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Estimation problem
The estimation problem refers to the empirical evaluation of an uncertain variable, like

an unknown characteristic parameter or a remote signal, on the basis of observations

and experimental measurements of the phenomenon under investigation.

An estimation problem always assumes a suitable mathematical description (model)

of the phenomenon:

• in the classical statistics, the investigated problems usually involve static models,

characterized by instantaneous (or algebraic) relationships among variables;

• in this course, estimation methods are introduced also for phenomena that are

adequately described by discrete-time dynamic models, characterized by

relationships among variables that can be represented by means of difference

equations (i.e., for simplicity, the time variable is assumed to be discrete).
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Estimation problem
θ(t) : actual variable to be estimated, scalar or vector, constant or time-varying;

d(t) : available data, acquired at N time instants t1, t2, . . . , tN ;

T = {t1, t2, . . . , tN} : set of time instants used for observations, distributed with

regularity (in this case, T = {1, 2, . . . , N}) or non-uniformly;

d = {d(t1) , d(t2) , . . . , d(tN )} : observation set.

An estimator (or estimation algorithm ) is a function f(·) that, starting from data,

associates a value to the variable to be estimated:

θ(t) = f(d)

The estimate term refers to the particular value given by the estimator when applied

to the particular observed data.
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Estimation problem classification

1) θ(t) is constant => parametric identification problem:

• the estimator is denoted by θ̂ or by θ̂T ;

• the true value of the unknown variable is denoted by θo;

2) θ(t) is a time-varying function:

• the estimator is denoted by θ̂ (t|T ) , or by θ̂ (t|N) if the time instants for

observations are uniformly distributed;

• according to the temporal relationship between t and the last time instant tN :

2.a) if t > tN => prediction problem;

2.b) if t = tN => filtering problem;

2.c) if t1<t<tN => regularization or interpolation or smoothing problem.
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Example of prediction problem: time series analysis

Given a sequence of observations (time series or historical data set) of a variable y:

y(1) , y(2) , . . . , y(t)

the goal is to evaluate the next value y(t+ 1) of this variable

⇓

it is necessary to find a good predictor ŷ(t+ 1|t), i.e., a function of available data

that provides the most accurate evaluation of the next value of the variable y:

ŷ(t+ 1|t) = f (y(t) , y(t− 1) , . . . , y(1)) ∼= y(t+ 1)

A predictor is said to be linear if it is a linear function of data:

ŷ(t+1|t) = a1(t)y(t)+a2(t)y(t− 1)+. . .+at(t)y(1) =
t∑

k=1

ak(t)y(t−k+1)
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A linear predictor has a finite memory n if it is a linear function of the last n data only:

ŷ(t+1|t)=a1(t)y(t)+a2(t)y(t−1)+. . .+an(t)y(t−n+1)=
n∑

k=1

ak(t)y(t−k+1)

If all the parameters ai(t) are constant, the predictor is also time-invariant :

ŷ(t+1|t)= a1y(t) + a2y(t−1) + . . .+ any(t−n+1)=
n∑

k=1

aky(t− k + 1)

and it is characterized by the vector of constant parameters

θ = [ a1 a2 · · · an ]T ∈ R
n

⇓

The prediction problem becomes a parametric identification problem.

Questions:

• how to measure the predictor quality?

• how to derive the “best” predictor?
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If the predictive model is linear, time-invariant, with finite memory n much shorter

than the number of data measured up to time instant t, its predictive capability over

the available data y(i), i = 1, 2, . . . , t, can be evaluated in the following way:

• at each instant i ≥ n, the prediction ŷ(i+ 1|i) of the next value is computed:

ŷ(i+1|i)=a1y(i)+a2y(i−1)+. . .+any(i−n+1)=
∑n

k=1aky(i−k+1)

and its prediction error ε (i+ 1) with respect to y(i+ 1) is evaluated:

ε(i+ 1) = y(i+ 1)− ŷ(i+1|i)

• the model described by θ is a good predictive model if the error ε is “small” over

all the available data ⇒ the following figure of merit is introduced:

J(θ) =
t∑

k=n+1

ε(k)
2

• the best predictor is the one that minimizes J and the value of its parameters is:

θ∗ = argmin
θ∈Rn

J(θ)
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Fundamental question: is the predictor minimizing J necessarily a “good” model?

The predictor quality depends on the fact that the temporal behaviour of the

prediction error sequence ε(·) has the following characteristics:

• its mean value is zero, i.e., it does not show a systematic error;

• it is “fully random”, i.e., it does not contain any regularity element.

In probabilistic terms, this corresponds to require that the behaviour of the error ε(·)

is that of a white noise (WN ) process, i.e., a sequence of independent random

variables with zero mean value and constant variance σ2:

ε(·) =WN
(
0, σ2

)

⇓

A predictor is a “good” model if ε(·) has the white noise probabilistic characteristics.
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Then, the prediction problem can be recast as the study of a stochastic system , i.e.,
a dynamic system whose inputs are probabilistic signals; in fact:







ŷ(t|t− 1) = a1y(t− 1) + a2y(t− 2) + . . .+ any(t−n)

ε(t) = y(t)− ŷ(t|t− 1)
⇒

y(t) = ŷ(t|t− 1) + ε (t) = a1y(t− 1) + a2y(t− 2) + . . .+ any(t−n) + ε(t)

represents a discrete-time LTI dynamic system with output y(t) and input ε(t)

⇓

Z-transforming, with Z[y(t−k)] = z−kY(z) and z−1 the unitary delay operator:

Y (z) = a1z
−1Y (z) + a2z

−2Y (z) + . . .+ anz
−nY (z) + ε(z)

⇓

G(z)=
Y(z)

ε(z)
=

1

1− a1z−1− a2z−2−. . .− anz−n
=

zn

zn− a1zn−1− a2zn−2−. . .− an

represents the transfer function of a LTI dynamic system ⇒ in order to be a “good”

model, its input ε(·) shall have the white noise probabilistic characteristics.
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Classification of data descriptions

• The actually available information is always:

– bounded ⇒ the measurement number N is necessarily finite;

– corrupted by different kinds of uncertainty (e.g., measurement noise).

• The uncertainty affecting the data can be described:

– in probabilistic terms ⇒ we talk about statistical or classical estimation ;

– in terms of set theory, as a member of some bounded set ⇒

we talk about Set Membership or Unknown But Bounded (UBB) estimation .
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Random experiment and random source of data

S : outcome space , i.e., the set of possible outcomes s of the random experiment;

F : space of events (or results) of interest , i.e., the set of the combinations

of interest where the outcomes in S can be clustered;

P (·) : probability function defined in F that associates to any event in F

a real number between 0 and 1.

E = (S,F , P (·)) : random experiment

Example: roll a dice with six sides to see if an odd or even side appears ⇒

• S = {1, 2, 3, 4, 5, 6} is the set of the six sides of the dice;

• F = {A,B, S, ∅}, where A = {2, 4, 6} and B = {1, 3, 5} are

the events of interest, i.e., the even and odd number sets;

• P (A) = P (B) = 1/2 (if the dice is fair), P (S) = 1, P (∅) = 0.
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A random variable of the experiment E is a variable v whose values depend on the

outcome s of E through of a suitable function ϕ(·) : S → V , where V is the set of

possible values of v:
v = ϕ(s)

Example: the random variable depending on the outcome of the roll of a dice with

six sides can be defined as

v = ϕ(s) =







+1 if s ∈ A = {2, 4, 6}

−1 if s ∈ B = {1, 3, 5}

A random source of data produces data that, besides the process under

investigation characterized by the unknown true value θo of the variable to be

estimated, are also functions of a random variable; in particular, at the time instant t,

the datum d(t) depends on the random variable v(t).
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Probabilistic description of data

In the probabilistic (or classical or statistical) framework, data d are assumed to be

produced by a random source of data S , influenced by:

• the outcome s of a random experiment E

• the “true” value θo of the unknown variable to be estimated

d = d (s, θo)

⇓
data d are random variables, since they are functions of the outcome s

⇓

A full probabilistic description of data is constituted by

• its probability distribution F (x) = P {d (s, θo) ≤ x} or

• its probability density function f(x) =
dF (x)

dx
, often denoted by p.d.f.
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Estimator characteristics

A random source of data S , influenced by the outcome s of a random experiment E

and by the “true” value θo of the unknown variable to be estimated, produces data d:

d = d (s, θo)

⇓

data d are random variables, since they are functions of the outcome s

⇓

the estimator f(·) and the estimate θ̂ are random variables too, being functions of d:

θ̂ = f(d) = f(d (s, θo))

⇓

the quality of f(·) and θ̂ depends on their probabilistic characteristics.
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Estimator probabilistic characteristics

• No bias (in order to avoid to introduce any systematic estimation error)

• Minimum variance (smaller scattering around the mean value guarantees higher

probability of obtaining values close to the “true” value θo)

• Asymptotic characteristics (for N → ∞):

– quadratic-mean convergence

– almost-sure convergence

– consistency
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Estimator probabilistic characteristics
An estimator is said to be unbiased (or correct ) if

E
[

θ̂
]

= θo
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An unbiased estimator does not introduce any systematic estimation error.
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Estimator probabilistic characteristics

An unbiased estimator θ̂
(1)

is said to be efficient (or with minimum variance ) if

V ar[θ̂
(1)

] ≤ V ar[θ̂
(2)

], ∀θ̂
(2)

6= θ̂
(1)
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Smaller scattering around the mean value ⇒ higher probability of approaching θo.
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Estimator probabilistic characteristics
An unbiased estimator converges in quadratic mean to θo, i.e., l.i.m.

N→∞
θ̂N =θo, if

lim
N→∞

E
[

‖θ̂N − θo‖
2
]

= 0

where ‖x‖ =
√

∑n
i=1 x

2
i , ∀x ∈ Rn, is the Euclidean norm.

An unbiased estimator such that lim
N→∞

V ar
[

θ̂N

]

= 0 converges in quadratic mean:
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Sure and almost-sure convergence, consistency

An estimator is function of both the outcome s of a random experiment E and θo:

θ̂ = f(d) = f(d (s, θo)) ⇒ θ̂ = θ̂ (s, θo)

If a particular outcomes∈S is considered and the sequence of estimates θ̂N (s,θo)

is evaluated for increasing N , a numerical series θ̂1(s,θo), θ̂2(s,θo), . . ., is derived

that may converge to θo for some s, and may not converge for some other s.

Let A be the set of outcomes s guaranteeing the convergence to θo:

• if A ≡ S, then we have sure convergence , since it holds ∀s ∈ S;

• if A ⊂ S, considering A like an event, the probability P (A) may be defined;

if A is such that P (A) = 1, we say that θ̂N converges to θo with probability 1:

lim
N→∞

θ̂N = θo w.p.1

we have almost-sure convergence ⇒ the algorithm is said to be consistent .
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Example

Problem: N scalar data di with the same mean value E [di] = θo, with variances

V ar [di] possibly different but bounded (∃σ ∈ R+ : V ar [di] ≤ σ2 <∞, ∀i);

data are uncorrelated, i.e.:

E [{di − E [di]} {dj −E [dj ]}] = 0, ∀i 6= j

Estimator #1 (sample mean):

θ̂N =
1

N

N∑

i=1

di

• it is an unbiased estimator:

E
[

θ̂N

]

= E
[

1
N

∑N
i=1 di

]

= 1
N

∑N
i=1 E [di] =

1
N

∑N
i=1 θo = θo

• it converges in quadratic mean:
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V ar
[

θ̂N

]

= E

[

(

θ̂N − E
[

θ̂N

])2
]

= E

[

(

1
N

∑N
i=1 di − θo

)2
]

=

= E

[

(

1
N

∑N
i=1 di −

1
N

∑N
i=1 θo

)2
]

= E

[

(

1
N

∑N
i=1 (di − θo)

)2
]

=

= E

[

1
N2

(

∑N
i=1 (di − θo)

)2
]

= 1
N2

E

[

(

∑N
i=1 (di − θo)

)2
]

=

= 1
N2

E
[

∑N
i=1 (di − θo)

2 +
∑N

i=1 (di − θo)
∑N

j=1,j 6=i (dj − θo)
]

=

= 1
N2

{

∑N
i=1E

[

(di−θo)
2
]

+
∑N

i=1 E
[

(di−θo)
∑N

j=1,j 6=i(dj−θo)
]}

=

= 1
N2

∑N
i=1 V ar [di] ≤

1
N2

∑N
i=1 σ

2 = σ2
/

N

⇓

lim
N→∞

V ar
[

θ̂N

]

≤ lim
N→∞

σ2

N
= 0

⇓

the algorithm converges in quadratic mean, since it is unbiased and with limN→∞ V ar
[

θ̂N

]

= 0.
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Estimator #2:

θ̂N = dj

• it is an unbiased estimator:

E
[

θ̂N

]

= E [dj ] = θo

• it does not converge in quadratic mean:

V ar
[

θ̂N

]

= E

[

(

θ̂N − E
[

θ̂N

])2
]

= E
[

(dj − θo)
2
]

= V ar [dj ] ≤ σ2

and then it does not vary with the number N of data

⇓

the estimation uncertainty is constant and, in particular, it does not decrease

when the number of data grows.
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Estimator #3 (weighted sample mean):

θ̂N =
N∑

i=1

αidi

• it is an unbiased estimator if and only if
∑N

i=1 αi = 1, because

E
[

θ̂N

]

= E
[

∑N
i=1 αidi

]

=
∑N

i=1 αiE [di] = θo
∑N

i=1αi = θo ⇔
∑N

i=1αi = 1

Note: the algorithm #1 corresponds to the case αi =
1
N

, ∀i;

the algorithm #2 corresponds to the case αj = 1 and αi = 0, ∀i 6= j

• it can be proven that the minimum variance unbiased estimator has weights

αi =
α

V ar [di]
, α =

[
N∑

i=1

1

V ar [di]

]−1

intuitively, more uncertain data are considered as less trusted, with lower weights
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• the variance of the minimum variance unbiased estimator is

V ar
[

θ̂N

]

= E

[

(

θ̂N − E
[

θ̂N

])2
]

= E

[

(

∑N
i=1 αidi − θo

)2
]

=

= E

[

(

∑N
i=1 αidi −

∑N
i=1 αiθo

)2
]

= E

[

(

∑N
i=1 αi (di − θo)

)2
]

=

= E
[

∑N
i=1 α

2
i (di−θo)

2 +
∑N

i=1 αi(di−θo)
∑N

j=1,j 6=i αj(dj−θo)
]

=

=
∑N

i=1α
2
iE
[

(di−θo)
2
]

+
∑N

i=1αiE
[

(di−θo)
∑N

j=1,j 6=iαj(dj−θo)
]

=

=
∑N

i=1α
2
i V ar [di]=

∑N
i=1

α2

V ar[di]
2
V ar[di]= α2

∑N
i=1

1

V ar[di]
=

= α =

[

∑N
i=1

1

V ar [di]

]−1

≤

[

∑N
i=1

1

σ2

]−1

=
σ2

N

• the minimum variance unbiased algorithm converges in quadratic mean, since

lim
N→∞

V ar
[

θ̂N

]

≤ lim
N→∞

σ2

N
= 0
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Cramér-Rao inequality
The estimation precision has its own intrinsic limits, due to the random source of data:

in fact, the variance of any estimator cannot be less than a certain value, since data are

always affected by noises and the corresponding uncertainty reflects into a structural

estimate uncertainty, which cannot be suppressed simply by changing the estimator:

• in the scalar case θ ∈ R, the following Cramér-Rao inequality holds

for any unbiased estimator θ̂:

V ar
[

θ̂
]

≥ m−1

where m is the Fisher information quantity defined as

m = E

[

{

∂
∂θ

ln f(d(θ), θ)
}2
]

θ=θo

= −E
[

∂2

∂θ2
ln f(d(θ), θ)

]

θ=θo
≥ 0

d(θ)∈ RN are the data generated by the random source for a generic value θ of the unknown

variable, not necessarily the “true” value θo; f(x,θ), x∈RN, is the probability density function;
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• in the vector case θ ∈ R
n, for any unbiased estimator θ̂,

the Cramér-Rao inequality becomes

V ar
[

θ̂
]

≥M−1

where M is the nonsingular Fisher information matrix

M = [mij ] ∈ R
n×n

mij = −E
[

∂2

∂θi∂θj
ln f(d(θ), θ)

]

θ=θo

, ∀i, j = 1, 2, . . . , n

From this inequality it follows that

V ar
[

θ̂i

]

≥
[
M−1

]

ii
, ∀i = 1, 2, . . . , n

An unbiased estimator is efficient if it provides the minimum variance, i.e., if its variance
achieves the minimal theoretic value assessed by the Cramér-Rao inequality:

V ar
[

θ̂
]

= m−1 or V ar
[

θ̂
]

=M−1
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Least Squares estimation method
Linear regression problem : given the measurements of n+ 1 real variables y(t),

u1(t), . . . , un(t) over a time interval (e.g., for t = 1, 2, . . . , N ), find if possible the

values of n real parameters θ1, θ2, . . . , θn such that the following relationship holds

y(t) = θ1u1(t) + . . .+ θnun(t)

In matrix terms, by defining the real vectors

θ =






θ1
...
θn




 ∈ R

n, ϕ(t) =






u1(t)
...

un(t)




 ∈ R

n ⇒ y(t) = ϕ(t)
T
θ

In the actual problems, there exists always a nonzero error ε(t)=y(t)− ϕ(t)
T
θ

⇓

by defining J(θ)=
N∑

t=1
ε(t)

2
, the problem is solved by finding θ∗= argmin

θ∈Rn

J(θ).
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In order to find the minimum of the figure of merit J , we have to require that

dJ(θ)

dθ
=

[

dJ(θ)

dθ1
. . .

dJ(θ)

dθn

]

= 0 ⇔

dJ(θ)

dθi
=

d

dθi

[

N
∑

t=1
ε(t)2

]

=
N
∑

t=1

d

dθi

[

ε(t)2
]

=
N
∑

t=1

d

dθi

[

(

y(t)− ϕ(t)T θ
)2
]

=

= −2
N
∑

t=1

(

y(t)− ϕ(t)T θ
)

ui(t) = 0, i = 1, 2, . . . , n ⇔

dJ(θ)

dθ
= −2

N
∑

t=1

(

y(t)− ϕ(t)T θ
)

ϕ(t)T = 0 ⇔

N
∑

t=1

(

y(t)ϕ(t)T − ϕ(t)T θϕ(t)T
)

=
N
∑

t=1
y(t)ϕ(t)T −

N
∑

t=1
ϕ(t)T θϕ(t)T = 0 ⇔

N
∑

t=1
ϕ(t)T θϕ(t)T =

N
∑

t=1
y(t)ϕ(t)T ⇔

N∑

t=1

[

ϕ(t)ϕ(t)
T
]

θ =
N∑

t=1
ϕ(t) y(t)
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The relationship
N∑

t=1

[

ϕ(t)ϕ(t)
T
]

θ =
N∑

t=1
ϕ(t) y(t)

is a system of n scalar equations involving n scalar unknowns θ1, θ2, . . . , θn that is

called normal equation system :

• if the matrix
N∑

t=1
ϕ(t)ϕ(t)

T
is nonsingular (⇔ det

N∑

t=1
ϕ(t)ϕ(t)

T 6= 0, known

as identifiability condition), then the normal equation system has a single unique

solution given by the Least Squares (LS) estimate :

θ̂ =

[
N∑

t=1
ϕ(t)ϕ(t)

T

]−1 [
N∑

t=1
ϕ(t) y(t)

]

• if
N∑

t=1
ϕ(t)ϕ(t)

T
is singular, it can be proved that the normal equations have an

infinite number of solutions, due to their particular structure.

System Identification, Estimation and Filtering 28



Politecnico di Torino - DAUIN M. Taragna

The stationarity condition
dJ(θ)
dθ

=0 does not guarantee that θ̂ is a minimum of J(θ)
⇒ we have to consider the Hessian matrix

d2J(θ)

dθ2
=

d

dθ

[

dJ(θ)

dθ

]T

=
d

dθ

[

−2
∑N

t=1

(

y(t)− ϕ(t)T θ
)

ϕ(t)T
]T

=

=
d

dθ

[

−2
∑N

t=1

(

y(t)ϕ(t)T − θTϕ(t)ϕ(t)T
)T
]

=

=
d

dθ

[

−2
∑N

t=1 y(t)ϕ(t) + 2
∑N

t=1 ϕ(t)ϕ(t)
T θ
]

=

= 2
N
∑

t=1

d

dθ
ϕ(t)ϕ(t)T θ = 2

N
∑

t=1
ϕ(t)ϕ(t)T

that turns out to be positive semidefinite, since ∀x ∈ R
n

xT d2J(θ)

dθ2
x = xT 2

N
∑

t=1
ϕ(t)ϕ(t)T x = 2

N
∑

t=1
xTϕ(t)ϕ(t)T x = 2

N
∑

t=1

(

xTϕ(t)
)2

≥ 0

⇓

θ̂ is certainly a (local or global) minimum of J(θ).

System Identification, Estimation and Filtering 29



Politecnico di Torino - DAUIN M. Taragna

The Taylor series expansion of J(θ) in the neighborhood of θ̂ allows to understand if

θ̂ is a local or global minimum:

J(θ)=J(θ̂)+
dJ(θ)
dθ

∣

∣

∣

θ̂
(θ− θ̂)+ 1

2
(θ− θ̂)T

d2J(θ)

dθ2

∣

∣

∣

θ̂
(θ− θ̂)+ . . .=J(θ̂)+1

2
(θ− θ̂)T

d2J(θ)

dθ2

∣

∣

∣

θ̂
(θ− θ̂)

since the term
dJ(θ)
dθ

∣

∣

∣

θ=θ̂
is zero (θ̂ is a minimum) as well as all the J(θ) derivatives of order greater

than two (J(θ) is a quadratic function of θ)
⇓

J(θ)− J(θ̂) = 1
2
(θ − θ̂)T

d2J(θ)

dθ2

∣

∣

∣

θ̂
(θ − θ̂),

d2J(θ)

dθ2

∣

∣

∣

θ̂
= 2

∑N
t=1 ϕ(t)ϕ(t)

T ,

is a positive semidefinite quadratic form, since
d2J(ϑ)
dϑ2

∣
∣
∣
θ̂

is positive semidefinite:

• if
∑N

t=1 ϕ(t)ϕ(t)
T

is nonsingular ⇒ d2J(θ)
dθ2

∣
∣
∣
θ̂

is positive definite ⇒

the quadratic form is positive definite and it is a paraboloid with a unique minimum

⇒ θ̂ is the global minimum of J(θ);

• if
∑N

t=1 ϕ(t)ϕ(t)
T

is singular ⇒ the quadratic form is positive semidefinite

and it has an infinite number of local minima, aligned over a line tangent to J(θ).
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The obtained results may be rewritten in a compact matrix form by defining:

Φ=







ϕ(1)T
.
.
.

ϕ(N)T






=







u1(1) . . . un(1)
.
.
.

.

.

.
u1(N) . . . un(N)






∈ R

N×n, y =







y(1)
.
.
.

y(N)






∈ R

N

⇓

y(t) = ϕ(t)
T
θ, t = 1, 2, . . . , N ⇔ y = Φθ

⇓
∑N

t=1 ϕ(t)ϕ(t)
T
= ΦTΦ,

∑N

t=1 ϕ(t) y(t) = ΦT y

⇓
the normal equation system becomes:

ΦTΦθ = ΦT y
and, if ΦTΦ is nonsingular (identifiability condition), it has a unique solution given by

the least squares estimate:

θ̂LS =
[
ΦTΦ

]−1
ΦTy
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Probabilistic characteristics of least squares estimator

Assumptions:

• the identifiability condition holds: ∃
[
ΦTΦ

]−1
;

• the random source of data has the following structure

y(t) = ϕ(t)T θo + v(t) , t = 1, 2, . . . , N

where v(t) is a zero-mean random disturbance ⇒

the relationship between y and u1, u2, . . . , un is assumed to be linear ⇒

there exists a “true” value θo of the unknown variable;

in compact matrix form, it results that:

y = Φθo + v

where v =







v(1)
.
.
.

v(N)






∈ R

N is a vector random variable with E [v] = 0.
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Under these assumptions, the least squares estimator becomes:

θ̂ = [ΦTΦ]−1ΦT y = [ΦTΦ]−1ΦT (Φθo + v) =

= [ΦTΦ]−1ΦTΦθo + [ΦTΦ]−1ΦT v = θo + [ΦTΦ]−1ΦT v

and it has the following probabilistic characteristics:

• it is unbiased , since its mean value E[θ̂ ] = θo

E[θ̂ ] = E
[

[

ΦTΦ
]−1

ΦT y
]

=
[

ΦTΦ
]−1

ΦTE[y] =
[

ΦTΦ
]−1

ΦTE[Φθo + v] =

=
[

ΦTΦ
]−1

ΦT (Φθo +E[v]) =
[

ΦTΦ
]−1

ΦTΦθo = θo

• if v is a vector of zero-mean random variables that are uncorrelated and with the
same varianceσ2

v (V ar[v]=E
[

vvT
]

=σ2
vIN ), as in the case of disturbance v(·)

given by a white noise WN(0, σ2
v) ⇒ V ar[θ̂ ] = σ2

v[Φ
TΦ]−1

V ar[θ̂ ] = E
[

(θ̂ −E[θ̂])(θ̂ −E[θ̂])T
]

= E
[

(θ̂ − θo)(θ̂ − θo)T
]

=

= E
[

(

[ΦTΦ]−1ΦTv
)(

[ΦTΦ]−1ΦTv
)T
]

=E
[

[ΦTΦ]−1ΦTvvTΦ[ΦTΦ]−1
]

=

= [ΦTΦ]−1ΦTE
[

vvT
]

Φ[ΦTΦ]−1 = [ΦTΦ]−1ΦT σ2
vINΦ[ΦTΦ]−1 =

= σ2
v[Φ

TΦ]−1ΦTΦ[ΦTΦ]−1 = σ2
v[Φ

TΦ]−1
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• The variance σ2
v of the disturbance v is usually unknown ⇒

under the same previous assumptions, a “reasonable” unbiased estimate σ̂2
v

(such that E[σ̂2
v] = σ2

v) can be directly derived from data as

σ̂2
v =

J(θ̂)

N − n
where N = measurement number, n = number of unknown parameters of θ,

J(θ̂) =
∑N

t=1 ε(t)
2
∣

∣

∣

θ=θ̂
=
∑N

t=1

[

y(t)− ϕ(t)T θ̂
]2

= [y − Φθ̂]T [y − Φθ̂] =

=
(

(IN − Φ[ΦTΦ]−1ΦT )y
)T

(IN − Φ[ΦTΦ]−1ΦT )y =

= yT (IN − Φ[ΦTΦ]−1ΦT )(IN − Φ[ΦTΦ]−1ΦT )y =

= yT (IN − 2Φ[ΦTΦ]−1ΦT + Φ[ΦTΦ]−1ΦTΦ[ΦTΦ]−1ΦT )y =

= yT (IN − Φ[ΦTΦ]−1ΦT )y

⇓

V ar[θ̂ ] = σ2
v[Φ

TΦ]−1 ∼= σ̂2
v[Φ

TΦ]−1
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Weighted Least Squares estimation method

With the least squares estimation method, all the errors have the same relevance,

since the figure of merit to be minimized is

JLS(θ)=
∑N

t=1ε(t)
2

, where ε(t)=y(t)− ϕ(t)
T
θ, t = 1, 2, . . . , N.

However, if some measurements are more accurate than some others, different

relevance can be assigned to the errors, by defining the figure of merit

JWLS(θ)=
N∑

t=1
q(t) ε(t)

2
= εTQε

where q(t) are the weighting coefficients (or weights ) for t = 1, 2, . . . , N ,

Q = diag (q(t)) =













q(1) 0 . . . 0

0 q(2) . . . 0

. . . . . . . . . . . .

0 0 . . . q(N)













∈ R
N×N , ε =







ε(1)
.
.
.

ε(N)






∈ R

N .
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The Weighted Least Squares (WLS) estimate minimizes the figure of meritJWLS(θ):

θ̂WLS=
[
ΦTQΦ

]−1
ΦTQy

If the disturbance v is a vector of zero-mean uncorrelated random variables with
variance Σv , the estimator θ̂WLS has the following probabilistic characteristics:

• it is unbiased , since its mean value E[θ̂WLS ] = θo

E[θ̂WLS ] =E
[

[

ΦTQΦ
]−1

ΦTQy
]

=
[

ΦTQΦ
]−1

ΦTQE[y]=
[

ΦTQΦ
]−1

ΦTQE[Φθo+v]=

=
[

ΦTQΦ
]−1

ΦTQ (Φθo +E[v]) =
[

ΦTQΦ
]−1

ΦTQΦθo = θo

• its variance is

V ar[θ̂WLS ] =E[(θ̂WLS−E[θ̂WLS ])(θ̂WLS−E[θ̂WLS ])
T ] =

=E[(θ̂WLS−θo)(θ̂WLS−θo)T ] = E
[

(

[ΦTQΦ]−1ΦTQv
)(

[ΦTQΦ]−1ΦTQv
)T
]

=

=E
[

[ΦTQΦ]−1ΦTQvvTQTΦ[ΦTQΦ]−1
]

=

=[ΦTQΦ]−1ΦTQE
[

vvT
]

QΦ[ΦTQΦ]−1 = [ΦTQΦ]−1ΦTQΣvQΦ[ΦTQΦ]−1

and then it depends on the disturbance variance Σv ;
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• it can be proved that the best choice for Q that minimizes V ar[θ̂WLS ] is

Q∗ = argmin
Q=diag(q(t))∈Rn×n

V ar[θ̂WLS ] = Σ−1
v

and in this case we obtain the so-called Gauss-Markov estimate :

θ̂GM=
[
ΦTΣ−1

v Φ
]−1

ΦTΣ−1
v y

whose variance is

V ar[θ̂GM ]= [ΦTQΦ]−1ΦTQΣvQΦ[ΦTQΦ]−1 =

= [ΦTΣ−1
v Φ]−1ΦTΣ−1

v ΣvQΦ[ΦTΣ−1
v Φ]−1

= [ΦTΣ−1
v Φ]−1 ;

If in particular it results that Σv = σ2
vIN ⇒

θ̂GM =
[

ΦT 1
σ2
v

INΦ
]−1

ΦT 1
σ2
v

INy =
[
ΦTΦ

]−1
ΦT y = θ̂LS
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Maximum Likelihood estimators
The actual data are generated by a random source, which depends on the outcome s

of a random experiment and on the “true” value θo of the unknown to be estimated.

However, if a generic value θ of the unknown parameter is considered, the data can

be seen as function of both the value θ and the outcome s ⇒

the data can be denoted by d(θ)(s), with p.d.f. f(x, θ) that is function of θ too.

Let δ be the particular data observation that corresponds to a particular outcome s of

the random experiment:
δ = d(θ)(s)

The so-called likelihood function is given by the p.d.f. of the data evaluated in δ:

L(θ) = f(x, θ)|x=δ

The Maximum Likelihood (ML) estimate is defined as:

θ̂ML= argmax
θ∈Rn

L(θ)
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Example: a scalar θo is estimated using a unique measurement with Gaussian p.d.f.:

−2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

 q

f (
q,

ϑ)

δ

the p.d.f. translates when the value of θ varies ⇒ L(θ) = f(x, θ)|x=δ varies too.

System Identification, Estimation and Filtering 39



Politecnico di Torino - DAUIN M. Taragna

Maximum Likelihood estimator properties

The estimate θ̂ML is:

• asymptotically unbiased: E
(

θ̂ML

)

−−−−−−→
N → ∞

θo

• asymptotically efficient: Σ
θ̂ML

≤ Σ
θ̂

∀θ̂ if N → ∞

• consistent: lim
N→∞

Σ
θ̂ML

= 0

• asymptotically Gaussian (for N → ∞)
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Example : let us assume that the random source of data has the following structure:

y(t) = ψ(t, θo) + v(t) , t = 1, 2, . . . , N ⇔ y = Ψ(θo) + v

where ψ(t, θo) is a generic nonlinear function of θo and the disturbance v is a

vector of zero-mean Gaussian random variables with variance Σv and p.d.f.

f(x) = N (0,Σv) =
1

√

(2π)N detΣv

exp
(

− 1
2
x
TΣ−1

v x
)

Since v = y −Ψ(θo)⇒ the p.d.f. of data generated by a random source where a

generic value θ is considered instead of θo is then given by

f(x, θ) =
1

√

(2π)N detΣv

exp
(

− 1
2
[x−Ψ(θ)]T Σ−1

v [x−Ψ(θ)]
)

⇓

L(θ) = f(x, θ)|
x=δ

=
1

√

(2π)N detΣv

exp
(

− 1
2
[δ −Ψ(θ)]T Σ−1

v [δ −Ψ(θ)]
)
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L(θ) = f(x, θ)|
x=δ

=
1

√

(2π)N detΣv

exp
(

− 1
2
[δ −Ψ(θ)]T Σ−1

v [δ −Ψ(θ)]
)

⇓

f(x, θ)|x=δ is an exponential function of θ

⇓

θ̂ML= argmax
θ∈Rn

L(θ) =argmin
θ∈Rn

{

[δ −Ψ(θ)]
T
Σ−1

v [δ −Ψ(θ)]

︸ ︷︷ ︸

R(θ)

}

Problem: the global minimum of R(θ) has to be found with respect to θ, but R(θ)

may have many local minima if Ψ(θ) is a generic nonlinear function of the unknown

variable; the standard nonlinear optimization algorithms do not guarantee to find

always the global minimum.

System Identification, Estimation and Filtering 42



Politecnico di Torino - DAUIN M. Taragna

Particular case: Ψ(θ) = linear function of the unknown parameters = Φθ

⇓

R (θ) is a quadratic function of θ : R (θ) = [δ − Φθ]
T
Σ−1

v [δ − Φθ]

⇓

there exists a unique minimum of R (θ)

⇓

θ̂ML =
(
ΦTΣ−1

v Φ
)−1

ΦTΣ−1
v δ = Gauss-Markov estimate = θ̂GM =

= Weighted Least Squares estimate using the disturbance variance

If Σv = σ2
vIN , i.e., independent identically distributed (i.i.d.) disturbance:

θ̂ML = θ̂GM =
(
ΦTΦ

)−1
ΦT δ = Least Squares estimate
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Gauss-Markov estimate properties

The estimate θ̂GM is:

• unbiased: E
(

θ̂GM

)

= θo

• efficient: Σ
θ̂GM

≤ Σ
θ̂

∀θ̂

• consistent: lim
N→∞

Σ
θ̂GM

= 0

• Gaussian
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Bayesian estimation method

The Bayesian method allows one to take into account experimental data and a priori

information on the unknown of the estimation problem that, if well exploited, can

improve the estimate and make up for possible random errors corrupting the data:

• the unknown θ is considered as a random variable, whose a priori p.d.f. (i.e.,

in absence of data) has some given behaviour, mean value and variance

⇓

the mean value is a possible estimate of θ and the variance represents a priori

uncertainty;

• as new experimental data arrive, the p.d.f. of θ is updated on the basis of the new

information: the mean value changes with respect to the a priori one, while the

variance is expected to decrease thanks to the information provided by data.
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A joint random experiment E = E1 × E2 is assumed to exist, whose joint outcome s
is the couple of single outcomes s1 and s2: s = (s1, s2):

• the unknown θ is generated by a first random source S1 on the basis of
the outcome s1 of the first random experiment E1 ⇒ θ = θ(s1);

• the data d are generated by the second random source S2, influenced by

– the outcome s2 of the second random experiment E2
– the value θ(s1) of the unknown to be estimated

d = d(s2, θ(s1))

A generic estimator is a function of data θ̂ = h(d) and its performances improve
as much as the estimate θ̂ is closer to the unknown to be estimated

⇓
by considering as figure of merit

J(h(·)) = E[‖θ − h(d)‖2]
the Bayesian optimal estimator is the particular function h∗(·) such that

E[‖θ − h∗(d)‖2] ≤ E[‖θ − h(d)‖2], ∀h(·)
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It can be proved that such an optimal estimator exists and it is given by:

h∗(x) = E [θ| d = x]

where x is the current value that the data d may take.

The Bayesian estimator (or conditional mean estimator ) is the function

θ̂ = E [θ|d]

and the Bayesian estimate (or conditional mean estimate ) is the numeric value

θ̂ = E [θ| d = δ]

where δ is the value of the data d that corresponds to a particular outcome of the

joint random experiment E .
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Bayesian estimator in the Gaussian case

Assumption : the data d and the unknown θ are scalar random variables with zero

mean value and both are individually and jointly Gaussian:
[

d

θ

]

∼ N

([

0

0

]

,Σ=V ar

[

d

θ

]

=

[

σdd σdθ

σθd σθθ

])

⇒ their joint p.d.f. is given by:

f(d, θ) = C exp

{

−
1

2
[ d θ ] Σ

−1 [ d θ ]
T

}

, C : suitable constant

Since

detΣ = det

[

σdd σdθ

σθd σθθ

]

= σddσθθ−σ2
dθ = σdd

(

σθθ−
σ2
θd

σdd

)

= σdd σ2,

where σ2 = σθθ− σ2
θd

/

σdd ≤ σθθ

⇓

Σ−1 =
1

detΣ

[

σθθ −σdθ

−σθd σdd

]

=
1

σ2

[

σθθ/σdd −σdθ/σdd

−σθd/σdd 1

]
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⇓

f(d, θ) =C exp

{

−
1

2σ2
[ d θ ]

[

σθθ/σdd −σdθ/σdd

−σθd/σdd 1

][

d

θ

]}

=

=C exp

{

−
1

2σ2
[ d θ ]

[

σθθ/σdd d− σdθ/σdd θ

−σθd/σdd d+ θ

]}

=

=C exp

{

−
1

2σ2

(

σθθ

σdd

d2 − 2
σθd

σdd

dθ + θ2
)}

The p.d.f. of the data d is given by:

f(d) = C′ exp

{

−
d2

2σdd

}

, C′ : suitable constant

⇓

the p.d.f. of the unknown θ conditioned by data d is equal to:

f(θ|d) =
f(d, θ)

f(d)
=

C

C′
exp

{

−
1

2σ2

(

σθθ

σdd

d2 − 2
σθd

σdd

dθ + θ2
)

+
d2

2σdd

}

=

=C′′exp

{

−
1

2σ2

[

σ2
dθ

σ2
dd

d2− 2
σθd

σdd

dθ + θ2

]}

=C′′exp

{

−
1

2σ2

[

θ −
σθd

σdd

d

]2
}
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⇓

f(θ|d) = C′′exp

{

− 1
2σ2

[

θ − σθd

σdd

d
]2
}

∼ N
(

σθd

σdd

d, σ2
)

The Bayesian estimator is the function

θ̂ = E [θ| d] = σθd

σdd
d

while the Bayesian estimate corresponding to the particular observation δ of data d
is the numerical value

θ̂ = E [θ| d = δ] = σθd

σdd
δ

Since E [d] = E [θ] = 0⇒

E[θ̂] = E
[

σθd

σdd
d
]

= σθd

σdd
E [d] = 0

V ar[θ̂ ] = E[(θ̂ −E[θ̂ ])2] = E[θ̂
2
] = E

[

σ2

θd

σ2

dd

d2
]

=
σ2

θd

σ2

dd

E
[

d2
]

=
σ2

θd

σdd

V ar[θ − θ̂ ] =E[(θ − θ̂)2] = E[(θ − σθd

σdd

d)2] = E[θ2− 2σθd

σdd

θd+
σ2

θd

σ2

dd

d2] =

=E
[

θ2
]

− 2σθd

σdd

E [θd ] +
σ2

θd

σ2

dd

E
[

d2
]

= σθθ − 2σθd

σdd

σθd +
σ2

θd

σ2

dd

σdd =

=σθθ − 2
σ2

θd

σdd

+
σ2

θd

σdd

= σθθ −
σ2

θd

σdd

= σ2
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Optimal linear estimator
Assumption : both the data d and the unknown θ are scalar random variables with

zero mean value and variance matrix V ar

[

d

θ

]

=

[

σdd σdθ

σθd σθθ

]

.

Goal: estimate θ by means of a linear estimator whose structure is

θ̂ = αd+ β

with α, β real parameters, estimated by minimizing the mean squared error (MSE):

J = E[(θ − θ̂)2] = E[(θ − αd− β)2] = J(α, β)
m

∂J
∂α

= ∂
∂α

E
[

(θ − αd− β)2
]

= E
[

∂
∂α

(θ − αd− β)2
]

= E [−2(θ − αd− β)d] =

= −2E [θd] + 2αE
[

d2
]

+ 2βE [d] = −2σdθ + 2ασdd = 0

∂J
∂β

= ∂
∂β

E
[

(θ − αd− β)2
]

= E
[

∂
∂β

(θ − αd− β)2
]

= E [−2(θ − αd− β)] =

= −2E [θ] + 2αE [d] + 2β = 2β = 0

m
{

α = σθd/σdd

β = 0
⇒ θ̂ = σdθ

σdd
d ≡ E [θ| d]
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Generalizations
• If the data d and the unknown θ are scalar random variables with nonzero mean

value (E[d]= d̄∈R, E[θ]= θ̄∈R) and variance matrix V ar

[

d

θ

]

=

[

σdd σdθ

σθd σθθ

]

,

the Bayesian estimator and the optimal linear estimator are given by:

θ̂ = θ̄ +
σθd

σdd

(
d− d̄

)

V ar[θ − θ̂ ] = E[(θ − θ̂)2] = σθθ −
σ2
θd

σdd

= σ
2

• If the data d and the unknown θ are vector random variables with nonzero mean

value (E[d]= d̄∈R
N,E[θ]= θ̄∈R

n) and variance matrix V ar

[

d

θ

]

=

[

Σdd Σdθ

Σθd Σθθ

]

,

the Bayesian estimator and the optimal linear estimator are given by:

θ̂ = θ̄ + ΣθdΣ
−1
dd

(
d− d̄

)

V ar[θ − θ̂ ] = E[(θ − θ̂)(θ − θ̂)T ] = Σθθ − ΣθdΣ
−1
dd Σdθ
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Remarks

Remark #1 :

• Using the a priori information only (i.e., in absence of data), a reasonable initial
estimate of the unknown is given by the a priori estimate

θ̂ = θ̂
prior

= E [θ] = θ̄

and the corresponding a priori uncertainty is V ar[θ] = Σθθ

• Using also the a posteriori information (i.e., the data), the estimate changes and
the a posteriori estimate in the scalar case is given by

θ̂ = θ̂
posterior

= θ̄ +
σθd

σdd

(
d− d̄

)
= θ̂

prior
+
σθd

σdd

(
d− d̄

)

– if σθd = 0, i.e., if d and θ are uncorrelated ⇒ θ̂
posterior

= θ̂
prior

– if σθd > 0 ⇒ θ̂
posterior

− θ̂
prior

and d−d̄ have the same sign

– if σθd < 0 ⇒ θ̂
posterior

− θ̂
prior

and d−d̄ have opposite sign
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Remark #2 : the a posteriori estimate in the scalar case is given by

θ̂ = θ̂
posterior

= θ̄ + σθd

σdd

(
d− d̄

)
= θ̂

prior
+ σθd

σdd

(
d− d̄

)

– if σdd is high, i.e., if the observation d is affected by great uncertainty ⇒

θ̂ mainly depends on θ̂
prior

instead on the term σθd

σdd

(
d− d̄

)

– if σdd is low, i.e., if the observation d is affected by small uncertainty ⇒

θ̂ strongly depends on the term σθd

σdd

(
d− d̄

)
that corrects θ̂

prior

Remark #3 : the estimation error variance represents the a posteriori uncertainty :

V ar[θ− θ̂ ] = E[(θ− θ̂)2] = σθθ−
σ2

θd

σdd
= σθθ

(

1− σ2

θd

σθθσdd

)

= σθθ

(
1− ρ2

)

where ρ= σθd√
σθθσdd

is the correlation coefficient between θ and d, such that |ρ|≤1

– if ρ = 0, i.e., if d and θ are uncorrelated ⇒
the a posteriori uncertainty turns out to be equal to the a priori one

– if ρ 6= 0 ⇒ the a posteriori uncertainty is smaller than the a priori one
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Geometrical interpretation

• Let G be the set of the real scalar random variables v with zero mean value, whose
value v(s) depends on the outcome s of the underlying random experiment E .

• Let G be the vector space defined on G such that, ∀v1, v2∈G and ∀µ∈R, then
v1+v2∈G and µv1∈G; let G be equipped with the inner (or scalar) product:

〈v1, v2〉 = E [v1v2]

that satisfies the following properties, ∀v, v1, v2 ∈ G and ∀µ ∈ R:

(i) 〈v, v〉 = V ar[v] ≥ 0 (nonnegativity)
(ii) 〈v, v〉 = 0 if and only if v ∼ (0, 0)

}

(positive-definiteness)

(iii) 〈v, v1 + v2〉 = 〈v, v1〉+ 〈v, v2〉 (additivity)
(iv) 〈v1, µv2〉 = µ 〈v1, v2〉 (homogeneity)
(v) 〈v1, v2〉 = 〈v2, v1〉 (symmetry)

Such an inner product allows to naturally define a norm on G as:

‖v‖ =
√

〈v, v〉 =
√

V ar[v]
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• Any random variable v is a vector in the space G with “length” ‖v‖ =
√

V ar[v]

• Given two random variables v1 and v2, the angle α between the corresponding

vectors in G is involved in the inner product, since:

〈v1, v2〉 = ‖v1‖ ‖v2‖ cosα

⇓

cosα =
〈v1, v2〉

‖v1‖ ‖v2‖
=

E [v1v2]
√

V ar[v1]
√

V ar[v2]
= ρ

– ρ = 0 ⇔ v1 and v2 are uncorrelated ⇔
the corresponding vectors in G are orthogonal, i.e., v1 ⊥ v2

– ρ = ±1 ⇔ the vectors corresponding to v1 and v2 are parallel, i.e., v1//v2 :

if v2 = αv1 + β, with α, β∈R and α > 0, then ρ = +1
if v2 = αv1 + β, with α, β∈R and α < 0, then ρ = −1
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• In the scalar Gaussian case, the Bayesian estimate of v2 given v1 is:

v̂2 = E [v2| v1] =
σ21

σ11

v1, where σ21 = E [v1v2] , σ11 = V ar[v1]

⇓

v̂2=
E[v1v2]

V ar[v1]
v1=

〈v1,v2〉

‖v1‖
2 v1=

1

‖v1‖

〈v1,v2〉

‖v1‖

1

‖v2‖
︸ ︷︷ ︸

cosα

‖v2‖v1=‖v2‖ cosα
v1
‖v1‖

the Bayesian estimate v̂2 has the same direction of v1 with “length” ‖v2‖ cosα,
i.e., v̂2 is the orthogonal projection of v2 over v1

α
v1

v2

1 1
v v 2 1

E v v 
 
 

α
v1

v2

1 1
v v 2 1

E v v 
 
 
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•The estimation error variance of v2 given v1 (i.e., the a posteriori uncertainty) is:

V ar[v2−E[v2|v1]]=σ22−
σ2

21

σ11

, with σ22=V ar[v2],σ21=E[v1v2] ,σ11=V ar[v1]

⇓

V ar[v2−E[v2|v1]]=V ar[v2]−
E[v1v2]

2

V ar[v1]
=‖v2‖

2−‖E[v2|v1]‖
2=‖v2−E[v2|v1]‖

2

i.e., it can be computed by evaluating the “length” of the vector v2 −E [v2| v1]

through the Pythagorean theorem

α
v1

v2

1 1
v v 2 1

E v v 
 
 

2 2 1
v E v v 

 
 

−
α

v1

v2

1 1
v v 2 1

E v v 
 
 

2 2 1
v E v v 

 
 

−

•The generalization of the geometric interpretation to the vector case is straightforward
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Recursive Bayesian estimation: scalar case

Assumptions : the unknownθ is a scalar random variable with zero mean value; the data
vector d is a random variable having 2 components d(1),d(2), with zero mean value:






θ

d(1)

d(2)






∼













0

0

0






,Σ=V ar







θ

d(1)

d(2)






=







σθθ σθ1 σθ2

σ1θ σ11 σ12

σ2θ σ21 σ22












,















σθ1=σ1θ

σθ2=σ2θ

σ12=σ21

• The optimal linear estimate of θ based on d(1) only is given by:

E [θ| d(1)] =
σθ1

σ11
d(1)

• The optimal linear estimate of θ based on d(1) and d(2) is given by:

E [θ| d(1), d(2)] = ΣθdΣ
−1
dd d = [σθ1 σθ2 ]

[

σ11 σ12

σ21 σ22

]−1 [

d(1)

d(2)

]
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Since

detΣdd = det





σ11 σ12

σ21 σ22



 = σ11σ22−σ2
21 = σ11

(

σ22−
σ2
21

σ11

)

= σ11 σ2,

where σ2 = σ22−
σ2
21

σ11

⇓

Σ−1
dd

=
1

detΣdd





σ22 −σ12

−σ21 σ11



 =
1

σ2





σ22/σ11 −σ12/σ11

−σ21/σ11 1





⇓

E [ θ| d(1), d(2)] = Σ
θd

Σ−1
dd

d = [ σθ1 σθ2 ]
1

σ2





σ22/σ11 −σ12/σ11

−σ21/σ11 1





[

d(1)

d(2)

]

=

=
1

σ2

[

σθ1
σ22

σ11
− σθ2

σ21

σ11
σθ2 − σθ1

σ12

σ11

]

[

d(1)

d(2)

]

=

=
1

σ2

(

σθ1
σ22

σ11
− σθ2

σ21

σ11

)

d(1) +
1

σ2

(

σθ2 − σθ1
σ12

σ11

)

d(2)
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By adding and subtracting the term E [θ| d(1)] =
σθ1

σ11
d(1) and recalling that

σ12 = σ21 and σ2 = σ22−
σ2
21

σ11
, it results that:

E [ θ| d(1), d(2)] =

= 1
σ2

(

σθ1
σ22

σ11

−σθ2
σ21

σ11

)

d(1) + 1
σ2

(

σθ2−σθ1
σ12

σ11

)

d(2) + σθ1

σ11

d(1)− σθ1

σ11

d(1)=

= σθ1

σ11

d(1) + 1
σ2

(

σθ1
σ22

σ11

−σθ2
σ21

σ11

− σθ1

σ11

σ2
)

d(1) + 1
σ2

(

σθ2−σθ1
σ12

σ11

)

d(2)=

= σθ1

σ11

d(1) + 1
σ2

(

σθ1
σ22

σ11

−σθ2
σ21

σ11

− σθ1

σ11

σ22+
σθ1

σ11

σ2

21

σ11

)

d(1) + 1
σ2

(

σθ2−σθ1
σ12

σ11

)

d(2)

= σθ1

σ11

d(1) + 1
σ2

(

−σθ2
σ21

σ11

+ σθ1
σ2

21

σ2

11

)

d(1) + 1
σ2

(

σθ2 − σθ1
σ12

σ11

)

d(2)=

= σθ1

σ11

d(1)− 1
σ2

σ21

σ11

(

σθ2 − σθ1
σ21

σ11

)

d(1) + 1
σ2

(

σθ2 − σθ1
σ12

σ11

)

d(2)=

= σθ1

σ11

d(1) + 1
σ2

(

σθ2 − σθ1
σ21

σ11

) [

d(2)− σ21

σ11

d(1)
]

=

=E [ θ| d(1)] + 1
σ2

(

σθ2 − σθ1
σ21

σ11

)

[d(2)− E [d(2)| d(1)]]
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Definition : given two scalar random variables d(1) and d(2) with zero mean value,

the innovation of d(2) given d(1) is the scalar random variable defined by:

e = d(2)− E [d(2)| d(1)] = d(2)− σ21

σ11

d(1)

• E[e] = E
[

d(2)− σ21

σ11

d(1)
]

= E[d(2)]− σ21

σ11

E[d(1)] = 0

• σee = V ar[e] = E
[

(e−E [e])2
]

= E
[

e2
]

= E

[

(

d(2)− σ21

σ11

d(1)
)2
]

=

=E

[

d2(2)−2σ21

σ11

d(2)d(1)+
σ2

21

σ2

11

d2(1)

]

=E
[

d2(2)
]

−2σ21

σ11

E[d(2)d(1)]+
σ2

21

σ2

11

E
[

d2(1)
]

=σ22 − 2σ21

σ11

σ21 +
σ2

21

σ2

11

σ11 = σ22 −
σ2

21

σ11

= σ2

• σθe = E[θe] = E
[

θ
(

d(2)− σ21

σ11

d(1)
)]

= E[θd(2)]− σ21

σ11

E[θd(1)] = σθ2−σθ1
σ21

σ11

• σ1e = E[d(1)e] = E
[

d(1)
(

d(2)− σ21

σ11

d(1)
)]

= E[d(1)d(2)]− σ21

σ11

E
[

d2(1)
]

=

=σ12−
σ21

σ11

σ11 = 0 ⇔ d(1) and e are uncorrelated, as well as E [d(2)| d(1)] and e are

From the definition, it follows that: d(2) = E [d(2)| d(1)] + e ⇒
the term e represents the only new information provided by d(2) with respect to d(1)
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By exploiting the definition and the properties of the innovation e, it follows that:

E[θ| d(1), d(2)] =E[θ| d(1)]+
1

σ2
︸︷︷︸

1/σee

(

σθ2−σθ1
σ21

σ11

)

︸ ︷︷ ︸

σθe

[d(2)−E[d(2)| d(1)]]
︸ ︷︷ ︸

e

=

=E[θ| d(1)] +
σθe

σee

e =

=E[θ| d(1)] +E[θ| e]

i.e., the optimal linear estimate of θ based on d(1) and d(2) is equal to the sum of:

• the optimal linear estimate of θ based on the observation d(1) only

• the optimal linear estimate of θ based on the innovation e = d(2)− σ21

σ11

d(1),

which depends on data d(1) and d(2)

It can be proved as well that:

E [θ|d(1), e] = E [θ|d(1),d(2)] = E [θ|d(1)] +E [θ| e]
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Geometrical interpretation

• Let us consider any random variable as a vector in the normed vector space G
⇒ the Bayesian estimate of θ given d is the orthogonal projection of θ over d

• Let H[d(1), d(2)] be the plane defined by the vectors d(1) and d(2)

• The Bayesian estimate E[d(2)| d(1)] is the projection of d(2) over d(1)

• The innovation e = d(2)− E[d(2)| d(1)] is the vector given by the difference
between d(2) and the projection of d(2) over d(1) and it is orthogonal to d(1)

d (1)
d (2)

e

θ

E[θ | d (1)]

E[θ | e]

H [d (1),d (2)]

E[θ | d (1), d (2)]

G

d (1)
d (2)

e

θ

E[θ | d (1)]

E[θ | e]

H [d (1),d (2)]

E[θ | d (1), d (2)]

G
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• The Bayesian estimate E[θ| d(1)] is the projection of θ over d(1)

• The Bayesian estimate E[θ| e] is the projection of θ over e and it is orthogonal
to E[θ| d(1)]

• The Bayesian estimate E[θ| d(1), d(2)] is the projection of θ over the plane
H[d(1), d(2)] and it is the vector given by the sum of E[θ| d(1)] and E[θ| e]:

E[θ| d(1), d(2)] = E[θ| d(1)] + E[θ| e] = E[θ| d(1), e]

d (1)
d (2)

e

θ

E[θ | d (1)]

E[θ | e]

H [d (1),d (2)]

E[θ | d (1), d (2)]

G

d (1)
d (2)

e

θ

E[θ | d (1)]

E[θ | e]

H [d (1),d (2)]

E[θ | d (1), d (2)]

G
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Recursive Bayesian estimation: vector case

• If the unknown θ and the data d are vector random variables with zero mean value:






θ

d(1)

d(2)






∼













0

0

0






,Σ=V ar







θ

d(1)

d(2)






=







Σθθ Σθ1 Σθ2

Σ1θ Σ11 Σ12

Σ2θ Σ21 Σ22












,















Σθ1=ΣT
1θ

Σθ2=ΣT
2θ

Σ12=ΣT
21

by defining the innovation of d(2) given d(1) as the vector random variable:

e = d(2)−E [d(2)| d(1)] = d(2)− Σ21Σ
−1
11 d(1)

the optimal linear estimate of θ based on d(1) and d(2) is given by:

E[θ| d(1), d(2)] = Σθ1Σ
−1
11 d(1) + ΣθeΣ

−1
ee e = E[θ| d(1)] + E[θ| e]

where

Σee = Σ22 − Σ21Σ
−1
11 Σ12, Σθe = Σθ2 − Σθ1Σ

−1
11 Σ12
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• If the unknownθ and the datad are vector random variables with nonzero mean value:






θ

d(1)

d(2)






∼













θ̄

d(1)

d(2)






,Σ=V ar







θ

d(1)

d(2)






=







Σθθ Σθ1 Σθ2

Σ1θ Σ11 Σ12

Σ2θ Σ21 Σ22












,















Σθ1=ΣT
1θ

Σθ2=ΣT
2θ

Σ12=ΣT
21

by defining the innovation of d(2) given d(1) as the vector random variable:

e = d(2)−d(2)−E[d(2)−d(2) |d(1)−d(1)] = d(2)−d(2)−Σ21Σ
−1
11 [d(1)−d(1)]

the optimal linear estimate of θ based on d(1) and d(2) is given by:

E[θ| d(1), d(2)] = θ̄ +Σθ1Σ
−1
11 [d(1)− d(1)]

︸ ︷︷ ︸

E[θ| d(1)]

+ΣθeΣ
−1
ee e =

= E[θ| d(1)] + ΣθeΣ
−1
ee e+ θ̄

︸ ︷︷ ︸

E[θ| e]

−θ̄ =

= E[θ| d(1)] + E[θ| e]− θ̄
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