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Summary

• Motivations for the identification of dynamic uncertainty models

• Model set identification theory

• Identification errors and optimality concepts

• Assumptions on system and noise and their validation

• Norms for measuring the identification error: H∞, ℓ1, H2

• H∞ identification:

– validation methods

– linear, “two-stage”, interpolatory algorithms

– optimal and “nearly-optimal” algorithms

– reduced order uncertainty models

– (identification-control interaction)
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Motivations

Problem: make inferences on an actual dynamic system So starting from general

information on it and from a finite number N of noisy measurements

yN = FN (So) + eN

ր ↑ տ

measurement “information measurement
vector operator” noise

(known) (known) (unknown)

Examples of inference: - prediction of the future response of So

- control design of the future response of So

- fault detection

- diagnosis

- . . .
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• Experimental information

– Time-domain measurements: N samples of the output y of the system So,

initially at rest, fed by a known one-sided input u (uℓ = 0 for ℓ < 0, u0 6= 0)

yℓ =
ℓ∑

k=0

hSo

k uℓ−k + eℓ, ℓ = 0, . . . , N − 1

⇓
information operator : FN (S) = FNhS

with FN :=
[

UN 0N×∞

]

∈RN×∞, UN :=

















u0 0 · · · 0

u1 u0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

uN−1 uN−2 · · · u0

















∈RN×N ,

hS :=
{

hS
0 , h

S
1 , . . .

}

= impulse response of S
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– Frequency-domain measurements: real and imaginary parts of N/2 samples

of the system frequency responseSo(ωk)=
∞∑

ℓ=0

hSo

ℓ e−jℓωk, k=1, . . . , N/2:






y2k−2 = ℜe (So (ωk)) + e2k−2,

y2k−1 = ℑm (So (ωk)) + e2k−1,
k = 1, . . . , N/2

⇓

information operator : FN (S) = FNhS

FN :=
[

ΩT(ω1) · · · ΩT
(

ωN/2

)

]T
∈ RN×∞

Ω(ω) :=





Ω1(ω)

Ω2(ω)



 =





ℜe (Ψ(ω))

ℑm (Ψ(ω))



 ∈ R2×∞

Ψ(ω) :=
[

1 e−jω e−j2ω · · ·
]

∈ C1×∞
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• Approach:

– estimate a model M̂

– make the inference on the model M̂

– compute the inference error E(M̂) due to the fact that

the inference is made on M̂ instead of So

• Problems:

– given a model M̂ , compute the error E(M̂)

– find a model M̂ that gives a “small” error E(M̂)

– analyze the asymptotic behavior of the error E(M̂) for N → ∞
– design the experiment in order to have a “small” error E(M̂)

• With no assumption on So and on eN , the error E(M̂) is unbounded

⇓
which kind of “a priori” information on So and eN can be reasonably assumed?
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Classical statistical identification theory

• Assumptions :

– So ∈ K = {Mn (p) , p ∈ R
n}: set of parametric dynamic models

(for example, models with rational transfer function of a given order)

– eN : stochastic noise with known probability density function
(possibly filtered by a parametric noise model)

⇓
statistical parametric estimation problem:

yN = FN (Mn (p)) + eN

• If So /∈ K , as it happens in most practical applications, then

yN = FN (Mn (p)) + eN + unmodeled dynamics

⇓
how to account for the unmodeled dynamics?

Set Membership identification with unmodeled dynamics 6



Politecnico di Torino - DAUIN M. Taragna

Model set identification theory

• Assumptions :

– So ∈ K= nonfinitely parameterized subset S of dynamic systems
(e.g., systems with an exponentially decaying impulse response)

– eN ∈ Be= bounded set

• Feasible Systems Set : set of all the systems consistent with the assumptions
and the experimental data (unfalsified systems set)

FSS
(
K,Be, FN , yN

)
:=

{
S ∈ K : yN = FN (S) + ẽN , ẽN ∈ Be

}

– the FSS summarizes the overall information on the system to be identified
(assumptions on So and eN , data yN )

– So ∈ FSS if the assumptions are “true” ⇒
validating the assumptions ⇔ checking that the FSS is not void

– if the assumptions are too weak ⇒ the FSS is huge or even unbounded
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• Problem:

in most cases, the FSS is not represented in a form suitable to be used ⇒
model sets with a suitable form and including the FSS are looked for

⇓
• Model set : a set of models M ⊆ S is called a model set for So if

M ⊇ FSS ∋ So

• Additive model sets are considered, of the form:

M =
{

M̂ +∆ : ||∆||S ≤ γ
}

M̂ ∈ S : nominal model

∆ = So − M̂ : model error (unmodeled dynamics)

|| · ||S : norm in the space of the dynamic systems S
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• Identification algorithm φ:

φ
(
K,Be, FN , yN

)
= M̂

• Measure of the error due to the inference made on M̂ instead of So:

δ(M̂) = ‖So − M̂‖S ≤ sup
S∈FSS

‖S − M̂‖S

it is the tightest upper bound and it is bounded thanks to the assumptions on So

⇓

given a model M̂ , the “smallest” additive model set is:

M̂ =

{

M̂ +∆ : ||∆||S ≤ sup
S∈FSS

‖S − M̂‖S
}
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• Identification error of an algorithm φ, identification error of a model set M̂:

E (φ) = E(M̂) := sup
S∈FSS(K,Be,FN ,yN )

‖S − φ
(
K,Be, FN , yN

)
‖S

– it is the minimal inference error guaranteed by the model M̂ , identified by

the algorithm φ applied to the available information
(
K,Be, FN , yN

)

– it is not conservative with respect to the noise, since it accounts for

the effective noise realization during the experiment
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• Optimal algorithm, optimal model set

i) a model set M∗ is optimal if it minimizes the inference error

for the actual set of available information
(
K,Be, FN , yN

)
:

E(M∗) = inf
M̂⊆S

E(M̂) = r
(
K,Be, FN , yN

)

r
(
K,Be, FN , yN

)
:= inf

φ
sup

S∈FSS

∥
∥S − φ

(
K,Be, FN , yN

)∥
∥
S

= radius of information

ii) an algorithm φ∗ is optimal if it minimizes the inference error

for any possible set of information
(
K,Be, FN , yN

)
:

E (φ∗)=r
(
K,Be, FN , yN

)
, ∀

(
K,Be, FN , yN

)
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– the central algorithm is optimal, defined as:

φc
(
yN

)
= M c = arg inf

M∈S
sup

S∈FSS
‖S −M‖S

︸ ︷︷ ︸

Chebicheff center of the FSS

⇒ the corresponding central model set is optimal, defined as:

Mc = {M c +∆ : ||∆||S ≤ r}

– in many cases, the central model M c cannot be computed

⇓

suboptimal algorithms are considered
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• Suboptimal algorithms

* linear (parametric) algorithms

* two-steps nonlinear (nonparametric) algorithms

Helmicki-Jacobson-Nett: TAC 1991; Partington: IJC 1991;

Gu-Khargonekar: Automatica 1992, TAC 1992; . . .

* interpolatory nonlinear (nonparametric) algorithms

Chen-Nett-Fan: ACC 1992, TAC 1995; Bai-Raman: ACC 1992;

Chen-Nett: CDC 1993, TAC 1995; Gu-Xiong-Zhou: S&CL 1993; . . .

* mixed parametric - nonparametric algorithms

Wahlberg-Ljung: TAC 1992; Kosut-Boyd: TAC 1992; Younce-Rohrs: TAC 1992;

Zhou-Kimura: TAC 1995; Giarré-Milanese-Taragna: TAC 1997; . . .
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• Suboptimal algorithms

– they are computationally simpler than the central algorithm,

but they require to accept a deterioration in the identification accuracy

– the nominal model can be in a form not suitable for the following use

(for example, too high order, ...) ⇒
algorithms are looked for that provide model sets with low order nominal models,

but they imply a further deterioration in the identification quality

⇓

how to measure such a deterioration?

Set Membership identification with unmodeled dynamics 14



Politecnico di Torino - DAUIN M. Taragna

• Optimality level of an algorithm φ:

an algorithm φ is α-optimal if ∃α ∈ R such that

E
(
φ
(
K,Be,FN ,yN

))
≤ α · r

(
K,Be,FN ,yN

)
, ∀

(
K,Be,FN ,yN

)

– it measures the algorithm quality with respect to the optimal algorithm in the

worst case, considering any possible information (assumptions and data)

– the interpolatory nonlinear algorithms are 2-optimal for any norm and for this

reason they are called “almost optimal”
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• Optimality level of a model set M̂:

α(M̂) = E(M̂)
/

r ≥ 1

– it measures the actual quality of the identified model set with respect to the

optimal one, considering the available information only (assumptions and data)

– the exact evaluation of α(M̂) is difficult, because in general the computation

of E(M̂) and r is a very hard problem
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• Convergence :

an algorithm φ is termed convergent if

lim
N→∞
Be→∅

E (φ) = 0

• Robust convergence :

an algorithm φ is termed robustly convergent if it is convergent

independently of the a priori information on the system and on the noise

Set Membership identification with unmodeled dynamics 17
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Classification
• Norm || · ||S to measure the identification error

‖S (z)‖W∞ := sup
0≤ω≤2π

∣
∣W−1(ω)S(ω)

∣
∣ ⇒ H∞ identification

‖S (z)‖1 :=
∑∞

k=−∞

∣
∣hS

k

∣
∣ ⇒ ℓ1 identification

‖S (z)‖2 :=
√
∑∞

k=−∞

∣
∣hS

k

∣
∣
2 ⇒ H2 identification

• “A priori” information on the measurement noise eN

eN ∈ Be,∞ :=
{
ẽN ∈ R

N : ||AẽN ||We
∞ ≤ ε

}

eN ∈ Be,2 :=
{
ẽN ∈ R

N : ||ẽN ||2 ≤ ε
}

Be,∞ is more suitable to deterministically characterize the measurement noise,

similarly to what happens with the statistical identification
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• “A priori” information on the system So

S : Banach space of dynamic, SISO, discrete-time, causal, LTI,

BIBO-stable, possibly infinite dimensional systems, with

hS :=
{
hS
k

}∞

k=0
: impulse response of S ∈ S

S (z) :=
∞∑

k=0

hS
k z

k : transfer function of S (or Λ-transform of hS )

So ∈ H∞ (D) : actual system to be identified, partially known, with

H∞(D) :=

{

f : D → C | f analytic in D, ‖f‖
∞

:= ess sup
z∈D

|f (z)|<∞

}

D := {z ∈ C : |z| < 1} : open unitary circle
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1. So is an exponentially stable system, with a known maximum steady-state

gain M > 0 with respect to an input ρ−keiωk , ρ > 1:

So ∈ K
(1)
ρ,M := {S ∈ H∞ (D) : S (z) ∈ Hρ,M (D)}

Hρ,M (D):=

{

f : D → C | f analytic in Dρ, ‖f‖∞,ρ := sup
z∈Dρ

|f (z)|≤M

}

Dρ := {z ∈ C : |z| ≤ ρ} : closed circle of radius ρ

[Helmicki-Jacobson-Nett: TAC ’91; Partington: IJC ’91; Gu-Khargonekar: TAC ’92;

Gu-Xiong-Zhou: SCL ’93; Chen-Nett-Fan: TAC ’95; . . .]

2. So is an exponentially stable system, with an envelope Mρ−k on the

impulse response, being M > 0 and ρ > 1 known constants:

So ∈ K
(2)
ρ,M :=

{
S ∈ H∞ (D) :

∣
∣hS

k

∣
∣ ≤ Mρ−k, ∀k ≥ 0

}

[Giarré-Milanese-Taragna: TAC ’97; Milanese-Taragna: TAC ’02; . . .]
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3. So has a known upper bound γ > 0 on the absolute value of the transfer

function derivative:

So ∈ K(3)
γ

.
=

{

S ∈ H∞ (D) : sup
z∈D

∣
∣
∣
∣

dS (z)

dz

∣
∣
∣
∣
≤ γ

}

[Glaum-Lin-Zames: CDC ’96]

4. So has a known upper bound γ > 0 on the absolute value of the real and

imaginary parts of the transfer function derivative:

So ∈ K(4)
γ

.
=

{

S ∈ H∞ (D) : sup
ω∈[0,2π]

∣
∣
∣
∣

dSR/I (ω)

dω

∣
∣
∣
∣
≤ γ

}

[Milanese-Novara-Taragna: ECC ’01]

K
(1)
ρ,M ⊂ K

(2)
ρ,M ⊂ K

(3)
γ ⊂ K

(4)
γ , with γ = Mρ

/

(ρ− 1)
2
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H∞ identification

• Norm || · ||S to measure the identification error

||S ||S = ‖S (z)‖W∞ = sup
0≤ω≤2π

∣
∣W−1(ω)S(ω)

∣
∣

W−1(ω) : weight function suitably chosen according to the use of the model

(for example, for the H∞ robust control)
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Linear algorithms
• The linear algorithms work linearly on the experimental data

• The linear algorithm structure is extremely simple, being possibly weighted

least-squares algorithms

• The linear algorithms can be classified in two different categories:

– the “untuned” linear algorithms

– the “tuned” linear algorithms

according to the fact that they are independent or not on the available a priori

information on the system and the noise

• The linear algorithm limitations justify the investigation of more sophisticated

nonlinear algorithms
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Fundamental limitations of linear algorithms

• In the H∞ identification case, no α-optimal linear algorithm exists

for any (whatever huge) value α

• No linear and robustly convergent algorithm exists,

mainly because the projection operator is unbounded

• To guarantee at least the convergence, a linear algorithm has to be “tuned”,

i.e., it has to explicitly account for the available a priori information
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“Tuned” linear algorithm for frequency-domain measurements, assuming that

• the system So ∈ K
(1)
ρ,M , with ρ > 1 and M ≥ 0

• the noise eN ∈ Be,∞ , with ε ≥ 0 and A = We = IN×N

M̂ (z) =
n−1∑

k=0

q∗k zk

where

q∗ = [q∗k] =






ck
(
yN

)

1 +
(

ε+Mρ−n

M

)2

ρ2k






being ck
(
yN

)
the inverse DFT coefficients of yN

ck
(
yN

)
=

1

N

N−1∑

i=0

yi

(

ej2π/N
)−ik
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“Two-stage” nonlinear algorithms

• To overcome the convergence limitations of linear algorithms, “untuned” nonlinear

algorithms are looked for, performing the following two-step procedure:

– step 1: a preliminary noncausal model M̂ (0) ∈ L∞ is built through an

“untuned” linear algorithm that performs a bilateral interpolation

M̂ (0) (z) =
n−1∑

k=−n+1

wk,n ck(y) z
k

where {wk,n} is a sequence of weights called window

– step 2: the identified model is chosen as the best approximation in H∞ (D)

of M̂ (0) (Nehari nonlinear approximation problem)

M̂ (z) = argmin
M∈H∞(D)

‖M̂ (0) −M‖∞

Set Membership identification with unmodeled dynamics 26



Politecnico di Torino - DAUIN M. Taragna

The two-stage algorithms proposed in literature mainly differ in step 1:

“Two-stage” nonlinear algorithm #1:

• step 1: approximation through linear splines and truncation

“Two-stage” nonlinear algorithm #2:

• step 1: approximation through weighting sequences {wk,n} that are

symmetrical even with respect to k (e.g., triangular, sinc, cos or trapezoidal

windows), truncated for k ≥ n.
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Properties and limitations of the “two-stage” nonlinear al gorithms

• They are robustly convergent if the weighting sequence {wk,n} is independent

of the a priori information

• The identification error and the identified model order depend on the kind of

window used

• They maintain a rather simple structure

• Their optimality level is unknown

• The identified model may not belong to the set FSS of the systems consistent

with the overall information on the system to be identified
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Interpolatory algorithms

• They provide identified models that belong to the FSS:

φI
(
K,Be,FN ,yN

)
= M̂ I ∈ FSS

• They are nonlinear and “tuned” algorithms

• They are able to approximately interpolate the experimental data, taking explicitly

into account the available a priori information

• In general, they follow a two-step procedure:

– step 1: validation of the a priori information

– step 2: construction of a model M̂ I ∈ FSS through nonlinear interpolation

techniques
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Validation problem:

given the a priori information and the experimental data, is the FSS empty or not?

Result #1 (Nevanlinna-Pick interpolation, for frequency-domain measurements)

The a priori information

• on the system: So ∈ K
(1)
ρ,M , with ρ > 1 and M ≥ 0

• on the noise: eN ∈ Be,∞, with ε ≥ 0 and A = We = IN×N

are consistent with the experimental data vector yN ∈ C
N (i.e., FSS 6= ∅)

if and only if there exists a vector ηN ∈ Be,∞ such that the Pick matrix:

PN :=

[

1−
(
1/M2

)
(yi − ηi)

(
yj − ηj

)

1− (1− ρ2) zizj

]

is nonnegative definite, i.e., PN ≥ 0.
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Such a consistency problem can be rewritten in LMI form and can be solved if and

only if there exists a vector ηN ∈ Be,∞ such that:

A
(
ηN

)
:=






−Q − 1

M
(Dy −Dη)

− 1

M
(Dy −Dη)

H −Q−1




 ≤ 0

with Dy := diag (y0, y1, · · · , yN−1), Dη := diag
(
η0, η1, · · · , ηN−1

)
e

Q :=
[

1
1−(1−ρ2)zizj

]

[Chen-Nett-Fan, TAC 1995]
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Interpolatory algorithm for frequency-domain data:

• Step 1: find the solution ηN = η∗ to the consistency problem provided by the

previous LMI, such that

P ∗
N =

[

1−
(
1/M2

)
(yi − η∗i )

(
yj − η∗j

)

1− (1− ρ2) zizj

]

≥ 0

• Step 2: by applying the Pick algorithm, build a function that approximately

interpolates ỹN := yN + ηN and use it as identified model

The interpolatory algorithm is very cumbersome from the computational viewpoint

when the number of data is huge

The Pick matrix may easily result to be ill-conditioned
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Result #2 (Carathéodory-Fejér interpolation, for time-domain measurements)

The a priori information

• on the system: So ∈ K
(1)
ρ,M , with ρ > 1 and M ≥ 0

• on the noise: eN ∈ Be,∞, with ε ≥ 0 and A = We = IN×N

are consistent with the experimental data vector yN ∈ R
N (i.e., FSS 6= ∅)

if and only if there exists a vector ηN ∈ Be,∞ such that:

(Ty − Tη)
T
D2

ρ (Ty − Tη) ≤ M2T T
u D2

ρTu

with Dρ := diag
(
1, ρ, · · · , ρN−1

)
and Tu, Ty e Tη given by the lower triangular

Toeplitz matrices associated to uN , yN and ηN , respectively
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Such a consistency problem can be rewritten in LMI form and can be solved if and

only if there exists a vector ηN ∈ Be,∞ such that:

A
(
ηN

)
:=




−T T

u D2
ρTu − (Ty − Tη)

T

− (Ty − Tη) −M2D−2
ρ



 ≤ 0

Starting from the solution η∗ of this LMI, an interpolatory model is obtained through

the Carathéodory-Fejér procedure

[Chen-Nett, TAC 1995]
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Interpolatory algorithm for time-domain data

• Step 1: find the solution ηN = η∗ ∈ Be,∞ to the consistency problem provided

by the previous LMI.

If A
(
ηN

)
> 0, stop; otherwise, compute the matrix

H :=
1

M
Dρ (Ty − Tη∗)T−1

u D
−1
ρ =

















h0 0 · · · 0

h1 h0 · · · 0

...
...

. . .
...

hN−1 hN−2 · · · h0

















• Step 2: choose an integer n ≤ N and take as identified model:

M̂ (z) := M
n−1∑

k=0

1− ρ2(k−n)

ρk
hk zk
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Properties of the interpolatory algorithms

• They are convergent, but not robustly convergent

• They are 2-optimal and for this reason are called “almost optimal”.

Fundamental limitations of the interpolatory algorithms

• The obtained models are of high order

• Only upper bounds on the identification error are known:
∥
∥
∥E

(

φI
)∥
∥
∥ < B

• Despite the fact that the interpolatory algorithms are 2-optimal,

the previous upper bounds on the identification error can be not tight

and in particular it may turns out that B/r ≫ 2

• Reduced order models are obtained, whose optimality level is however unknown
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“Nearly-optimal” interpolatory algorithm for time and/or frequency domain data

Given a system belonging to the FSS, a corresponding feasible transfer function

exists, represented on the polar plane (or R2) for any ω ∈ [0, 2π] ⇒
• Value set V (ω): given ω ∈ [0, 2π],

V (ω) :=







v ∈ R
2 : v =





ℜe (S(ω))

ℑm (S(ω))



 , S ∈ FSS







⊂ R
2

• Properties:

– V (ω) is a polytope, convex and bounded ∀ω
– Chebicheff center c2[V (ω)] in Euclidean norm:

c2[V (ω)] = arg inf
s∈R2

sup
v∈V (ω)

||s− v||2

– Chebicheff radius r2[V (ω)] in Euclidean norm:

r2[V (ω)] = inf
s∈R2

sup
v∈V (ω)

||s− v||2
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Problems:

• the exact description of V (ω) cannot be performed

• the exact computations of c2[V (ω)] and r2[V (ω)] cannot be performed

⇓

convergent approximations of V (ω) are computed, based on the construction

of two polytopes in R2 with m vertices:

– the polytope V O
ν

m(ω), with vertices vk(ω), k=1, . . . ,m, “contains”

V (ω)

– the polytope V Iνm(ω), with vertices vk(ω), k=1, . . . ,m, is contained in

V (ω)

these polytopes are obtained through linear programming techniques
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Result #1 : convergence of the approximations of V (ω)

[Milanese-Taragna, TAC 2002]

Let V O
ν
m (ω) :=

{

s ∈ ℜ2 : s = s+ s̃, s ∈ V O
ν
m (ω) , ‖s̃‖2 ≤ δν

}

, δν :=
Lρν

1− ρ
.

Fixed ν ∈ Z and m ∈ Z,

V Iνm (ω) ⊆ V (ω) ⊆ V O
ν

m (ω)

r2 [V Iνm (ω)] ≤ r2 [V (ω)] ≤ r2[V O
ν

m (ω)] ≤ r2[V O
ν

m (ω)] + δν

lim
ν,m→∞

r2 [V Iνm (ω)] = lim
ν,m→∞

{

r2[V O
ν

m (ω)] + δν

}

= r2 [V (ω)]

lim
ν,m→∞

c2 [V Iνm (ω)] = lim
ν,m→∞

c2[V O
ν

m (ω)] = c2 [V (ω)]
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Result 2: computation of the identification error E(M̂)

[Milanese-Taragna, TAC 2002]

Given a model M̂ , fixed ν ∈ Z and m ∈ Z :

Eν
m(M̂) ≤ E(M̂) ≤ E

ν

m(M̂)

lim
ν,m→∞

E
ν

m(M̂) = lim
ν,m→∞

Eν
m(M̂) = E(M̂)

Eν
m(M̂) = sup

0≤ω≤2π
max

k=1,...,m

∥
∥
∥vk (V Iνm (ω))− M̂ (ω)

∥
∥
∥
2

E
ν

m(M̂) = sup
0≤ω≤2π

max
k=1,...,m

∥
∥
∥vk(V O

ν

m (ω))− M̂ (ω)
∥
∥
∥
2
+ δν
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Result 3: computation of the optimality level α(M̂)

[Milanese-Taragna, TAC 2002]

Given a model set M̂, fixed ν ∈ Z and m ∈ Z :

αν
m(M̂) ≤ α(M̂) ≤ αν

m(M̂)

lim
ν,m→∞

αν
m(M̂) = lim

ν,m→∞
αν
m(M̂) = α(M̂).

αν
m(M̂) = max

{

1, Eν
m(M̂)

/[

sup
0≤ω≤2π

r2[V O
ν

m (ω)] + δν

]}

αν
m(M̂) = E

ν

m(M̂)
/

sup
0≤ω≤2π

r2 [V Iνm (ω)] .
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“Nearly optimal” interpolatory algorithm

Starting from the knowledge of centers and radii of the value sets V (ω) for a

frequency set, a “nearly optimal” model set M̂no is computed that approximates the

central model set M̂c

• the nominal model M̂no is solution of a linear programming problem

• the algorithm φno
(
yN

)
= M̂no is

√
2-optimal

• the identified nominal model is typically of high order

⇓

model sets with reduced order nominal models can be derived through order

reduction of the “nearly optimal” model set
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Reduced order model sets

Model sets with reduced order nominal models can be derived through order

reduction of the “nearly optimal” model set

⇓

model set order reduction with minimal inclusion and α-optimality computation

⇓

choice of the model set order as trade-off between α-optimality level and model set

complexity
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Numerical example
• N = 1100 samples of the response of the system

S
o (z) =

z + 0.5z2

1− 2.2z + 2.42z2 − 1.87z3 + 0.7225z4

to a PRBS (pseudo random binary signal) of unitary amplitude as input
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• “A priori” information on the system: So ∈ K
(2)
ρ,M , with: M = 6, ρ = 1/0.93

• “A priori” information on the noise: eN ∈ Be,∞, with ε = 4, A = We = IN×N

(M,ρ, ε) validated according to [Milanese-Taragna: SYSID ’00]
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• Value set V (ω) : computed in 500 values of ω equispaced in [0, π], with ν = 150, m = 16
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• “Central” model set obtained by considering:

– as nominal model, the Chebicheff centers of the value sets

– as perturbation, the Chebicheff radii of the value sets
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• Nominal models and corresponding model sets:

1) FIR M̂no
150 of order 150 obtained through the “nearly optimal” algorithm using the Chebicheff

radii and centers of the value sets V (ω) computed in 500 values of ω equispaced in [0, π]
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2) approximations of M̂no
150 of order 2÷5 (M̂2÷M̂5) obtained through the reduction methods

(optimal Hankel norm approximation, balanced truncation) available under MATLAB
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2) approximations of M̂no
150 of order 2÷5 (M̂2÷M̂5) obtained through the reduction methods

(optimal Hankel norm approximation, balanced truncation) available under MATLAB
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Identification errors and

optimality level of the identified model sets

M̂ E(M̂) E(M̂) αν
m(M̂) αν

m(M̂)

M̂no
150 3.57 3.61 1.00 1.04

M̂2 6.49 6.52 1.77 1.87

M̂3 5.31 5.34 1.45 1.53

M̂4 3.48 3.49 1.00 1.01

M̂5 3.48 3.49 1.00 1.01

Bounds on the error E(M̂) proposed in [Chen-Nett, TAC 95]:







E(M̂)<167.43 (Th. 4.2)

E(M̂)<16.99 (Th. 4.3)
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