)]=\int_{t=0_{-}}^{\infty} f(t) e^{-s t} d t, \quad s=\sigma+j \omega \in \mathbb{C}
$$

Main properties:

- The Laplace transform \mathcal{L} is invertible, with a unique inverse transform \mathcal{L}^{-1}
- Both \mathcal{L} and \mathcal{L}^{-1} are linear operators: $\mathcal{L}\left[\alpha_{1} f_{1}(t)+\alpha_{2} f_{2}(t)\right]=\alpha_{1} F_{1}(s)+\alpha_{2} F_{2}(s)$
- The Laplace transforms of the time derivatives of $f(t)$ are:

$$
\begin{aligned}
\mathcal{L}\left[\frac{d f(t)}{d t}\right] & =s F(s)-f\left(t=0_{-}\right) \\
\mathcal{L}\left[\frac{d^{2} f(t)}{d t^{2}}=\frac{d \frac{d f(t)}{d t}}{d t}=\frac{d g(t)}{d t}\right] & =s G(s)-g\left(t=0_{-}\right)= \\
& =s^{2} F(s)-s \cdot f\left(t=0_{-}\right)-\left.\frac{d f(t)}{d t}\right|_{t=0_{-}}
\end{aligned}
$$

- Laplace transforms can be applied to continuous-time LTI state representations, transforming linear differential equations into linear algebraic equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathcal{L}[\dot{x}(t)]=s X(s)-x\left(t=0_{-}\right)=s X(s)-x_{0} \\
\mathcal{L}[A x(t)+B u(t)]=A X(s)+B U(s)
\end{array} \Rightarrow\right. \\
& s X(s)-x_{0}=A X(s)+B U(s) \Rightarrow \\
& s X(s)-A X(s)=(s I-A) X(s)=x_{0}+B U(s)
\end{aligned}
$$

If $\operatorname{det}(s I-A) \neq 0$, then $(s I-A)$ is invertible $\Rightarrow \exists$ a unique $(s I-A)^{-1}$. The values of s that give $\operatorname{det}(s I-A)=0$ are the eigenvalues of A, whose number is equal to the dimension n of the matrix A, because $\operatorname{det}(s I-A)$ is a polynomial of degree n in the variable $s(\Leftarrow$ fundamental theorem of algebra) \Rightarrow with the exception of n values of s for which $\operatorname{det}(s I-A)=0$:

$$
X(s)=(s I-A)^{-1} x_{0}+(s I-A)^{-1} B U(s)
$$

- Moreover:

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathcal{L}[y(t)]=Y(s) \\
\mathcal{L}[C x(t)+D u(t)]=C X(s)+D U(s)
\end{array} \Rightarrow\right. \\
Y(s)=C X(s)+D U(s) \Rightarrow
\end{gathered} \begin{aligned}
& Y(s)=C(s I-A)^{-1} x_{0}+\left[C(s I-A)^{-1} B+D\right] U(s)
\end{aligned}
$$

- In particular, for $x_{0}=0$ (i.e., the system is initially at rest):

$$
Y(s)=H(s) U(s)
$$

$H(s)=C(s I-A)^{-1} B+D:$ transfer matrix of the system $\in \mathbb{C}^{q \times p}$
since in general

$$
u(t)=\left[\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{p}(t)
\end{array}\right] \in \mathbb{R}^{p}, \quad y(t)=\left[\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{q}(t)
\end{array}\right] \in \mathbb{R}^{q}
$$

with $p=$ number of inputs, $q=$ number of outputs

- In the SISO case $(p=q=1), H(s)$ is simply a transfer function, whose form is a rational function, i.e. a ratio of two polynomials in s :

$$
\begin{aligned}
H(s) & =\frac{Y(s)}{U(s)}=\frac{N_{H}(s)}{D_{H}(s)}= \\
& =\frac{D s^{n}+b_{1} s^{n-1}+b_{2} s^{n-2}+\ldots+b_{n}}{\operatorname{det}(s I-A)}=\frac{D s^{n}+b_{1} s^{n-1}+b_{2} s^{n-2}+\ldots+b_{n}}{s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\ldots+a_{n}}
\end{aligned}
$$

where the degree of the two polynomials is not greater than $n=$ system order $=$ number of states $=$ dimension of the state vector x

- The denominator of $H(s)$ is the characteristic polynomial $p_{c}(s)$ of A, defined as $\operatorname{det}(s I-A)$, whose roots are the eigenvalues of A for which no solution exists for the equation $(s I-A) X(s)=x_{0}+B U(s)$
- Zeros z_{i} of $H(s)$: roots of numerator polynomial $N_{H}(s)$
- Poles p_{i} of $H(s)$: roots of denominator polynomial $D_{H}(s)$
- In general, $H(s)$ can be factorized as:

$$
H(s)=D \frac{\prod_{i=1}^{n}\left(s-z_{i}\right)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \text { if } D \neq 0, \quad H(s)=b_{1} \frac{\prod_{i=1}^{n-1}\left(s-z_{i}\right)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \text { if } D=0
$$

- In the MIMO case ($p>1$ and/or $q>1$), $H(s)$ is a matrix in $\mathbb{C}^{q \times p}$ whose elements are transfer functions:

$$
H(s)=\left[\begin{array}{ccccc}
H_{11}(s) & \cdots & H_{1 j}(s) & \cdots & H_{1 p}(s) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
H_{i 1}(s) & \cdots & H_{i j}(s) & \cdots & H_{i p}(s) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
H_{q 1}(s) & \cdots & H_{q j}(s) & \cdots & H_{q p}(s)
\end{array}\right]
$$

where $H_{i j}(s)$ is the transfer function between the j-th input $U_{j}(s)$ and the i-th output $Y_{i}(s)$, assuming that $U_{k}(s)=0 \forall k \neq j$, since:

$$
\begin{array}{r}
Y_{i}(s)=\sum_{j=1}^{p} H_{i j}(s) U_{j}(s) \Rightarrow \\
H_{i j}(s)=\left.\frac{Y_{i}(s)}{U_{j}(s)}\right|_{U_{k}(s)=0, \forall k \neq j}
\end{array}
$$

(Unilateral) z-transform

z-transform takes as argument a discrete-time real function $f(k): \mathbb{N} \rightarrow \mathbb{R}$ and returns a complex valued function $F(z): \mathbb{C} \rightarrow \mathbb{C}$ defined as:

$$
F(z)=\mathcal{Z}[f(k)]=\sum_{k=0}^{\infty} f(k) z^{-k}, \quad z=|z| e^{j \arg (z)} \in \mathbb{C}
$$

Main properties:

- The z-transform \mathcal{Z} is invertible, with a unique inverse transform \mathcal{Z}^{-1}
- Both \mathcal{Z} and \mathcal{Z}^{-1} are linear operators
- The z-transform of the one-step left (or forward or in advance) shifted function $f(k+1)$ is:

$$
\mathcal{Z}[f(k+1)]=z F(z)-z \cdot f(k=0)
$$

- The z-transform of the l-step right (or backward) shifted function $f(k-l)$ is:

$$
\mathcal{Z}[f(k-l)]=z^{-l} F(z)
$$

- The z-transform can be applied to discrete-time LTI state representations, transforming linear difference equations into linear algebraic equations:

$$
\left\{\begin{array}{c}
\mathcal{Z}[x(j+1)]=z X(z)-z \cdot x(j=0)=z X(z)-z \cdot x_{0} \\
\mathcal{Z}[A x(j)+B u(j)]=A X(z)+B U(z) \\
z X(z)-z \cdot x_{0}=A X(z)+B U(z) \Rightarrow \\
z X(z)-A X(z)=(z I-A) X(z)=z \cdot x_{0}+B U(z)
\end{array}\right.
$$

If $\operatorname{det}(z I-A) \neq 0$, then $(z I-A)$ is invertible $\Rightarrow \exists$ a unique $(z I-A)^{-1}$. The values of z that give $\operatorname{det}(z I-A)=0$ are the eigenvalues of A, whose number is equal to the dimension n of the matrix A, because $\operatorname{det}(z I-A)$ is a polynomial of degree n in the variable z (\Leftarrow fundamental theorem of algebra) \Rightarrow with the exception of n values of s for which $\operatorname{det}(z I-A)=0$:

$$
X(z)=z \cdot(z I-A)^{-1} x_{0}+(z I-A)^{-1} B U(z)
$$

- Moreover:

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\mathcal{Z}[y(j)]=Y(z) \\
\mathcal{Z}[C x(j)+D u(j)]=C X(z)+D U(z)
\end{array} \Rightarrow\right. \\
Y(z)=C X(z)+D U(z) \Rightarrow
\end{array}\right\} \begin{aligned}
& Y(z)=z \cdot C(z I-A)^{-1} x_{0}+\left[C(z I-A)^{-1} B+D\right] U(z)
\end{aligned}
$$

- In particular, for $x_{0}=0$ (i.e., the system is initially at rest):

$$
Y(z)=H(z) U(z)
$$

$H(z)=C(z I-A)^{-1} B+D:$ transfer matrix of the system $\in \mathbb{C}^{q \times p}$
since in general

$$
u(t)=\left[\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{p}(t)
\end{array}\right] \in \mathbb{R}^{p}, \quad y(t)=\left[\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{q}(t)
\end{array}\right] \in \mathbb{R}^{q}
$$

with $p=$ number of inputs, $q=$ number of outputs

Input-output representation in regression form

The input-output representation of a SISO discrete-time LTI model, for $x_{0}=0$, is:

$$
Y(z)=H(z) U(z)=\frac{D z^{n}+b_{1} z^{n-1}+b_{2} z^{n-2}+\ldots+b_{n}}{z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\ldots+a_{n}} U(z)
$$

By taking some simple algebraic manipulation:

$$
\begin{gathered}
\left(z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\ldots+a_{n}\right) \cdot Y(z)=\left(D z^{n}+b_{1} z^{n-1}+b_{2} z^{n-2}+\ldots+b_{n}\right) \cdot U(z) \\
z^{n} Y(z)+a_{1} z^{n-1} Y(z)+a_{2} z^{n-2} Y(z)+\ldots+a_{n} Y(z)= \\
=D z^{n} U(z)+b_{1} z^{n-1} U(z)+b_{2} z^{n-2} U(z)+\ldots+b_{n} U(z)
\end{gathered}
$$

dividing by z^{n} and then leaving only the term $Y(z)$ in the left hand side:

$$
\begin{aligned}
& Y(z)+a_{1} z^{-1} Y(z)+a_{2} z^{-2} Y(z)+\ldots+a_{n} z^{-n} Y(z)= \\
& \quad=D U(z)+b_{1} z^{-1} U(z)+b_{2} z^{-2} U(z)+\ldots+b_{n} z^{-n} U(z) \\
& Y(z)=-a_{1} z^{-1} Y(z)-a_{2} z^{-2} Y(z)-\ldots-a_{n} z^{-n} Y(z)+ \\
& \quad+D U(z)+b_{1} z^{-1} U(z)+b_{2} z^{-2} U(z)+\ldots+b_{n} z^{-n} U(z)
\end{aligned}
$$

$$
\begin{gathered}
Y(z)=-a_{1} z^{-1} Y(z)-a_{2} z^{-2} Y(z)-\ldots-a_{n} z^{-n} Y(z)+ \\
+D U(z)+b_{1} z^{-1} U(z)+b_{2} z^{-2} U(z)+\ldots+b_{n} z^{-n} U(z) \\
\Downarrow \mathcal{Z}^{-1} \\
y(j)=-a_{1} y(j-1)-a_{2} y(j-2)-\ldots-a_{n} y(j-n)+ \\
+D u(j)+b_{1} u(j-1)+b_{2} u(j-2)+\ldots+b_{n} u(j-n) \\
=-\sum_{i=1}^{n} a_{i} y(j-i)+D u(j)+\sum_{i=1}^{n} b_{i} u(j-i)
\end{gathered}
$$

(input-output representation in regression form for a SISO discrete-time LTI model)

- For a LTI model of dimension n, the output $y(j)$ is a linear combination of:
- the n past values of the output from $y(j-1)$ up to $y(j-n)$
- the n past values of the input from $u(j-1)$ up to $u(j-n)$
- possibly the input $u(j)$, if $D \neq 0$

Neither output values from $y(j-n-1)$ to $y(j-\infty)$, neither past input values from $u(j-n-1)$ to $u(j-\infty)$ have influence on $y(j)$

- Problem: estimate $a_{1}, a_{2}, \ldots, a_{n}, D, b_{1}, b_{2}, \ldots, b_{n}$ from experimental data

A finite number N of measurements of input $u(\cdot)$ and output $y(\cdot)$ is performed, supposing for simplicity that there is not measurement error $\Rightarrow \forall j \in[n+1, N]$:

$$
\begin{gathered}
y(j)=-a_{1} y(j-1)-\ldots-a_{n} y(j-n)+D u(j)+b_{1} u(j-1)+\ldots+b_{n} u(j-n) \\
\Downarrow
\end{gathered}
$$

a set of $N-n$ linear algebraic equations is obtained:

$$
\begin{aligned}
& \left(y(n+1)=-a_{1} y(n)-\ldots-a_{n} y(1)+D u(n+1)+b_{1} u(n)+\ldots+b_{n} u(1)\right. \\
& \left\{y(n+2)=-a_{1} y(n+1)-\ldots-a_{n} y(2)+D u(n+2)+b_{1} u(n+1)+\ldots+b_{n} u(2)\right. \\
& y(N)=-a_{1} y(N-1)-\ldots-a_{n} y(N-n)+D u(N)+b_{1} u(N-1)+\ldots+b_{n} u(N-n) \\
& \underbrace{\left[\begin{array}{c}
y(n+1) \\
y(n+2) \\
\vdots \\
y(N)
\end{array}\right]}=\underbrace{\left[\begin{array}{ccccccc}
-y(n) & \cdots & -y(1) & u(n+1) & u(n) & \cdots & u(1) \\
-y(n+1) & \cdots & -y(2) & u(n+2) & u(n+1) & \cdots & u(2) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-y(N-1) & \cdots-y(N-n) & u(N) & u(N-1) & \cdots & u(N-n)
\end{array}\right]}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n} \\
D \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \\
& y^{N} \in \mathbb{R}^{N-n} \\
& L \in \mathbb{R}^{(N-n) \times(2 n+1)}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
y(n+1) \\
y(n+2) \\
\vdots \\
y(N)
\end{array}\right]}
\end{gathered} \underbrace{\left[\begin{array}{ccccccc}
-y(n) & \cdots & -y(1) & u(n+1) & u(n) & \cdots & u(1) \\
-y(n+1) & \cdots & -y(2) & u(n+2) & u(n+1) & \cdots & u(2) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-y(N-1) & \cdots & -y(N-n) & u(N) & u(N-1) & \cdots & u(N-n)
\end{array}\right]}_{y^{N} \in \mathbb{R}^{N-n}} \underbrace{\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n} \\
D \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]}_{L \in \mathbb{R}^{(N-n) \times(2 n+1)}} \underbrace{\left[\begin{array}{c}
N \\
y^{N}=L \cdot \theta
\end{array}\right.}_{\theta \in \mathbb{R}^{2 n+1}}
$$

- y^{N}, L : known matrices (depend only on measurements $y(\cdot)$ and $u(\cdot)$)
- θ : unknown vector
- Estimation problem: how to evaluate θ from experimental data?
- If L is square (i.e., $N=3 n+1$) and invertible $\Rightarrow \theta=L^{-1} \cdot y^{N}$
- Otherwise?

