SYSTEM IDENTIFICATION

Michele TARAGNA

Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino
michele.taragna@polito.it

Master Course in Mechatronic Engineering
Master Course in Computer Engineering

01RKYQW / 01RKYOV “Estimation, Filtering and System Identification”
Academic Year 2019/2020
System identification

- System identification is aimed at constructing or selecting mathematical models of dynamical data generating systems S to serve certain purposes (forecast, diagnosis, control, etc.)

- Starting from experimental data, different identification problems may be stated:
 1. “time series modeling” if only “output” measurements $y(t)$ are available

$$
\begin{align*}
&\text{unknown system} \\
\Rightarrow \quad & \text{the system } S \text{ can be modeled as}
\end{align*}
$$

$$
\begin{align*}
&e(t) \\
&\text{system model}
\end{align*}
$$

with $e(t)$: “endogenous” input, for example $e(t) \sim WN(0, \Sigma_e)$
2. “input-output system identification” if both data $u(t)$ and $y(t)$ are available

$u(t)$ \(\rightarrow \) \(S \) \(\rightarrow \) $y(t)$

unknown system

⇒ the system S can be modeled as

$e(t)$ \(\rightarrow \) \(E \) \(\rightarrow \) $v(t)$

error model

$u(t)$ \(\rightarrow \) \(M \) \(\rightarrow \) $y(t)$

system model

with $e(t)$: “endogenous” input, for example $e(t) \sim WN(0, \Sigma_e)$

$u(t)$: “exogenous” input

$v(t)$: disturbance or “residuals” or “left-overs”
• A first step is to determine a class \mathcal{M} of models within which the search for the most suitable model should be carried on.

• Classes of parametric models $\mathcal{M}(\theta)$ are often considered, where the parameter vector θ belongs to some admissible set Θ:

$$
\mathcal{M} = \{ \mathcal{M}(\theta) : \theta \in \Theta \}
$$

\Downarrow

the choice problem is tackled as a parametric estimation problem.

• We start by discussing two model classes for linear time-invariant (LTI) systems:
 – transfer-function models
 – state-space models.
The transfer-function models, known also as black-box or Box-Jenkins models, involve external variables only (i.e., input and output variables) and do not require any auxiliary variable.

Different structures of transfer-function models are available:

- equation error or ARX model structure
- ARMAX model structure
- output error (OE) model structure
- Box-Jenkins (BJ) model structure
Equation error or ARX model structure

- The input-output relationship is a linear difference equation:
 \[y(t) + a_1 y(t-1) + a_2 y(t-2) + \cdots + a_n y(t-n_a) = b_1 u(t-1) + \cdots + b_n u(t-n_b) + e(t) \]
 where the white-noise term \(e(t) \sim WN(0, \Sigma_e) \) enters as a direct error.

- Let us denote by \(z^{-1} \) the unitary delay operator, such that \(z^{-1} y(t) = y(t-1) \), \(z^{-2} y(t) = y(t-2) \), etc., and introduce the polynomials in the \(z^{-1} \) variable:
 \[
 A(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_n z^{-n_a}
 \]
 \[
 B(z) = b_1 z^{-1} + b_2 z^{-2} + \cdots + b_n z^{-n_b}
 \]
 then, the above input-output relationship can be written as:
 \[
 A(z) y(t) = B(z) u(t) + e(t) \quad \Rightarrow \quad y(t) = \frac{B(z)}{A(z)} u(t) + \frac{1}{A(z)} e(t) = G(z) u(t) + H(z) e(t)
 \]
 where
 \[
 G(z) = \frac{B(z)}{A(z)}, \quad H(z) = \frac{1}{A(z)}
 \]
If the exogenous input $u(\cdot)$ is present, then the model:

$$A(z)y(t) = B(z)u(t) + e(t)$$

contains the **autoregressive (AR)** $A(z)y(t)$ and the **exogenous (X)** $B(z)u(t)$ parts; the integers $n_a \geq 0$ and $n_b \geq 1$ are the *orders* of the two parts of this model, denoted as $ARX(n_a, n_b)$.
\(G(z) = B(z)/A(z) \) is strictly proper, with: \(n_{ab} = \max(n_a, n_b) \) poles, \(n_{ab} - 1 \) zeros

\[
G(z) = \frac{b_1 z^{-1} + b_2 z^{-2} + \cdots + b_{n_b} z^{-n_b}}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_{n_a} z^{-n_a}} = \\
= \frac{(b_1 z^{-1} + b_2 z^{-2} + \cdots + b_{n_b} z^{-n_b}) \cdot z^{n_b}}{(1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_{n_a} z^{-n_a}) \cdot z^{n_a}} \cdot \frac{z^{n_a}}{z^{n_b}} = \\
= \frac{b_1 z^{n_b-1} + b_2 z^{n_b-2} + \cdots + b_{n_b}}{z^{n_a} + a_1 z^{n_a-1} + a_2 z^{n_a-2} + \cdots + a_{n_a}} \cdot z^{n_a-n_b} = \\
polynomial in z of degree \(n_{ab} - 1 \)

\(H(z) = 1/A(z) \) is biproper, with: \(n_a \) poles (common to \(G(z) \)), \(n_a \) zeros (in \(z = 0 \))

\[
H(z) = 1/A(z) = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_{n_a} z^{-n_a}} = \\
= \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_{n_a} z^{-n_a}} \cdot \frac{z^{n_a}}{z^{n_a}} = \\
= \frac{1}{z^{n_a} + a_1 z^{n_a-1} + a_2 z^{n_a-2} + \cdots + a_{n_a}}
\]
If \(n_a = 0 \), then \(A(z) = 1 \) and \(y(t) \) is modeled as a finite impulse response (FIR):

\[
y(t) = B(z)u(t) + e(t)
\]

If \(u(t) = \delta(t) \) and \(e(t) = 0 \), then \(y(t) \) is finite:

\[
y(t) = b_1 \delta(t-1) + \cdots + b_{n_b} \delta(t-n_b)
\]

\[
G(z) = B(z) = b_1 z^{-1} + b_2 z^{-2} + \cdots + b_{n_b} z^{-n_b} = \frac{b_1 z^{n_b-1} + b_2 z^{n_b-2} + \cdots + b_{n_b}}{z^{n_b}}
\]
• If the exogenous input \(u(\cdot) \) is missing, then the model:

\[
A(z)y(t) = e(t)
\]

contains only the autoregressive (AR) \(A(z)y(t) \) part

\[
H(z) = \frac{1}{A(z)}
\]

The integer \(n_a \geq 1 \) is the order of the resulting model, denoted as \(AR(n_a) \)
ARMAX model structure

The input-output relationship is a linear difference equation:

\[y(t) + a_1 y(t-1) + a_2 y(t-2) + \cdots + a_{n_a} y(t-n_a) = \]
\[= b_1 u(t-1) + \cdots + b_{n_b} u(t-n_b) + e(t) + c_1 e(t-1) + \cdots + c_{n_c} e(t-n_c) \]

where the white-noise term \(e(t) \) enters as a linear combination of \(n_c+1 \) samples.

By introducing the polynomials in the \(z^{-1} \) variable:

\[A(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_{n_a} z^{-n_a} \]
\[B(z) = b_1 z^{-1} + b_2 z^{-2} + \cdots + b_{n_b} z^{-n_b} \]
\[C(z) = 1 + c_1 z^{-1} + c_2 z^{-2} + \cdots + c_{n_c} z^{-n_c} \]

the above input-output relationship can be written as:

\[A(z) y(t) = B(z) u(t) + C(z) e(t) \quad \Rightarrow \]
\[y(t) = \frac{B(z)}{A(z)} u(t) + \frac{C(z)}{A(z)} e(t) = G(z) u(t) + H(z) e(t) \]

where

\[G(z) = \frac{B(z)}{A(z)}, \quad H(z) = \frac{C(z)}{A(z)} \]
If the exogenous variable $u(\cdot)$ is present, then the model:

$$A(z)y(t) = B(z)u(t) + C(z)e(t)$$

contains the autoregressive (AR) part $A(z)y(t)$, the exogenous (X) part $B(z)u(t)$ and the moving average (MA) part $C(z)e(t)$, which consists of a “colored” noise (i.e., a sequence of correlated random variables) instead of a white noise; the integers $n_a \geq 0$, $n_b \geq 1$ and $n_c \geq 0$ are the orders of the three parts of this model, denoted as $ARMAX(n_a, n_b, n_c)$.
\[G(z) = B(z)/A(z) \] is strictly proper, with: \(n_{ab} = \max(n_a, n_b) \) poles, \(n_{ab} - 1 \) zeros

\[H(z) = C(z)/A(z) \] is biproper, with: \(n_{ac} = \max(n_a, n_c) \) poles, \(n_{ac} \) zeros

\[
H(z) = C(z)/A(z) = \frac{1 + c_1 z^{-1} + c_2 z^{-2} + \cdots + c_{n_c} z^{-n_c}}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_{n_a} z^{-n_a}}
\]

\[
= \frac{(1 + c_1 z^{-1} + c_2 z^{-2} + \cdots + c_{n_c} z^{-n_c}) \cdot z^{n_c}}{(1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_{n_a} z^{-n_a}) \cdot z^{n_a}} \cdot \frac{z^{n_a}}{z^{n_c}}
\]

\[
= \frac{z^{n_c} + c_1 z^{n_c-1} + c_2 z^{n_c-2} + \cdots + c_{n_c}}{z^{n_a} + a_1 z^{n_a-1} + a_2 z^{n_a-2} + \cdots + a_{n_a}} \cdot z^{n_a-n_c}
\]

polynomial in \(z \) of degree \(n_{ac} = \max(n_a, n_c) \)

The \(n_a \) roots of the polynomial \(A(z) \) are common poles to \(G(z) \) and \(H(z) \)
• If the input $u(\cdot)$ is missing, then the model:

$$A(z)y(t) = C(z)e(t)$$

contains only the autoregressive $A(z)y(t)$ and the moving average $C(z)e(t)$ parts.

The integers $n_a \geq 0$ and $n_c \geq 0$ are the orders of the resulting model, denoted as $ARMA(n_a, n_c)$.

• If $n_a = 0$, then $A(z) = 1$ and the model, denoted as $MA(n_c)$, contains only the moving average $C(z)e(t)$ part.
Output error or OE model structure

- The relationship between input and undisturbed output is a linear difference equation:
 \[w(t) + f_1 w(t-1) + \cdots + f_{n_f} w(t-n_f) = b_1 u(t-1) + \cdots + b_{n_b} u(t-n_b) \]
 and the undisturbed output \(w(t) \) is corrupted by a white measurement noise:
 \[y(t) = w(t) + e(t) \]

- By introducing the polynomials in the \(z^{-1} \) variable:
 \[
 F(z) = 1 + f_1 z^{-1} + f_2 z^{-2} + \cdots + f_{n_f} z^{-n_f}
 \]
 \[
 B(z) = b_1 z^{-1} + b_2 z^{-2} + \cdots + b_{n_b} z^{-n_b}
 \]

 the above input-undisturbed output relationship can be written as:
 \[
 F(z) w(t) = B(z) u(t) \quad \Rightarrow \quad y(t) = w(t) + e(t) = \frac{B(z)}{F(z)} u(t) + e(t) = G(z) u(t) + e(t)
 \]

 where
 \[
 G(z) = \frac{B(z)}{F(z)}
 \]
The integers $n_b \geq 1$ and $n_f \geq 0$ are the orders of the resulting model, denoted as $OE(n_b, n_f)$

- $G(z) = B(z)/F(z)$ is strictly proper, with: $n_{bf} = \max(n_b, n_f)$ poles, $n_{bf} - 1$ zeros

- If $n_f = 0$, then $F(z) = 1$ and $y(t)$ is modeled as a finite impulse response (FIR):
 \[y(t) = B(z)u(t) + e(t) \]
Box-Jenkins or BJ model structure

- The relationship between input and undisturbed output is a linear difference equation:
 \[w(t) + f_1 w(t-1) + \cdots + f_{n_f} w(t-n_f) = b_1 u(t-1) + \cdots + b_{n_b} u(t-n_b) \]
 and the undisturbed output \(w(t) \) is corrupted by a noise \(v(t) \) modeled as ARMA:
 \[y(t) = w(t) + v(t), \quad \text{where} \]
 \[v(t) + d_1 v(t-1) + \cdots + d_{n_d} v(t-n_d) = e(t) + c_1 e(t-1) + \cdots + c_{n_c} e(t-n_c) \]

- By introducing the polynomials in the \(z^{-1} \) variable:
 \[
 F(z) = 1 + f_1 z^{-1} + f_2 z^{-2} + \cdots + f_{n_f} z^{-n_f} \\
 B(z) = b_1 z^{-1} + b_2 z^{-2} + \cdots + b_{n_b} z^{-n_b} \\
 C(z) = 1 + c_1 z^{-1} + c_2 z^{-2} + \cdots + c_{n_c} z^{-n_c} \\
 D(z) = 1 + d_1 z^{-1} + d_2 z^{-2} + \cdots + d_{n_d} z^{-n_d}
 \]
 the above relationships can be written as:
 \[
 F(z) w(t) = B(z) u(t), \quad D(z) v(t) = C(z) e(t) \quad \Rightarrow \quad y(t) = w(t) + v(t) = \frac{B(z)}{F(z)} u(t) + \frac{C(z)}{D(z)} e(t) = G(z) u(t) + H(z) e(t)
 \]
 where
 \[
 G(z) = \frac{B(z)}{F(z)}, \quad H(z) = \frac{C(z)}{D(z)}
 \]
The integers $n_b \geq 1$, $n_c \geq 0$, $n_d \geq 0$ and $n_f \geq 0$ are the orders of the resulting model, denoted as $BJ(n_b, n_c, n_d, n_f)$.

- $G(z) = B(z)/F(z)$ is strictly proper, with: $n_{bf} = \max(n_b, n_f)$ poles, $n_{bf} - 1$ zeros

- $H(z) = C(z)/D(z)$ is biproper, with: $n_{cd} = \max(n_c, n_d)$ poles, n_{cd} zeros

- If the polynomials $F(z)$ and $D(z)$ are coprime (i.e., without common roots), then $G(z)$ and $H(z)$ do not share any pole in $z \neq 0$.
Relationships between transfer-function model structures

\[
\begin{align*}
FIR(n_b) &= ARX(n_a = 0, n_b) = OE(n_b, n_f = 0) \\
ARX(n_a, n_b) &= ARMAX(n_a, n_b, n_c = 0) \\
OE(n_b, n_f) &= ARMAX(n_a = n_f, n_b, n_c = n_f) \bigg|_{C(z) = A(z)} \\
ARMAX(n_a, n_b, n_c) &= BJ(n_b, n_c, n_d = n_a, n_f = n_a) \bigg|_{D(z) = F(z)}
\end{align*}
\]
State-space models

The discrete-time, linear time-invariant model \mathcal{M} is described by:

$$\mathcal{M} : \begin{cases} x(t+1) = Ax(t) + Bu(t) + v_1(t) \\ y(t) = Cx(t) + v_2(t) \end{cases} \quad t = 1, 2, \ldots$$

where:

- $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^q$, $u(t) \in \mathbb{R}^p$, $v_1(t) \in \mathbb{R}^n$, $v_2(t) \in \mathbb{R}^q$
- the process noise $v_1(t)$ and the measurement noise $v_2(t)$ are uncorrelated white noises with zero mean value, i.e.:
 $$v_1(t) \sim WN(0, V_1) \text{ with } V_1 \in \mathbb{R}^{n \times n}, \quad v_2(t) \sim WN(0, V_2) \text{ with } V_2 \in \mathbb{R}^{q \times q}$$
- $A \in \mathbb{R}^{n \times n}$ is the state matrix, $B \in \mathbb{R}^{n \times p}$ is the input matrix,
 $C \in \mathbb{R}^{q \times n}$ is the output matrix

The transfer matrix between the exogenous input u and the output y is:

$$G(z) = C \left(zI_n - A \right)^{-1} B$$
The system identification procedure

The system identification problem may be solved using an iterative approach:

1. Collect the data set
 - If possible, design the experiment so that the data become maximally informative
 - If useful and/or necessary, apply some prefiltering technique of the data

2. Choose the model set or the model structure, so that it is suitable for the aims
 - A *physical* model with some unknown parameters may be constructed by exploiting the possible a priori knowledge and insight
 - Otherwise, a *black box* model may be employed, whose parameters are simply tuned to fit the data, without reference to the physical background
 - Otherwise, a *gray box* model may be used, with adjustable parameters having physical interpretation

3. Determine the suitable complexity level of the model set or model structure

4. Tune the parameters to pick the “best” model in the set, guided by the data

5. Perform a model validation test: if the model is OK, then use it, otherwise revise it
The predictive approach

Let us assume that the system S belongs to a class \mathcal{M} of parametric models $\mathcal{M}(\theta)$:

$$\mathcal{M} = \{ \mathcal{M}(\theta) : \theta \in \Theta \}$$

where the parameter vector θ belongs to some admissible set Θ

The data are the measurements collected at the time instants t from 1 to N

- of the variable $y(t)$, in the case of time series
- of the input $u(t)$ and the output $y(t)$, in the case of input-output systems

Given a model $\mathcal{M}(\theta)$, a corresponding predictor $\hat{\mathcal{M}}(\theta)$ can be associated that provides the optimal one-step prediction $\hat{y}(t+1|t)$ of $y(t+1)$ on the basis of the data, i.e.,

- in the case of time series, the predictor is given by:

$$\hat{\mathcal{M}}(\theta) : \hat{y}(t+1) = \hat{y}(t+1|t) = f(y^t, \theta)$$

- in the case of input-output systems, the predictor is given by:

$$\hat{\mathcal{M}}(\theta) : \hat{y}(t+1) = \hat{y}(t+1|t) = f(u^t, y^t, \theta)$$

with $y^t = \{y(t), y(t-1), y(t-2), \ldots, y(1)\}$, $u^t = \{u(t), u(t-1), u(t-2), \ldots, u(1)\}$
Given a model $\mathcal{M}(\theta)$ with a fixed value of the parameter vector θ, the prediction error at the time instant $t + 1$ is given by:

$$
\varepsilon(t + 1) = y(t+1) - \hat{y}(t+1 | t)
$$

and the overall mean-square error (MSE) is defined as:

$$
J_N(\theta) = \frac{1}{N - \tau + 1} \sum_{t=\tau}^{N} \varepsilon(t)^2 \approx \frac{1}{N} \sum_{t=\tau}^{N} \varepsilon(t)^2 \quad \text{for } N \gg \tau
$$

where τ is the first time instant at which the prediction $\hat{y}(\tau | \tau - 1)$ of $y(\tau)$ can be computed from the data ($\tau = 1$ is often assumed)

In the predictive approach to system identification, the parameters of the model $\mathcal{M}(\theta)$ in the class \mathcal{M} are tuned to minimize the criterion $J_N(\theta)$ over all $\theta \in \Theta$, i.e.,

$$
\hat{\theta}_N = \arg \min_{\theta \in \Theta} J_N(\theta)
$$

If the model quality is high, the prediction error has to be white, i.e., without its own dynamics, since the dynamics contained in the data have to be explained by the model

⇒ many different \textit{whiteness tests} can be performed on the sequence $\varepsilon(t)$
Models in predictor form

Let us consider the class \mathcal{M} of parametric transfer-function models

$$\mathcal{M}(\theta) : y(t) = G(z)u(t) + H(z)e(t)$$

where $e(t)$ is a white noise with zero mean value and $G(z)$ is strictly proper.

The term $v(t) = H(z)e(t)$ is called residual and has to be small, so that the model $\mathcal{M}(\theta)$ could satisfactorily describe the input-output relationship of a given system S.

\[\downarrow \]

It is typically assumed that $v(t)$ is a stationary process, i.e., a sequence of random variables whose joint probability distribution does not change over time or space \Rightarrow the following assumptions can be made, leading to the canonical representation of $v(t)$:

1. $H(z)$ is the ratio of two polynomials with the same degree that are:
 - monic, i.e., such that the coefficients of the highest order terms are equal to 1
 - coprime, i.e., without common roots

2. both the numerator and the denominator of $H(z)$ are asymptotically stable, i.e., the magnitude of all the zeros and poles of $H(z)$ is strictly less than 1.
The predictor associated to $\mathcal{M}(\theta)$ can be derived from the model equation as follows:

1. subtract $y(t)$ from both sides: $0 = -y(t) + G(z)u(t) + H(z)e(t)$
2. divide by $H(z)$: $0 = -\frac{1}{H(z)}y(t) + \frac{G(z)}{H(z)}u(t) + e(t)$
3. add $y(t)$ to both sides: $y(t) = \left[1 - \frac{1}{H(z)}\right]y(t) + \frac{G(z)}{H(z)}u(t) + e(t)$

Since $H(z)$ is the ratio of two monic polynomials with the same degree, then:

$$H(z) = \frac{1 + b_1 z^{-1} + b_2 z^{-2} + \ldots + b_n z^{-n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_n z^{-n}} = \frac{z^n + b_1 z^{n-1} + b_2 z^{n-2} + \ldots + b_n}{z^n + a_1 z^{n-1} + a_2 z^{n-2} + \ldots + a_n} \Rightarrow$$

$$\frac{1}{H(z)} = \frac{z^n + a_1 z^{n-1} + a_2 z^{n-2} + \ldots + a_n}{z^n + b_1 z^{n-1} + b_2 z^{n-2} + \ldots + b_n} = 1 + \frac{\alpha_1}{\alpha_1} z^{-1} + \frac{\alpha_2}{\alpha_1} z^{-2} + \ldots$$

because

$$\begin{array}{c}
z^n + a_1 z^{n-1} + a_2 z^{n-2} + \ldots + a_n \\
-\left(1 - b_1\right) z^{n-1} + \frac{\alpha_1}{\alpha_1} - \left(1 - b_2\right) z^{n-2} + \ldots + a_n - b_n \\
\frac{(a_2 - b_2 - a_1 b_1 + b_1^2)}{\alpha_2} z^{n-2} + \ldots - \left(1 - b_1\right) b_n z^{-1} \\
\alpha_3 z^{n-3} + \ldots - \alpha_2 b_n z^{-2} \end{array}$$
\[
\frac{1}{H(z)} = 1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \ldots \Rightarrow 1 - \frac{1}{H(z)} = -\alpha_1 z^{-1} - \alpha_2 z^{-2} - \ldots \Rightarrow \\
\left[1 - \frac{1}{H(z)} \right] y(t) = -\alpha_1 y(t - 1) - \alpha_2 y(t - 2) - \ldots = f_y(y^{t-1})
\]

with \(y^{t-1} = \{y(t-1), y(t-2), \ldots, y(1)\}\). Analogously, since \(G(z)\) is strictly proper:

\[
G(z) = \frac{c_1 z^{n-1} + c_2 z^{n-2} + \ldots + c_n}{z^n + d_1 z^{n-1} + d_2 z^{n-2} + \ldots + d_n} = \beta_1 z^{-1} + \beta_2 z^{-2} + \ldots
\]

because

\[
\begin{array}{c}
\frac{c_1 z^{n-1} + c_2 z^{n-2} + \ldots + c_n}{z^n + d_1 z^{n-1} + d_2 z^{n-2} + \ldots + d_n} \\
\frac{c_2 - c_1 d_1}{z^{n-2}} + \ldots - c_1 d_n z^{-1} \\
\beta_2 \\
-\beta_2 z^{-2} - \ldots - \beta_2 d_n z^{-2} \\
\beta_3 z^{-3} + \ldots - \beta_2 d_n z^{-2}
\end{array}
\]

\[
\frac{G(z)}{H(z)} = \left(\beta_1 z^{-1} + \beta_2 z^{-2} + \ldots \right) \left(1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \ldots \right) = \gamma_1 z^{-1} + \gamma_2 z^{-2} + \ldots \Rightarrow \\
\frac{G(z)}{H(z)} u(t) = \gamma_1 u(t - 1) + \gamma_2 u(t - 2) + \ldots = f_u(u^{t-1})
\]

with \(u^{t-1} = \{u(t - 1), u(t - 2), \ldots, u(1)\}\)
As a consequence, the model equation is:

\[y(t) = \left[1 - \frac{1}{H(z)} \right] y(t) + \frac{G(z)}{H(z)} u(t) + e(t) \]

\[= f_y(y^{t-1}) + f_u(u^{t-1}) + e(t) \]

the output \(y(t) \) depends on past values \(u^{t-1} \) and \(y^{t-1} \) of the input and the output, while the white noise term \(e(t) \) is unpredictable and independent of \(u^{t-1} \) and \(y^{t-1} \)

\[\Downarrow \]

the best prediction of \(e(t) \) is provided by its mean value, which is equal to 0

\[\Downarrow \]

the optimal one-step predictor of the model \(\mathcal{M}(\theta) \) is given by:

\[\hat{\mathcal{M}}(\theta) : \hat{y}(t) = \hat{y}(t|t-1) = \left[1 - \frac{1}{H(z)} \right] y(t) + \frac{G(z)}{H(z)} u(t) \]
Model \mathcal{M} of the unknown system \mathcal{I}

Predictor $\hat{\mathcal{M}}$ of the system model \mathcal{M}
ARX, AR and FIR models in predictor form

In the case of the ARX transfer-function model:

\[M(\theta) : y(t) = G(z)u(t) + H(z)e(t), \quad \text{with} \quad G(z) = \frac{B(z)}{A(z)}, \quad H(z) = \frac{1}{A(z)} \]

the optimal predictor is given by:

\[\hat{M}(\theta) : \hat{y}(t) = \hat{y}(t|t-1) = [1 - A(z)] y(t) + B(z)u(t) \]
The optimal predictor is given by:
\[\hat{M}(\theta) : \hat{y}(t) = \hat{y}(t|t-1) = [1 - A(z)] y(t) + B(z)u(t) \]
\[= \left[1 - (1 + a_1 z^{-1} + \ldots + a_n a z^{-n_a}) \right] y(t) + (b_1 z^{-1} + \ldots + b_{n_b} z^{-n_b}) u(t) \]
\[= -(a_1 z^{-1} + \ldots + a_{n_a} z^{-n_a}) y(t) + (b_1 z^{-1} + \ldots + b_{n_b} z^{-n_b}) u(t) \]
\[= -a_1 y(t-1) - \ldots - a_{n_a} y(t-n_a) + b_1 u(t-1) + \ldots + b_{n_b} u(t-n_b) \]

- \(\hat{y}(t) \) is a linear combination of the known past values of \(u^{t-1} \) and \(y^{t-1} \), and it is also independent of past predictions
- \(\hat{y}(t) \) is linear in the unknowns \(a_i \) and \(b_i \) of the polynomials \(A(z) \) and \(B(z) \)
- the predictor is stable for any value of the parameters that define \(A(z) \) and \(B(z) \)

In the case of the \(AR \) transfer-function model, where \(B(z) = 0 \), then:
\[\hat{M}(\theta) : \hat{y}(t) = [1 - A(z)] y(t) = -a_1 y(t-1) - \ldots - a_{n_a} y(t-n_a) \]

In the case of the \(FIR \) transfer-function model, where \(A(z) = 1 \), then:
\[\hat{M}(\theta) : \hat{y}(t) = B(z)u(t) = b_1 u(t-1) + \ldots + b_{n_b} u(t-n_b) \]
ARMAX, ARMA and MA models in predictor form

In the case of the ARMAX transfer-function model:

\[M(\theta) : y(t) = G(z)u(t) + H(z)e(t), \quad \text{with} \quad G(z) = \frac{B(z)}{A(z)}, \quad H(z) = \frac{C(z)}{A(z)} \]

the optimal predictor is given by:

\[\hat{M}(\theta) : \hat{y}(t) = \hat{y}(t|t-1) = \left[1 - \frac{A(z)}{C(z)} \right] y(t) + \frac{B(z)}{C(z)} u(t) \]
The optimal predictor is given by:

$$\hat{M}(\theta) : \hat{y}(t) = \hat{y}(t|t-1) = \left[1 - \frac{A(z)}{C(z)} \right] y(t) + \frac{B(z)}{C(z)} u(t)$$

$$= \left[1 - \frac{1 + a_1 z^{-1} + \ldots + a_n z^{-n_a}}{1 + c_1 z^{-1} + \ldots + c_n z^{-n_c}} \right] y(t) + \frac{b_1 z^{-1} + \ldots + b_n z^{-n_b}}{1 + c_1 z^{-1} + \ldots + c_n z^{-n_c}} u(t)$$

$$= \left(\alpha_1' z^{-1} + \alpha_2' z^{-2} + \ldots \right) y(t) + \left(\beta_1' z^{-1} + \beta_2' z^{-2} + \ldots \right) u(t)$$

- $\hat{y}(t)$ is a linear combination of all the known past values of u^{t-1} and y^{t-1}
- $\hat{y}(t)$ is nonlinear in the unknowns a_i, b_i, c_i of the polynomials $A(z), B(z), C(z)$
- the predictor stability depends on the values of the parameters that define $C(z)$

In the case of the *ARMA* transfer-function model, where $B(z) = 0$, then:

$$\hat{M}(\theta) : \hat{y}(t) = \left[1 - \frac{A(z)}{C(z)} \right] y(t)$$

In the case of the *MA* transfer-function model, where $B(z) = 0$ and $A(z) = 1$, then:

$$\hat{M}(\theta) : \hat{y}(t) = \left[1 - \frac{1}{C(z)} \right] y(t)$$
OE models in predictor form

In the case of the OE transfer-function model:

\[M(\theta) : y(t) = G(z)u(t) + H(z)e(t), \quad \text{with} \quad G(z) = \frac{B(z)}{F(z)}, \quad H(z) = 1 \]

the optimal predictor is given by:

\[\hat{M}(\theta) : \hat{y}(t) = \hat{y}(t|t-1) = \frac{B(z)}{F(z)}u(t) \]
The optimal predictor is given by:

$$\hat{M}(\theta) : \hat{y}(t) = \hat{y}(t | t - 1) = \frac{B(z)}{F(z)} u(t) = \frac{b_1 z^{-1} + \ldots + b_{n_b} z^{-n_b}}{1 + f_1 z^{-1} + \ldots + f_{n_f} z^{-n_f}} u(t)$$

- $\hat{y}(t)$ is a linear combination of all the known past values of exogenous input only (i.e., it is independent of y^{t-1}), but it depends also on past predictions, since:

$$\hat{y}(t) = \frac{B(z)}{F(z)} u(t) \Rightarrow F(z) \hat{y}(t) = B(z) u(t) \Rightarrow$$

$$0 = -F(z) \hat{y}(t) + B(z) u(t) \Rightarrow$$

$$\hat{y}(t) = \hat{y}(t) - F(z) \hat{y}(t) + B(z) u(t)$$

$$= \left[1 - (1 + f_1 z^{-1} + \ldots + f_{n_f} z^{-n_f}) \right] \hat{y}(t) + (b_1 z^{-1} + \ldots + b_{n_b} z^{-n_b}) u(t)$$

$$= -\left(f_1 z^{-1} + \ldots + f_{n_f} z^{-n_f} \right) \hat{y}(t) + (b_1 z^{-1} + \ldots + b_{n_b} z^{-n_b}) u(t)$$

$$= -f_1 \hat{y}(t-1) - \ldots - f_{n_f} \hat{y}(t-n_f) + b_1 u(t-1) + \ldots + b_{n_b} u(t-n_b)$$

- $\hat{y}(t)$ is nonlinear in the unknowns b_i, f_i of the polynomials $B(z)$ and $F(z)$
- the predictor stability depends on the values of the parameters that define $F(z)$
Asymptotic analysis of prediction-error identification methods

Using the prediction-error identification methods (PEM), the optimal model in the parametric class $\mathcal{M} = \{ \mathcal{M}(\theta) : \theta \in \Theta \}$ is obtained by minimizing the MSE, i.e., the “size” of the prediction-error sequence $\varepsilon(t, \theta) = y(t) - \hat{y}(t, \theta)$:

$$J_N(\theta) = \frac{1}{N} \sum_{t=\tau}^{N} \varepsilon(t, \theta)^2$$

or, in general,

$$J_N(\theta) = \frac{1}{N} \sum_{t=\tau}^{N} \ell (\varepsilon(t, \theta))$$

where $\ell (\cdot)$ is a scalar-valued (typically positive) function

Goal: analyze the asymptotic (i.e., as $N \to \infty$) characteristics of the optimal estimate

$$\hat{\theta}_N = \arg \min_{\theta \in \Theta} J_N(\theta)$$

Assumptions: the predictor form $\hat{\mathcal{M}}(\theta)$ of the model $\mathcal{M}(\theta)$ is stable and the sequences $u(\cdot)$ and $y(\cdot)$ are stationary processes \Rightarrow the one-step prediction $\hat{y}(\cdot)$ and the prediction error $\varepsilon(\cdot) = y(\cdot) - \hat{y}(\cdot)$ are stationary processes as well \Rightarrow

$$J_N(\theta) = \frac{1}{N} \sum_{t=\tau}^{N} \varepsilon(t, \theta)^2 \quad \frac{N \to \infty}{\Rightarrow} \quad \bar{J}(\theta) = E[\varepsilon(t, \theta)^2] = Var[\varepsilon(t, \theta)]$$
Let us denote by \mathcal{D}_Θ the set of minimum points of $\bar{J}(\theta)$, i.e.:

$$\mathcal{D}_\Theta = \{\bar{\theta} : \bar{J}(\bar{\theta}) \leq \bar{J}(\theta), \forall \theta \in \Theta\}$$

Result #1:

if the data generating system $S \in \mathcal{M}$, i.e., \(\exists \theta_o \in \Theta : S = \mathcal{M}(\theta_o) \Rightarrow \theta_o \in \mathcal{D}_\Theta\)
Let us denote by D_{Θ} the set of minimum points of $\bar{J}(\theta)$, i.e.:

$$D_{\Theta} = \{ \bar{\theta} : \bar{J}(\bar{\theta}) \leq \bar{J}(\theta), \forall \theta \in \Theta \}$$

Result #2:

1. if $S \in \mathcal{M}$ and $D_{\Theta} = \{ \theta_o \}$ (i.e., D_{Θ} is a singleton) \(\Rightarrow \) \(\hat{\theta}_N \xrightarrow{N \to \infty} \theta_o \)

2. if $S \in \mathcal{M}$ and D_{Θ} is not a singleton (i.e., \(\exists \bar{\theta} \in D_{\Theta} : \bar{\theta} \neq \theta_o \)) \(\Rightarrow \) asymptotically:
 - either $\hat{\theta}_N$ tends to a point in D_{Θ} (not necessarily θ_o)
 - or it does not converge to any particular point of D_{Θ} but wanders around in D_{Θ}

3. if $S \notin \mathcal{M}$ and $D_{\Theta} = \{ \bar{\theta} \}$ (i.e., D_{Θ} is a singleton) \(\Rightarrow \) \(\hat{\theta}_N \xrightarrow{N \to \infty} \bar{\theta} \) and $\mathcal{M}(\bar{\theta})$ is the best approximation of S within \mathcal{M}

4. if $S \notin \mathcal{M}$ and D_{Θ} is not a singleton \(\Rightarrow \) asymptotically:
 - either $\hat{\theta}_N$ tends to a point in D_{Θ}
 - or it does not converge to any particular point of D_{Θ} but wanders around in D_{Θ}
Result #2.1
\[\mathcal{D}_\theta = \{ \theta_o \} \]
\[S = \mathcal{M}(\theta_o) \]
\[\mathcal{M}(\hat{\theta}_N) \]

Result #2.2
\[\theta_o \subset \mathcal{D}_\theta \]
\[S = \mathcal{M}(\theta_o) \]
\[\mathcal{M}(\hat{\theta}_N) \]

Result #2.3
\[\mathcal{D}_\theta = \{ \bar{\theta} \} \]
\[S \notin \mathcal{M} \]
\[\mathcal{M}(\bar{\theta}) \]
\[\mathcal{M}(\hat{\theta}_N) \]

Result #2.4
\[\bar{\theta} \subset \mathcal{D}_\theta \]
\[S \notin \mathcal{M} \]
\[\mathcal{M}(\bar{\theta}) \]
\[\mathcal{M}(\hat{\theta}_N) \]
To measure the uncertainty and the convergence rate of the estimate $\hat{\theta}_N$, we have to study the random variable $\hat{\theta}_N - \bar{\theta}$, being $\bar{\theta}$ the limit of $\hat{\theta}_N$ as $N \to \infty$

Result #3:

if $S \in \mathcal{M}$ and $\mathcal{D}_\Theta = \{\theta_o\} \in \mathbb{R}^n$ (i.e., $\hat{\theta}_N \xrightarrow{N \to \infty} \theta_o$), then:

- $\hat{\theta}_N - \theta_o$ decays as $1/\sqrt{N}$ for $N \to \infty$
- the random variable $\sqrt{N}(\hat{\theta}_N - \theta_o)$ is asymptotically normally distributed:

$$\sqrt{N}(\hat{\theta}_N - \theta_o) \sim \text{As } \mathcal{N}(0, \bar{P})$$

where

$$\bar{P} = Var[\varepsilon(t, \theta_o)] \bar{R}^{-1} \in \mathbb{R}^{n \times n} \quad \text{(asymptotic variance matrix)}$$

$$\bar{R} = E[\psi(t, \theta_o)\psi(t, \theta_o)^T] \in \mathbb{R}^{n \times n}$$

$$\psi(t, \theta) = - \left[\frac{d}{d\theta} \varepsilon(t, \theta) \right]^T = - \left[- \frac{d}{d\theta} \hat{y}(t, \theta) \right]^T \in \mathbb{R}^n$$

$$\downarrow$$

$$\hat{\theta}_N \sim \text{As } \mathcal{N}(\theta_o, \frac{1}{N}\bar{P})$$
Remark: the asymptotic variance matrix \bar{P} is usually unknown, because it depends on the unknown parameter vector θ_o; nevertheless, \bar{P} can be directly estimated from data as follows, having processed N data points and determined $\hat{\theta}_N$:

$$\bar{P} = Var[\varepsilon(t, \theta_o)]\bar{R}^{-1} \approx \hat{P}_N = \hat{\sigma}_N^2 \hat{R}_N^{-1}$$

where

$$\hat{\sigma}_N^2 = \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t, \hat{\theta}_N)^2 \in \mathbb{R} \quad \text{(empirical variance)}$$

$$\hat{R}_N = \frac{1}{N} \sum_{t=1}^{N} \psi(t, \hat{\theta}_N)\psi(t, \hat{\theta}_N)^T \in \mathbb{R}^{n \times n}$$

\Rightarrow the estimate uncertainty intervals can be directly derived from data, computing the empirical variance matrix $\Sigma_{\hat{\theta}_N}$ of the estimate $\hat{\theta}_N$:

$$\Sigma_{\hat{\theta}_N} = \frac{1}{N} \hat{P}_N = \frac{1}{N} \hat{\sigma}_N^2 \hat{R}_N^{-1}$$

where the diagonal element $\left[\Sigma_{\hat{\theta}_N}\right]_{ii}$ is the variance of the parameter $[\hat{\theta}_N]_i$
Linear regressions and least-squares method

In the case of equation error or ARX models, the optimal predictor is given by:

\[\hat{M}(\theta) : \hat{y}(t) = [1 - A(z)] y(t) + B(z)u(t) \]

with \(A(z) = 1 + a_1 z^{-1} + \cdots + a_{n_a} z^{-n_a} \), \(B(z) = b_1 z^{-1} + \cdots + b_{n_b} z^{-n_b} \)

\[\Downarrow \]

\[\hat{y}(t) = (-a_1 z^{-1} - \cdots - a_{n_a} z^{-n_a})y(t) + (b_1 z^{-1} + \cdots + b_{n_b} z^{-n_b})u(t) = \]

\[= -a_1 y(t-1) - \cdots - a_{n_a} y(t-n_a) + b_1 u(t-1) + \cdots + b_{n_b} u(t-n_b) = \]

\[= \varphi(t)^T \theta = \hat{y}(t, \theta) \]

where

\[\varphi(t) = [-y(t-1) \cdots - y(t-n_a) u(t-1) \cdots u(t-n_b)]^T \in \mathbb{R}^{n_a+n_b} \]

\[\theta = [a_1 \cdots a_{n_a} b_1 \cdots b_{n_b}]^T \in \mathbb{R}^{n_a+n_b} \]

i.e., it defines a linear regression \(\Rightarrow \) the vector \(\varphi(t) \) is known as the regression vector
Since the prediction error at the time instant t is given by:

$$
\varepsilon(t, \theta) = y(t) - \hat{y}(t, \theta) = y(t) - \varphi(t)^T \theta, \quad t = 1, \ldots, N
$$

and the optimality criterion (assuming $\tau = 1$, for the sake of simplicity) is quadratic:

$$
J_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t, \theta)^2
$$

the optimal parameter vector $\hat{\theta}_N$ that minimizes $J_N(\theta)$ over all $\theta \in \Theta = \mathbb{R}^{n_a+n_b}$ is obtained by solving the normal equation system:

$$
\begin{bmatrix}
\sum_{t=1}^{N} \varphi(t) \varphi(t)^T
\end{bmatrix} \theta = \sum_{t=1}^{N} \varphi(t) y(t)
$$

- if the matrix $\begin{bmatrix}
\sum_{t=1}^{N} \varphi(t) \varphi(t)^T
\end{bmatrix}$ is nonsingular (known as identifiability condition),
 then there exists a single unique solution given by the least-squares (LS) estimate:

$$
\hat{\theta}_N = \left[\sum_{t=1}^{N} \varphi(t) \varphi(t)^T \right]^{-1} \sum_{t=1}^{N} \varphi(t) y(t)
$$

- otherwise, there are infinite solutions
Remark: the least-squares method can be applied to any model (not necessarily ARX) such that the corresponding predictor is a linear or affine function of θ:

$$\hat{y}(t, \theta) = \varphi(t)^T \theta + \mu(t)$$

where $\mu(t) \in \mathbb{R}$ is a known data-dependent vector. In fact, if the identifiability condition is satisfied, then:

$$\hat{\theta}_N = \left[\sum_{t=1}^{N} \varphi(t) \varphi(t)^T \right]^{-1} \sum_{t=1}^{N} \varphi(t) (y(t) - \mu(t))$$

Such a situation may occur in many different situations:

- when some coefficients of the polynomials $A(z)$, $B(z)$ of an ARX model are known
- when the predictor (even of a model nonlinear with respect to the data) can be written as a linear function of θ, by suitably choosing $\varphi(t)$

Example: given the nonlinear dynamic model

$$y(t) = ay(t - 1)^2 + b_1 u(t - 3) + b_2 u(t - 5)^3 + e(t), \quad e(\cdot) \sim WN(0, \sigma^2)$$

the corresponding predictor is linear in the unknown parameters:

$$\hat{\mathcal{M}}(\theta) : \hat{y}(t) = ay(t - 1)^2 + b_1 u(t - 3) + b_2 u(t - 5)^3 = \varphi(t)^T \theta$$

with $\varphi(t) = [y(t-1)^2 \ u(t-3) \ u(t-5)^3]^T$ and $\theta = [a \ b_1 \ b_2]^T$
Probabilistic analysis of the least-squares method

Let the predictor \(\hat{M}(\theta) \) of \(M(\theta) \) be stable and \(u(\cdot), y(\cdot) \) be stationary processes. The least-squares method is a PEM method \(\Rightarrow \) the previous asymptotic results hold \(\Rightarrow \) asymptotically, either \(\hat{\theta}_N \) tends to a point in \(D_\Theta \) or wanders around in \(D_\Theta \), where

\[
D_\Theta = \left\{ \bar{\theta} : \tilde{J}(\bar{\theta}) \leq \tilde{J}(\theta), \forall \theta \in \Theta \right\}
\]

is the set of minimum points of \(\tilde{J}(\theta) = E \left[\varepsilon(t)^2 \right] \).

If \(S \in M \Rightarrow \exists \theta_o \in D_\Theta : S = M(\theta_o) \Rightarrow y(t) = \varphi(t)^T \theta_o + e(t), \ e(t) \sim WN(0,\sigma^2) \)

If \(S \in M \) and \(D_\Theta = \{ \theta_o \} \), then \(\hat{\theta}_N \sim \text{As} N(\theta_o, \bar{P}/N) \), where:

\[
\bar{P} = \text{Var}[\varepsilon(t, \theta_o)] \bar{R}^{-1} = \sigma^2 \bar{R}^{-1}
\]

\[
\bar{R} = E \left[\psi(t, \theta_o) \psi(t, \theta_o)^T \right] = E \left[\varphi(t) \varphi(t)^T \right]
\]

\[
\psi(t, \theta) = -\left[\frac{d}{d\theta} \varepsilon(t, \theta) \right]^T = -\left[-\frac{d}{d\theta} \hat{y}(t, \theta) \right]^T = \varphi(t)
\]

since \(\hat{y}(t, \theta) = \varphi(t)^T \theta, \varepsilon(t, \theta) = y(t) - \hat{y}(t, \theta) = \varphi(t)^T(\theta_o - \theta) + e(t) \)

\(\bar{P} \) can be directly estimated from \(N \) data as: \(\bar{P} = \sigma^2 \bar{R}^{-1} \approx \hat{P}_N = \hat{\sigma}_N^2 \hat{R}_N^{-1} \), with

\[
\hat{\sigma}_N^2 = \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t, \hat{\theta}_N)^2 = \frac{1}{N} \sum_{t=1}^{N} [y(t) - \varphi(t)^T \hat{\theta}_N]^2
\]

\[
\hat{R}_N = \frac{1}{N} \sum_{t=1}^{N} \psi(t, \hat{\theta}_N) \psi(t, \hat{\theta}_N)^T = \frac{1}{N} \sum_{t=1}^{N} \varphi(t) \varphi(t)^T
\]
Note that, under the assumption that $S \in \mathcal{M}$, the set \mathcal{D}_Θ is a singleton that contains the “true” parameter vector θ_o only \Leftrightarrow the matrix $\bar{R} = E[\varphi(t)\varphi(t)^T]$ is nonsingular.

In the case of an $ARX(n_a, n_b)$ model,

$$\varphi(t) = [-y(t-1) \cdots -y(t-n_a) \ u(t-1) \cdots u(t-n_b)]^T = \begin{bmatrix} \varphi_y(t) \\ \varphi_u(t) \end{bmatrix}$$

with $\varphi_y(t) = [-y(t-1) \cdots -y(t-n_a)]^T \in \mathbb{R}^{n_a}$, $\varphi_u(t) = [u(t-1) \cdots u(t-n_b)]^T \in \mathbb{R}^{n_b}$.

$$\bar{R} = E[\varphi(t)\varphi(t)^T] = E \begin{bmatrix} \varphi_y(t) \\ \varphi_u(t) \end{bmatrix} \begin{bmatrix} \varphi_y(t) & \varphi_u(t) \end{bmatrix} = E \begin{bmatrix} E[\varphi_y(t)\varphi_y(t)^T] & E[\varphi_y(t)\varphi_u(t)^T] \\ E[\varphi_u(t)\varphi_y(t)^T] & E[\varphi_u(t)\varphi_u(t)^T] \end{bmatrix}$$

$$= E \begin{bmatrix} \bar{R}^{(n_a)}_{yy} & \bar{R}^{(n_a)}_{yu} \\ \bar{R}^{(n_b)}_{uy} & \bar{R}^{(n_b)}_{uu} \end{bmatrix} = \begin{bmatrix} \bar{R}^{(n_a)}_{yy} & \bar{R}^{(n_a)}_{yu} \\ \bar{R}^{(n_b)}_{uy} & \bar{R}^{(n_b)}_{uu} \end{bmatrix}^T$$

where $\bar{R}^{(n_a)}_{yy} = [\bar{R}^{(n_a)}_{yy}]^T$, $\bar{R}^{(n_b)}_{uu} = [\bar{R}^{(n_b)}_{uu}]^T$.

01RKYQW / 01RKYOV - Estimation, Filtering and System Identification
For structural reasons, \bar{R} is symmetric and positive semidefinite, since $\forall x \in \mathbb{R}^{n_a+n_b}$:

$$x^T \bar{R} x = x^T E[\varphi(t)\varphi(t)^T] x = E\left[x^T \varphi(t)\varphi(t)^T x \right] = E\left[(x^T \varphi(t))^2 \right] \geq 0$$

\Downarrow

\bar{R} is nonsingular \iff \bar{R} is positive definite (denoted as: $\bar{R} > 0$)

Schur’s Lemma: given a symmetric matrix M partitioned as:

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{12}^T & M_{22} \end{bmatrix}$$

(where obviously M_{11} and M_{22} are symmetric), M is positive definite if and only if:

$$M_{22} > 0 \quad M_{11} - M_{12} M_{22}^{-1} M_{12}^T > 0$$

\Downarrow

A necessary condition for the invertibility of \bar{R} is that $\bar{R}_{uu} > 0$, i.e., that $\bar{R}_{uu}^{(n_b)}$ is nonsingular, since $\bar{R}_{uu}^{(n_b)}$ is symmetric and positive semidefinite; in fact $\forall x \in \mathbb{R}^{n_b}$:

$$x^T \bar{R}_{uu}^{(n_b)} x = x^T E[\varphi_u(t)\varphi_u(t)^T] x = E\left[x^T \varphi_u(t)\varphi_u(t)^T x \right] = E\left[(x^T \varphi_u(t))^2 \right] \geq 0$$
\[
\bar{R}_{uu}^{(n_b)} = E[\varphi_u(t)\varphi_u(t)^T] = E\begin{bmatrix}
 u(t-1) \\
 \vdots \\
 u(t-n_b)
\end{bmatrix} \begin{bmatrix}
 u(t-1) \\
 \vdots \\
 u(t-n_b)
\end{bmatrix} = \\
E[u(t-1)^2] & E[u(t-1)u(t-2)] & \cdots & E[u(t-1)u(t-n_b)] \\
E[u(t-2)u(t-1)] & E[u(t-2)^2] & \cdots & E[u(t-2)u(t-n_b)] \\
\vdots & \vdots & \ddots & \vdots \\
E[u(t-n_b)u(t-1)] & E[u(t-n_b)u(t-2)] & \cdots & E[u(t-n_b)^2] \\
\end{bmatrix} = \\
\begin{bmatrix}
 r_u(t-1,0) & r_u(t-1,1) & \cdots & r_u(t-1,n_b-1) \\
 r_u(t-1,1) & r_u(t-2,0) & \cdots & r_u(t-2,n_b-2) \\
 \vdots & \vdots & \ddots & \vdots \\
 r_u(t-1,n_b-1) & r_u(t-2,n_b-2) & \cdots & r_u(t-n_b,0) \\
\end{bmatrix} = \\
\begin{bmatrix}
 r_u(0) & r_u(1) & \cdots & r_u(n_b-1) \\
 r_u(1) & r_u(0) & \cdots & r_u(n_b-2) \\
 \vdots & \vdots & \ddots & \vdots \\
 r_u(n_b-1) & r_u(n_b-2) & \cdots & r_u(0)
\end{bmatrix}
\]

where \(r_u(t, \tau) = E[u(t)u(t-\tau)] \) is the correlation function of the input \(u(\cdot) \), which is independent of \(t \) for any stationary process \(u(\cdot) \): \(r_u(t_1, \tau) = r_u(t_2, \tau) = r_u(\tau), \ \forall t_1, t_2, \tau \).
A stationary signal $u(\cdot)$ is **persistently exciting of order** $n \iff \bar{R}_{uu}^{(n)}$ is nonsingular

Examples:

- The discrete-time unitary impulse $u(t) = \delta(t) = \begin{cases} 1, & \text{if } t = 1 \\ 0, & \text{if } t \neq 1 \end{cases}$

 is not persistently exciting of any order, since $r_u(\tau) = 0, \forall \tau \Rightarrow \bar{R}_{uu}^{(n)} = 0_{n \times n}$

- The discrete-time unitary step $u(t) = \epsilon(t) = \begin{cases} 1, & \text{if } t = 1, 2, \ldots \\ 0, & \text{if } t = \ldots, -1, 0 \end{cases}$

 is persistently exciting of order 1 only, since $r_u(\tau) = 1, \forall \tau \Rightarrow \bar{R}_{uu}^{(n)} = 1_{n \times n}$

- The discrete-time signal $u(t)$ consisting of m different sinusoids:

 $$u(t) = \sum_{k=1}^{m} \mu_k \cos(\omega_k t + \varphi_k), \quad \text{where } 0 \leq \omega_1 < \omega_2 < \ldots < \omega_m \leq \pi$$

 is persistently exciting of order $n = \begin{cases} 2m, & \text{if } 0 < \omega_1 \text{ and } \omega_m < \pi \\ 2m - 1, & \text{if } 0 = \omega_1 \text{ or } \omega_m = \pi \\ 2m - 2, & \text{if } 0 = \omega_1 \text{ and } \omega_m = \pi \end{cases}$

- The white noise $u(t) \sim WN(0, \sigma^2)$ is persistently exciting of all orders, since $r_u(0) = \sigma^2$ and $r_u(\tau) = 0, \forall \tau \neq 0 \Rightarrow \bar{R}_{uu}^{(n)} = \sigma^2 I_n$
\[u(t) = \delta(t) = \begin{cases} 1, & \text{if } t = 1 \\ 0, & \text{if } t \neq 1 \end{cases} \]

\[r_u(\tau) = E[u(t)u(t-\tau)] = E[\delta(t)\delta(t-\tau)] = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \delta(t)\delta(t-\tau) \]

\[= \begin{cases} \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \delta(t)^2 = \lim_{N \to \infty} \frac{1}{N} \cdot 1 = 0, & \text{if } \tau = 0 \\ 0, & \text{if } \tau \neq 0 \end{cases} \]

\[u(t) = \varepsilon(t) = \begin{cases} 1, & \text{if } t = 1, 2, \ldots \\ 0, & \text{if } t = \ldots, -1, 0 \end{cases} \]

\[r_u(\tau) = E[u(t)u(t-\tau)] = E[\varepsilon(t)\varepsilon(t-\tau)] = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t)\varepsilon(t-\tau) = \]

\[\begin{cases} \lim_{N \to \infty} \frac{1}{N} \underbrace{[1 \cdot 1 + \ldots + 1 \cdot 1]}_{N \text{ times}} = \lim_{N \to \infty} \frac{1}{N} \cdot N = 1, & \text{if } \tau = 0 \\ \lim_{N \to \infty} \frac{1}{N} \underbrace{[1 \cdot 0 + \ldots + 1 \cdot 0 + 1 \cdot 1 + \ldots + 1 \cdot 1]}_{\tau \text{ times } + N-\tau \text{ times}} = \lim_{N \to \infty} \frac{N-\tau}{N} = 1, & \text{if } \tau \neq 0 \end{cases} \]
As a consequence, a necessary condition for the invertibility of \bar{R} is that the signal $u(\cdot)$ is persistently exciting of order n_b at least

\[\downarrow \]

A necessary condition to univocally estimate the parameters of an $ARX(n_a, n_b)$ (i.e., to prevent any problem of *experimental identifiability* related to the choice of u) is that the signal $u(\cdot)$ is persistently exciting of order n_b at least

The matrix \bar{R} may however be singular also for problems of *structural identifiability* related to the choice of the model class \mathcal{M}: in fact, even in the case $S \in \mathcal{M}$, if \mathcal{M} is redundant or *overparametrized* (i.e., its orders are greater than necessary), then an infinite number of models may represent S by means of suitable pole-zero cancelations in the denominator and numerator of the involved transfer functions

\[\downarrow \]

To summarize, only in the case that $S = \mathcal{M}(\theta_o)$ is an $ARX(n_a, n_b)$ (without any pole-zero cancelation in the transfer function) and \mathcal{M} is the class of $ARX(n_a, n_b)$ models, if the input signal $u(\cdot)$ is persistently exciting of order n_b at least, then the least-squares estimate $\hat{\theta}_N$ asymptotically converges to the “true” parameter vector θ_o
Least-squares method: practical procedure

1. Starting from \(N \) data points of \(u(\cdot) \) and \(y(\cdot) \), build the regression vector \(\varphi(t) \) and the matrix \(\hat{R}_N = \frac{1}{N} \sum_{t=1}^{N} \varphi(t)\varphi(t)^T \rightarrow \hat{R} \) if \(\varphi(\cdot) \) is stationary;
 in compact matrix form, \(\hat{R}_N = \frac{1}{N} \Phi^T \Phi \), where \(\Phi = \begin{bmatrix} \varphi(1)^T \\ \vdots \\ \varphi(N)^T \end{bmatrix} \)

2. Check if \(\hat{R}_N \) is nonsingular, i.e., if \(\det \hat{R}_N \neq 0 \): if there exists the matrix \(\hat{R}_N^{-1} \), then the estimate is unique and it is given by: \(\hat{\theta}_N = \hat{R}_N^{-1} \frac{1}{N} \sum_{t=1}^{N} \varphi(t) y(t) \);
 in a matrix form, \(\hat{\theta}_N = \hat{R}_N^{-1} \frac{1}{N} \Phi^T y = (\Phi^T \Phi)^{-1} \Phi^T y \), where \(y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix} \)

3. Evaluate the prediction error of the estimated model \(\varepsilon(t, \hat{\theta}_N) = y(t) - \varphi(t)^T \hat{\theta}_N \)
 and approximate the estimate uncertainty as: \(\Sigma_{\hat{\theta}_N} = \hat{R}_N^{-1} \frac{1}{N^2} \sum_{t=1}^{N} \varepsilon(t, \hat{\theta}_N)^2 \)
 where the elements on the diagonal are the variances of each parameter \([\hat{\theta}_N]_i \)

4. Check the whiteness of \(\varepsilon(t, \hat{\theta}_N) \) by means of a suitable test
Anderson’s whiteness test

Let $\varepsilon(\cdot)$ be the signal under test and N be the (sufficiently large) number of samples.

1. Compute the sample correlation function

$$\hat{r}_\varepsilon(\tau) = \frac{1}{N} \sum_{t=\tau+1}^{N} \varepsilon(t)\varepsilon(t-\tau), \ 0 \leq \tau \leq \bar{\tau}$$

($\bar{\tau} = 25 \text{ or } 30$), and the normalized sample correlation function

$$\hat{\rho}_\varepsilon(\tau) = \frac{\hat{r}_\varepsilon(\tau)}{\hat{r}_\varepsilon(0)} \Rightarrow$$

if $\varepsilon(\cdot)$ is white with zero mean, then $\hat{\rho}_\varepsilon(\tau)$ is asymptotically normally distributed:

$$\hat{\rho}_\varepsilon(\tau) \sim \text{As } \mathcal{N} \left(0, \frac{1}{N}\right), \ \forall \tau > 0$$

moreover, $\hat{\rho}_\varepsilon(\tau_1)$ and $\hat{\rho}_\varepsilon(\tau_2)$ are asymptotically uncorrelated $\forall \tau_1 \neq \tau_2$.

2. Fix a confidence level α, i.e., the probability α that asymptotically $|\hat{\rho}_\varepsilon(\tau)| \leq \beta$,

$$\hat{\rho}_\varepsilon(\tau) \sim \text{As } \mathcal{N} \left(0, \frac{1}{N}\right), \ \forall \tau > 0$$

and evaluate β; in particular, it turns out that:

$$\beta = \begin{cases}
1/\sqrt{N}, & \text{for } \alpha = 68.3\% \\
2/\sqrt{N}, & \text{for } \alpha = 95.4\% \\
3/\sqrt{N}, & \text{for } \alpha = 99.7\%
\end{cases}$$

3. The test is failed if the number of τ values such that $|\hat{\rho}_\varepsilon(\tau)| \leq \beta$ is less than $\lfloor \alpha \bar{\tau} \rfloor$, where $\lfloor x \rfloor$ denotes the biggest integer less than or equal to x, otherwise it is passed.
Model structure selection and validation

A most natural approach to search for a suitable model structure \mathcal{M} is simply to test a number of different ones and to compare the resulting models.

Given a model $\mathcal{M}(\theta) \in \mathcal{M}$ with complexity $n = \dim(\theta)$, the cost function

$$J(\theta)^{(n)} = \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t)^2 = \frac{1}{N} \sum_{t=1}^{N} (y(t) - \hat{y}(t, \theta))^2$$

provides a measure of the fitting of the data set y provided by $\mathcal{M}(\theta) \Rightarrow$

if $\hat{\theta}_N = \arg\min J(\theta)^{(n)}$, then $J(\hat{\theta}_N)^{(n)}$ measures the best fitting of data y provided by \mathcal{M} and represents a subjective (and very optimistic) evaluation of the quality of \mathcal{M}.

In order to perform a more objective evaluation, it would be necessary to measure the model class accuracy on data different from those used in the identification \Rightarrow

to this purpose, there are different criteria:

- Cross-Validation
- Akaike’s Final Prediction-Error Criterion (FPE)
- Model Structure Selection Criteria: AIC and MDL (or BIC)
Cross-Validation

If the overall data set is sufficiently huge, it can be partitioned into two subsets:

- the *estimation data* are the ones used to estimate the model $\mathcal{M}(\hat{\theta}_N) \in \mathcal{M}$
- the *validation data* are the ones that have not been used to build any of the models we would like to compare

For any given model class \mathcal{M}, first the model $\mathcal{M}(\hat{\theta}_N)$ that better reproduces the estimation data is identified, and then its performance is evaluated by computing the mean square error on the validation data only: the model that minimizes such a criterion among different classes \mathcal{M} is chosen as the most suitable one.

It can be noted that, within any model class, higher order models usually suffer from *overfitting*, i.e., they fit too much the estimation data to fit also the noise term and then their predictive capability on a fresh data set (corrupted by a different noise) is smaller with respect to lower order models.
Akaike’s Final Prediction-Error Criterion (FPE)

In order to consider any possible realization of data \(y(t, s) \) that depends on the outcome \(s \) of the random experiment, let us consider as objective criterion:

\[
\bar{J}(\theta) = E[(y(t, s) - \hat{y}(t, s, \theta))^2]
\]

Since \(\hat{\theta}_N = \hat{\theta}_N(s) \) depends on a particular data set \(y(t, s) \) generated by a particular outcome \(s \), the Final Prediction Error (FPE) criterion is defined as the mean on any possible outcome \(s \):

\[
FPE = E[\bar{J}(\hat{\theta}_N(s))]
\]

In the case of the AR model class, it can be proved that:

\[
FPE = \frac{N + n}{N - n} J(\hat{\theta}_N)^{(n)}
\]

where \(J(\hat{\theta}_N)^{(n)} \) is a monotonic decreasing function of \(n \) while \(\frac{N + n}{N - n} \to \infty \) as \(n \to N \)

\(\Rightarrow \) \(FPE \) is decreasing for lower values of \(n \) and it is increasing for higher values of \(n \)

\(\Rightarrow \) the optimal model complexity corresponds to the minimum of \(FPE \)

The same formula is usually used also in the case of other model classes (ARX, ARMAX)
Akaike’s Information Criterion (AIC)

Such a criterion is derived on the basis of statistical considerations and aims at minimizing the so-called Kullback distance between the “true” probability density function of the data and the p.d.f. produced by a given model $\mathcal{M}(\hat{\theta}_N)$:

$$\text{AIC} = n \frac{2}{N} + \ln J(\hat{\theta}_N)^{(n)}$$

The optimum model order n^* minimizes the AIC criterion: $n^* = \arg \min AIC$

For large values of N, the FPE and AIC criteria lead to the same result:

$$\ln FPE = \ln \frac{N+n}{N-n} J(\hat{\theta}_N)^{(n)} = \ln \frac{1+n/N}{1-n/N} J(\hat{\theta}_N)^{(n)} =$$
$$= \ln(1 + n/N) - \ln(1 - n/N) + \ln J(\hat{\theta}_N)^{(n)} \simeq$$
$$\simeq n/N - (-n/N) + \ln J(\hat{\theta}_N)^{(n)} = n \frac{2}{N} + \ln J(\hat{\theta}_N)^{(n)} = \text{AIC}$$

AIC criterion is directed to find system descriptions that give the smallest mean-square error: a model that apparently gives a smaller mean-square (prediction) error fit will be chosen even if it is quite complex.
Rissanen’s Minimum Description Length Criterion (MDL)

In practice, one may want to add an extra penalty for the model complexity, in order to reflect the cost of using it.

What is meant by a complex model and what penalty should be associated with are usually subjective issues; an approach that is conceptually related to code theory and information measures has been taken by Rissanen, who stated that a model should be sought that allows the shortest possible code or description of the observed data, leading to the *Minimum Description Length (MDL)* criterion:

\[
MDL = n \frac{\ln N}{N} + \ln J(\hat{\theta}_N)^{(n)}
\]

As in the *AIC* criterion, the model complexity penalty is proportional to \(n\); however, while in *AIC* the constant is \(\frac{2}{N}\), in *MDL* the constant is \(\frac{\ln N}{N} > \frac{2}{N}\) for any \(N \geq 8\)

\(\Rightarrow\) the *MDL* criterion leads to much more parsimonious models than those selected by the *AIC* criterion, especially for large values of \(N\).

Such a criterion has also been termed *BIC* by Akaike.
Transfer-function model simulation / prediction

Simulation mode

Input signals:
- exogenous input \(u(t) \)
- endogenous input \(e(t) \) (like White Noise, even if \(e(t) = 0 \) is often assumed)

Output signal:
- simulated output \(y(t) \)

Model complexity:
\[n = \text{transfer function degree of } G(z) \]

Prediction mode

Input signals:
- input measurements \(u(t) \)
- output measurements \(y(t) \)

Output signal:
- one-step predicted output \(\hat{y}(t) = \hat{y}(t|t-1) \)

Model complexity:
\[n = \dim(\theta) = \text{sum of model orders} \]
Under MATLAB, the identification of a polynomial model M can be performed with:

- $M = \text{arx}(\text{dataset}, \text{orders})$
- $M = \text{armax}(\text{dataset}, \text{orders})$
- $M = \text{oe}(\text{dataset}, \text{orders})$

where:
- $\text{dataset} = \text{output-input estimation data matrix, in the form } [y, u]$
- $\text{orders} = \text{model's orders and input-output delay, in the form: } [na, nb, nk] \text{ for ARX, } [na, nb, nc, nk] \text{ for ARMAX, } [nb, nf, nk] \text{ for OE}$

The residual analysis for a model M can be performed using:

- $\text{resid}(\text{dataset}, M, '\text{Corr}', \text{lag_max})$

where:
- $\text{dataset} = \text{output-input data matrix, in the form } [y, u]$
- $M = \text{identified model}$
- $\text{lag_max} = \text{maximum lag (default value is 25)}$

The autocorrelation function of residuals $\varepsilon(t)$ and the cross-correlation between $\varepsilon(t)$ and $u(t)$ are computed and displayed; the 99% confidence intervals for these values are also computed and shown as a yellow region.
• The simulated or predicted output of a model M can be computed with:

$$y = \text{compare}(\text{dataset}, M, \text{horizon})$$

where:
- dataset = output-input data matrix, in the form $[y, u]$
- M = identified model
- horizon = prediction horizon:
 - Inf for simulation (default value),
 - 1 for one-step ahead prediction
- y = model output (simulated or predicted)

• Detailed information about a model M (including estimated uncertainty in terms of standard deviations of the parameters, loss function, FPE criterion) are shown by:

$$\text{present}(M)$$

• To access the polynomials of an identified model M:

$$[A, B, C, D, F] = \text{polydata}(M)$$
Recursive least-squares methods

The least-squares estimate referred to a generic time instant t is given by:

$$\hat{\theta}_t = \left[\sum_{i=1}^{t} \varphi(i) \varphi(i)^T \right]^{-1} \sum_{i=1}^{t} \varphi(i) y(i) = S(t)^{-1} \sum_{i=1}^{t} \varphi(i) y(i)$$

where

$$S(t) = \sum_{i=1}^{t} \varphi(i) \varphi(i)^T = \sum_{i=1}^{t-1} \varphi(i) \varphi(i)^T + \varphi(t) \varphi(t)^T = S(t-1) + \varphi(t) \varphi(t)^T$$

The least-squares estimate referred to the time instant $t - 1$ is given by:

$$\hat{\theta}_{t-1} = \left[\sum_{i=1}^{t-1} \varphi(i) \varphi(i)^T \right]^{-1} \sum_{i=1}^{t-1} \varphi(i) y(i) = S(t-1)^{-1} \sum_{i=1}^{t-1} \varphi(i) y(i)$$

and then:

$$\hat{\theta}_t = S(t)^{-1} \sum_{i=1}^{t} \varphi(i) y(i) = S(t)^{-1} \left[\sum_{i=1}^{t-1} \varphi(i) y(i) + \varphi(t) y(t) \right] =$$

$$= S(t)^{-1} [S(t-1) \hat{\theta}_{t-1} + \varphi(t) y(t)] =$$

$$= S(t)^{-1} \{ [S(t) - \varphi(t) \varphi(t)^T] \hat{\theta}_{t-1} + \varphi(t) y(t) \} =$$

$$\hat{\theta}_{t-1} - S(t)^{-1} \varphi(t) \varphi(t)^T \hat{\theta}_{t-1} + S(t)^{-1} \varphi(t) y(t) =$$

$$= \hat{\theta}_{t-1} + S(t)^{-1} \varphi(t) [y(t) - \varphi(t)^T \hat{\theta}_{t-1}]$$
Since the estimate can be computed as:
\[\hat{\theta}_t = \hat{\theta}_{t-1} + S(t)^{-1} \varphi(t) [y(t) - \varphi(t)^T \hat{\theta}_{t-1}], \]
a first recursive least-squares (RLS) algorithm (denoted as $RLS-1$) is the following one:

\[
\begin{align*}
S(t) &= S(t - 1) + \varphi(t) \varphi(t)^T \quad \text{(time update)} \\
K(t) &= S(t)^{-1} \varphi(t) \quad \text{(algorithm gain)} \\
\varepsilon(t) &= y(t) - \varphi(t)^T \hat{\theta}_{t-1} \quad \text{(prediction error)} \\
\hat{\theta}_t &= \hat{\theta}_{t-1} + K(t) \varepsilon(t) \quad \text{(estimate update)}
\end{align*}
\]

An alternative algorithm is derived by considering the matrix
\[R(t) = \frac{1}{t} \sum_{i=1}^{t} \varphi(i) \varphi(i)^T: \]

\[
\begin{align*}
R(t) &= \frac{1}{t} S(t) = \frac{1}{t} S(t - 1) + \frac{1}{t} \varphi(t) \varphi(t)^T = \\
&= \left(\frac{1}{t} + \frac{1}{t-1} - \frac{1}{t-1} \right) S(t - 1) + \frac{1}{t} \varphi(t) \varphi(t)^T = \\
&= \frac{1}{t-1} S(t - 1) + \left(\frac{1}{t} - \frac{1}{t-1} \right) S(t - 1) + \frac{1}{t} \varphi(t) \varphi(t)^T = \\
&= R(t - 1) + \frac{t-1-t}{t(t-1)} S(t - 1) + \frac{1}{t} \varphi(t) \varphi(t)^T = \\
&= R(t - 1) - \frac{1}{t} R(t - 1) + \frac{1}{t} \varphi(t) \varphi(t)^T = \\
&= \left(1 - \frac{1}{t} \right) R(t - 1) + \frac{1}{t} \varphi(t) \varphi(t)^T
\end{align*}
\]
A second recursive least-squares algorithm (denoted as RLS-2) is then the following one:

\[R(t) = \left(1 - \frac{1}{t}\right) R(t-1) + \frac{1}{t} \varphi(t) \varphi(t)^T \]
(time update)

\[K(t) = \frac{1}{t} R(t)^{-1} \varphi(t) \]
(algorithm gain)

\[\varepsilon(t) = y(t) - \varphi(t)^T \hat{\theta}_{t-1} \]
(prediction error)

\[\hat{\theta}_t = \hat{\theta}_{t-1} + K(t) \varepsilon(t) \]
(estimate update)

The main drawback of RLS-1 and RLS-2 algorithms is the inversion at each step of the square matrices \(S(t) \) and \(R(t) \), respectively, whose dimensions are equal to the number of estimated parameters \(\Rightarrow \) by applying the Matrix Inversion Lemma:

\[
(A + B C D)^{-1} = A^{-1} - A^{-1} B (C^{-1} + D A^{-1} B)^{-1} D A^{-1}
\]

taking \(A = S(t-1) \), \(B = D^T = \varphi(t) \), \(C = 1 \) and introducing \(V(t) = S(t)^{-1} \) gives:

\[
V(t) = S(t)^{-1} = \left[S(t-1) + \varphi(t) \varphi(t)^T \right]^{-1} =
\]

\[
= S(t-1)^{-1} - S(t-1)^{-1} \varphi(t) \left[1 + \varphi(t)^T S(t-1)^{-1} \varphi(t) \right]^{-1} \varphi(t)^T S(t-1)^{-1} =
\]

\[
= V(t-1) - \left[1 + \varphi(t)^T V(t-1) \varphi(t) \right]^{-1} V(t-1) \varphi(t) \varphi(t)^T V(t-1)
\]

it is a scalar
Since \(V(t) = S(t)^{-1} = V(t-1) - [1 + \varphi(t)^T V(t-1) \varphi(t)]^{-1} V(t-1) \varphi(t) \varphi(t)^T V(t-1) \)

a third recursive least-squares algorithm (denoted as \(RLS-3 \)) is then the following one:

\[
\begin{align*}
\beta_{t-1} &= 1 + \varphi(t)^T V(t-1) \varphi(t) \quad \text{(scalar weight)} \\
V(t) &= V(t-1) - \beta_{t-1}^{-1} V(t-1) \varphi(t) \varphi(t)^T V(t-1) \quad \text{(time update)} \\
K(t) &= V(t) \varphi(t) \quad \text{(algorithm gain)} \\
\varepsilon(t) &= y(t) - \varphi(t)^T \hat{\theta}_{t-1} \quad \text{(prediction error)} \\
\hat{\theta}_t &= \hat{\theta}_{t-1} + K(t) \varepsilon(t) \quad \text{(estimate update)}
\end{align*}
\]

To use the recursive algorithms, initial values for their start-up are obviously required; in the case of the \(RLS-3 \) algorithm:

- the correct initial conditions, at a time instant \(t_o \) when \(S(t_o) \) becomes invertible, are:
 \[
 V(t_o) = S(t_o)^{-1} = [\sum_{i=1}^{t_o} \varphi(i) \varphi(i)^T]^{-1}, \quad \hat{\theta}_{t_o} = V(t_o) \sum_{i=1}^{t_o} \varphi(i) y(i)
 \]
- assuming \(n = \text{dim}(\theta) \), a much simpler alternative is to use:
 \[
 V(1) = S(1)^{-1} = R(1)^{-1} = \alpha I_n, \quad \alpha > 0, \quad \text{and} \quad \hat{\theta}_1 = 0_{n \times 1}
 \]

\(\hat{\theta}_t \) rapidly changes from \(\hat{\theta}_1 \) if \(\alpha \approx 1 \), while \(\hat{\theta}_t \) slowly changes from \(\hat{\theta}_1 \) if \(\alpha \ll 1 \)
Example: consider the following $ARX(2, 2, 1)$ model:

$$y(t) + a_1 y(t-1) + a_2 y(t-2) = b_1 u(t-1) + b_2 u(t-2) + e(t)$$

with $e(t) \sim WN(0, 1)$, $u(t) \sim WN(0, 4)$, $a_1 = -1.2$, $a_2 = 0.32$, $b_1 = 1$, $b_2 = 0.5$

By introducing the polynomials in the z^{-1} variable:

$$A(z) = 1 + a_1 z^{-1} + a_2 z^{-2} = 1 - 1.2 z^{-1} + 0.32 z^{-2} = [1, -1.2, 0.32]$$

$$B(z) = b_1 z^{-1} + b_2 z^{-2} = z^{-1} + 0.5 z^{-2} = [0, 1, 0.5]$$

$$y(t) = -a_1 y(t-1) - a_2 y(t-2) + b_1 u(t-1) + b_2 u(t-2) + e(t) = \varphi(t)^T \theta + e(t)$$

where

$$\theta = \begin{bmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{bmatrix}, \quad \varphi(t) = \begin{bmatrix} -y(t-1) \\ -y(t-2) \\ u(t-1) \\ u(t-2) \end{bmatrix} \quad \Rightarrow \quad \Phi = \begin{bmatrix} \varphi(3)^T \\ \varphi(4)^T \\ \vdots \\ \varphi(N)^T \end{bmatrix}$$

First, simulate $N = 2000$ data; then, estimate $\hat{\theta}$ using the RLS-3 algorithm
• Under MATLAB, the transfer-function (or polynomial) model M of the form:

$$A(z)y(t) = \left[\frac{B(z)}{F(z)}\right]u(t) + \left[\frac{C(z)}{D(z)}\right]e(t)$$

can be defined as:

$$M = \text{idpoly}(A,B,C,D,F,\text{NoiseVariance},Ts)$$

where:

- $A, B, C, D, F =$ model’s polynomials, represented by row vectors (use NaNs to denote unknown polynomial values)
- $\text{NoiseVariance} =$ variance of the white noise source $e(t)$
- $Ts =$ sample time

$M =$ polynomial model, represented by an idpoly object

Trailing input arguments $C, D, F, \text{NoiseVariance}, Ts$ can be omitted

• The model M, driven by $u(t)$ and $e(t)$, is simulated by: $y = \text{sim}(M, [u, e])$

where:

- $M =$ polynomial model, represented by an idpoly object
- $u =$ exogenous input $u(t)$, represented by a column vector
- $e =$ endogenous input $e(t)$, represented by a column vector
- $y =$ simulated output $y(t)$, represented by a column vector