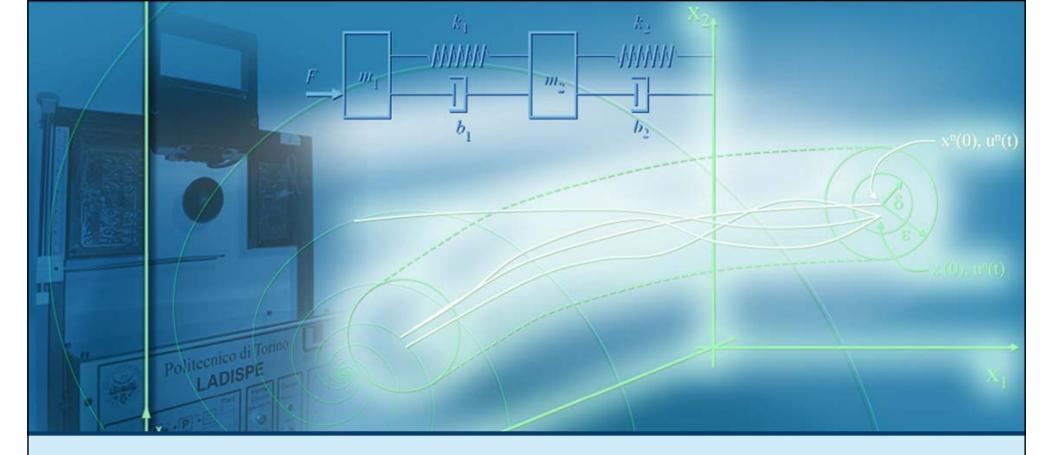


Equilibrio e stabilità di sistemi dinamici

Stabilità interna di sistemi dinamici LTI

Stabilità interna di sistemi dinamici LTI

- Stabilità interna di sistemi dinamici LTI TC
- Criteri di stabilità per sistemi dinamici LTI TC
- Stabilità interna di sistemi dinamici LTI TD
- Criteri di stabilità per sistemi dinamici LTI TD
- Esempi di analisi della stabilità interna



Stabilità interna di sistemi dinamici LTI

Stabilità interna di sistemi dinamici LTI TC

Stabilità interna di sistemi dinamici LTI TC (1/5)

y(t) = Cx(t)

- Dato un sistema dinamico, a dimensione finita, MIMO, a tempo continuo, lineare e stazionario (LTI), descritto dall'equazione di stato $\dot{x}(t) = Ax(t) + Bu(t)$, se ne considerino due diverse evoluzioni temporali:
 - Un movimento "nominale" $\tilde{x}(t)$ ottenuto applicando un ingresso "nominale" $\tilde{u}(t)$ al sistema posto in uno stato iniziale "nominale" $\tilde{x}(t_0 = 0) = \tilde{x}_0 \Rightarrow \tilde{x}(t)$ soddisfa il seguente sistema di equazioni $\dot{\tilde{x}}(t) = A\tilde{x}(t) + B\tilde{u}(t), \quad \tilde{x}(t_0 = 0) = \tilde{x}_0$
 - Un movimento "perturbato" x(t) ottenuto applicando lo stesso ingresso "nominale" $\tilde{u}(t)$ al sistema posto in uno stato iniziale differente ("perturbato") $x_0 \neq \tilde{x}_0 \Rightarrow x(t)$ soddisfa il seguente sistema di equazioni $\dot{x}(t) = Ax(t) + B\tilde{u}(t), \quad x(t_0 = 0) = x_0$

Stabilità interna di sistemi dinamici LTI TC (2/5)

➤ La differenza fra i due diversi movimenti costituisce la perturbazione sullo stato del sistema:

$$\delta X(t) = X(t) - \tilde{X}(t) \in \mathbb{R}^n \Rightarrow X(t) = \tilde{X}(t) + \delta X(t)$$

ightharpoonup L'evoluzione temporale della perturbazione sullo stato $\delta x(t)$ è soluzione dell'equazione differenziale

$$\delta \dot{x}(t) = \frac{d(\delta x(t))}{dt} = \frac{d(x(t) - \tilde{x}(t))}{dt} = \dot{x}(t) - \dot{\tilde{x}}(t) =$$

$$= Ax(t) + B\tilde{u}(t) - [A\tilde{x}(t) + B\tilde{u}(t)] =$$

$$= Ax(t) - A\tilde{x}(t) = A(x(t) - \tilde{x}(t)) = A\delta x(t)$$

con condizione iniziale

$$\delta X(t_0 = 0) = X(t_0 = 0) - \tilde{X}(t_0 = 0) = X_0 - \tilde{X}_0 = \delta X_0 \neq 0$$

Stabilità interna di sistemi dinamici LTI TC (3/5)

La soluzione $\delta x(t)$ dell'equazione differenziale $\delta \dot{x}(t) = A\delta x(t), \quad \delta x(t_0 = 0) = x_0 - \tilde{x}_0 = \delta x_0$ è data da

y(t) = Cx(t)

$$\delta x(t) = e^{At} \delta x_0, \quad \forall t \ge 0$$

Nel caso di un sistema dinamico LTI TC, l'evoluzione temporale della perturbazione sullo stato $\delta x(t)$ non dipende quindi dallo stato iniziale "nominale" $\tilde{\chi}_0$ o dall'ingresso "nominale" $\tilde{u}(t)$, cioè non dipende dal particolare movimento "nominale" $\tilde{\chi}(t)$ considerato \Rightarrow nel caso dei sistemi dinamici LTI TC, la proprietà di stabilità riguarda l'intero sistema e non i singoli movimenti, come avviene invece nel caso dei sistemi dinamici non lineari

Stabilità interna di sistemi dinamici LTI TC (4/5)

y(t) = Cx(t)

Come conseguenza dei risultati dell'analisi modale, l'evoluzione temporale della perturbazione sullo stato

$$\delta x(t) = e^{At} \delta x_0, \quad \forall t \ge 0$$

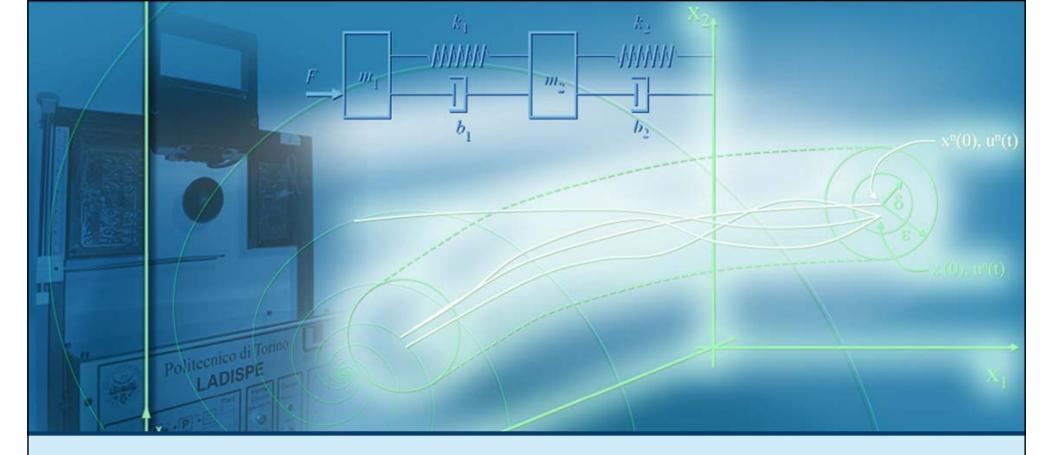
è combinazione lineare dei modi propri del sistema, che in generale sono del tipo

$$m_{i,\mu'_{i}}(t) = t^{\mu'_{i}-1}e^{\mathbb{R}e(\lambda_{i})t}\cos(\mathbb{I}m(\lambda_{i})t + \varphi_{i}), \quad 1 \leq \mu'_{i} \leq \mu_{i}$$

- $ightharpoonup L'evoluzione temporale dei modi propri dipende dagli autovalori <math>\lambda_i$ della matrice di stato A. In particolare, i modi propri di un sistema dinamico LTI TC sono:
 - ullet Esponenzialmente convergenti se $\mathbb{R}e(\lambda_i) < 0$
 - ullet Limitati se $\mathbb{R}e(\lambda_i) = 0$ e $\mu_i' = 1$
 - ullet Polinomialmente divergenti se $\mathbb{R}e(\lambda_i) = 0$ e $\mu_i' > 1$
 - ullet Esponenzialmente divergenti se $\mathbb{R}e(\lambda_i) > 0$

Stabilità interna di sistemi dinamici LTI TC (5/5)

- ▶ La perturbazione δx(t) rimane limitata nel tempo e tende a zero asintoticamente (t→∞) se e soltanto se tutti i modi propri sono convergenti
 - ⇒ il sistema dinamico LTI è asintoticamente stabile
- ightharpoonup La perturbazione $\delta x(t)$ rimane limitata nel tempo ma non tende a zero asintoticamente se e soltanto se nessun modo proprio è divergente ed almeno un modo proprio è limitato
 - ⇒ il sistema dinamico LTI è semplicemente stabile
- ightharpoonup La perturbazione $\delta x(t)$ non è limitata nel tempo e anzi diverge se e soltanto se almeno un modo proprio è divergente
 - ⇒ il sistema dinamico LTI è instabile
- Si possono così formulare alcuni criteri di stabilità



Stabilità interna di sistemi dinamici LTI

Criteri di stabilità per sistemi dinamici LTI TC

Criterio di asintotica stabilità per sistema LTI TC

Dato un sistema dinamico LTI a tempo continuo, condizione necessaria e sufficiente affinché risulti asintoticamente stabile è che

y(t) = Cx(t)

$$\forall i: \mathbb{R}e(\lambda_i(A)) < 0$$

- In tal caso la perturbazione sullo stato $\delta x(t)$, oltre a rimanere limitata, tende a zero asintoticamente per qualsiasi perturbazione iniziale $\delta x(t_0)$ \Rightarrow il sistema è globalmente asintoticamente stabile
- Se l'ingresso nominale è costante e pari ad \bar{u} , esiste un unico stato di equilibrio pari a $\bar{X} = -A^{-1}B\bar{u}$ (infatti la matrice A è invertibile, poiché $\det A = \prod_{j=1}^{n} \lambda_j \neq 0$) ed è globalmente asintoticamente stabile

Criterio di instabilità per sistema LTI TC

Dato un sistema dinamico LTI a tempo continuo, condizione (soltanto) sufficiente affinché risulti instabile è che

$$\exists i: \mathbb{R}e(\lambda_i(A)) > 0$$

Criterio di semplice stabilità per sistema LTI TC

Dato un sistema dinamico LTI a tempo continuo, condizione (soltanto) sufficiente affinché risulti semplicemente stabile è che

$$\forall i : \mathbb{R}e(\lambda_{i}(A)) \leq 0$$

$$\exists k : \mathbb{R}e(\lambda_{k}(A)) = 0$$

$$\forall k : \mathbb{R}e(\lambda_{k}(A)) = 0 \Rightarrow \mu_{k} = 1$$

Caso critico per lo studio della stabilità (1/3)

Dato un sistema dinamico LTI a tempo continuo tale che

y(t) = Cx(t)

$$\forall i : \mathbb{R}e(\lambda_i(A)) \leq 0$$

 $\exists k : \mathbb{R}e(\lambda_k(A)) = 0, \ \mu_k > 1$

esso può risultare semplicemente stabile oppure instabile, a seconda che modi polinomialmente divergenti siano effettivamente presenti nella evoluzione temporale della perturbazione $\delta x(t)$

Caso critico per lo studio della stabilità (2/3)

Esempio #1: si consideri il sistema dinamico LTI TC avente matrice di stato $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, caratterizzato dall'autovalore $\lambda = 0$ con molteplicità $\mu = 2$. La perturbazione sullo stato $\delta x(t)$ è soluzione della equazione differenziale

$$\delta \dot{x}(t) = A \delta x(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} \delta \dot{x}_1(t) = 0 \\ \delta \dot{x}_2(t) = 0 \end{cases} \Rightarrow \begin{cases} \delta x_1(t) = \delta x_1(0) \\ \delta x_2(t) = \delta x_2(0) \end{cases}$$

 $\delta x(t)$ è costante e quindi è limitata ma non tende a zero asintoticamente

⇒ il sistema risulta semplicemente stabile

Caso critico per lo studio della stabilità (3/3)

Esempio #2: si consideri il sistema dinamico LTI TC avente matrice di stato $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, caratterizzato ancora dall'autovalore $\lambda = 0$ con molteplicità $\mu = 2$. La perturbazione sullo stato $\delta x(t)$ è soluzione della equazione differenziale

y(t) = Cx(t)

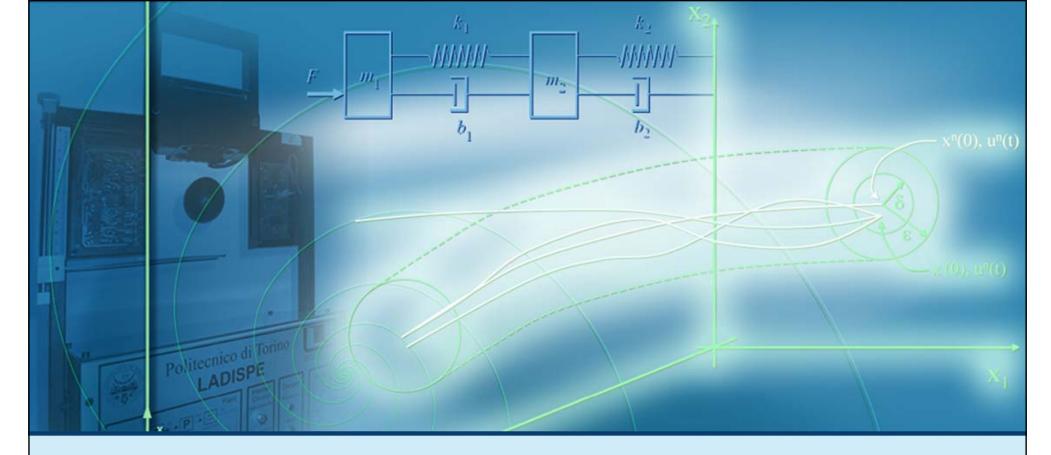
$$\delta \dot{x}(t) = A \delta x(t) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \delta x_1(t) \\ \delta x_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ \delta x_1(t) \end{bmatrix} \Rightarrow$$

$$\begin{cases} \delta \dot{x}_1(t) = 0 \\ \delta \dot{x}_2(t) = \delta x_1(t) \end{cases} \Rightarrow \begin{cases} \delta x_1(t) = \delta x_1(0) \\ \delta x_2(t) = t \delta x_1(0) + \delta x_2(0) \end{cases}$$

 $\delta x(t)$ diverge polinomialmente, se $\delta x_1(0) \neq 0$ \Rightarrow il sistema risulta instabile

Prospetto riassuntivo per sistemi dinamici LTI TC

Autovalori $\lambda_i(A)$ del sistema	Modi propri del sistema	Proprietà di stabilità del sistema
$\forall i : \mathbb{R}e(\lambda_i(A)) < 0$	Convergono tutti esponenzialmente	Asintotica stabilità
$\exists i : \mathbb{R}e(\lambda_i(A)) > 0$	Almeno uno diverge esponenzialmente	Instabilità
$\forall i : \mathbb{R}e(\lambda_{i}(A)) \leq 0$ $\exists k : \mathbb{R}e(\lambda_{k}(A)) = 0$ $\forall k : \mathbb{R}e(\lambda_{k}(A)) = 0$ $\Rightarrow \mu_{k} = 1$	Oltre a quelli che convergono esponenzialmente, è presente almeno uno limitato	Semplice stabilità
$\forall i : \mathbb{R}e(\lambda_i(A)) \leq 0$ $\exists k : \mathbb{R}e(\lambda_k(A)) = 0,$ $\mu_k > 1$	Oltre a quelli che convergono, almeno uno diverge polinomialmente oppure è limitato	Instabilità oppure Semplice stabilità



Stabilità interna di sistemi dinamici LTI

Stabilità interna di sistemi dinamici LTI TD

Stabilità interna di sistemi dinamici LTI TD (1/5)

y(t) = Cx(t)

- Dato un sistema dinamico, a dimensione finita, MIMO, a tempo discreto, lineare e stazionario (LTI), descritto dall'equazione di stato x(k+1)=Ax(k)+Bu(k), se ne considerino due diverse evoluzioni temporali:
 - Un movimento "nominale" $\tilde{x}(k)$ ottenuto applicando un ingresso "nominale" $\tilde{u}(k)$ al sistema posto in uno stato iniziale "nominale" $\tilde{x}(k_0 = 0) = \tilde{x}_0 \Rightarrow \tilde{x}(k)$ soddisfa il seguente sistema di equazioni $\tilde{x}(k+1) = A\tilde{x}(k) + B\tilde{u}(k), \quad \tilde{x}(k_0 = 0) = \tilde{x}_0$
 - Un movimento "perturbato" x(k) ottenuto applicando lo stesso ingresso "nominale" $\tilde{u}(k)$ al sistema posto in uno stato iniziale differente ("perturbato") $x_0 \neq \tilde{x}_0 \Rightarrow x(k)$ soddisfa il seguente sistema di equazioni $x(k+1) = Ax(k) + B\tilde{u}(k), \quad x(k_0 = 0) = x_0$

Stabilità interna di sistemi dinamici LTI TD (2/5)

y(t) = Cx(t)

La differenza fra i due diversi movimenti costituisce la perturbazione sullo stato del sistema:

$$\delta X(k) = X(k) - \tilde{X}(k) \in \mathbb{R}^n \Rightarrow X(k) = \tilde{X}(k) + \delta X(k)$$

ightharpoonup L'evoluzione temporale della perturbazione sullo stato $\delta x(k)$ è soluzione dell'equazione alle differenze

$$\delta X(k+1) = X(k+1) - \tilde{X}(k+1) =$$

$$= AX(k) + B\tilde{U}(k) - [A\tilde{X}(k) + B\tilde{U}(k)] =$$

$$= AX(k) - A\tilde{X}(k) = A(X(k) - \tilde{X}(k)) = A\delta X(k)$$

con condizione iniziale

$$\delta x(k_0 = 0) = x(k_0 = 0) - \tilde{x}(k_0 = 0) = x_0 - \tilde{x}_0 = \delta x_0 \neq 0$$

Stabilità interna di sistemi dinamici LTI TD (3/5)

La soluzione $\delta x(k)$ dell'equazione alle differenze $\delta x(k+1) = A\delta x(k), \quad \delta x(k_0=0) = x_0 - \tilde{x}_0 = \delta x_0$ è data da

y(t) = Cx(t)

$$\delta x(k) = A^k \delta x_0, \quad \forall k \geq 0$$

Nel caso di un sistema dinamico LTI TD, l'evoluzione temporale della perturbazione sullo stato $\delta x(k)$ non dipende quindi dallo stato iniziale "nominale" \tilde{x}_0 o dall'ingresso "nominale" $\tilde{u}(k)$, cioè non dipende dal particolare movimento "nominale" $\tilde{x}(k)$ considerato \Rightarrow nel caso dei sistemi dinamici LTI TD, la proprietà di stabilità riguarda l'intero sistema e non i singoli movimenti, come avviene invece nel caso dei sistemi dinamici non lineari

Stabilità interna di sistemi dinamici LTI TD (4/5)

y(t) = Cx(t)

Come conseguenza dei risultati dell'analisi modale, l'evoluzione temporale della perturbazione sullo stato

$$\delta x(k) = A^k \delta x_0, \forall k \ge 0$$

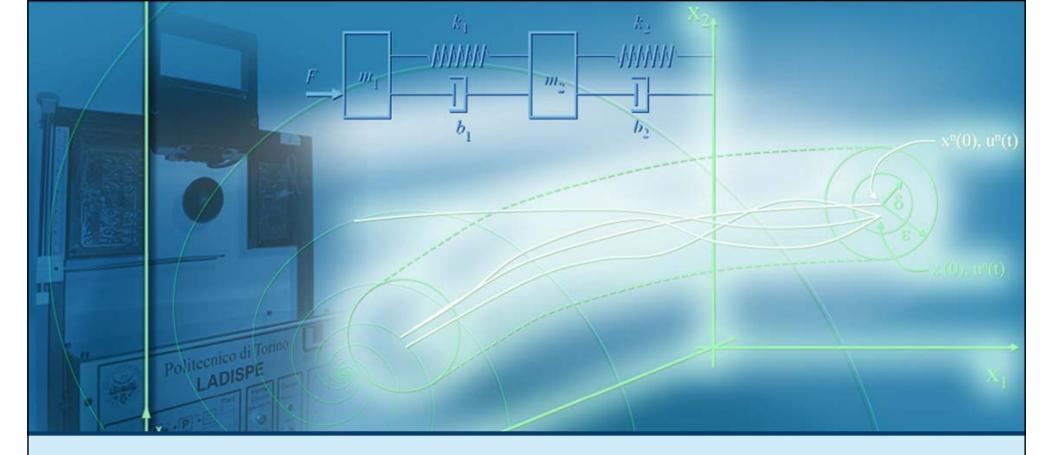
è combinazione lineare dei modi propri del sistema, che in generale sono del tipo

$$m_{i,\mu'_{i}}(k) = k^{\mu'_{i}-1} |\lambda_{i}|^{k} \cos(\arg(\lambda_{i})k + \varphi_{i}), \quad 1 \leq \mu'_{i} \leq \mu_{i}$$

- ightharpoonup L'evoluzione temporale dei modi propri dipende dagli autovalori λ_i della matrice di stato A. In particolare, i modi propri di un sistema dinamico LTI TD sono:
 - ullet Geometricamente convergenti se $|\lambda_i| < 1$
 - ullet Limitati se $|\lambda_i| = 1$ e $\mu'_i = 1$
 - ullet Polinomialmente divergenti se $|\lambda_i| = 1$ e $\mu_i' > 1$
 - ullet Geometricamente divergenti se $|\lambda_i| > 1$

Stabilità interna di sistemi dinamici LTI TD (5/5)

- ▶ La perturbazione δx(k) rimane limitata nel tempo e tende a zero asintoticamente $(k \rightarrow ∞)$ se e soltanto se tutti i modi propri sono convergenti
 - ⇒ il sistema dinamico LTI è asintoticamente stabile
- La perturbazione $\delta x(k)$ rimane limitata nel tempo ma non tende a zero asintoticamente se e soltanto se nessun modo proprio è divergente ed almeno un modo proprio è limitato
 - ⇒ il sistema dinamico LTI è semplicemente stabile
- La perturbazione $\delta x(k)$ non è limitata nel tempo e anzi diverge se e soltanto se almeno un modo proprio è divergente
 - ⇒ il sistema dinamico LTI è instabile
- Si possono così formulare alcuni criteri di stabilità



Stabilità interna di sistemi dinamici LTI

Criteri di stabilità per sistemi dinamici LTI TD

Criterio di asintotica stabilità per sistema LTI TD

Dato un sistema dinamico LTI a tempo discreto, condizione necessaria e sufficiente affinché risulti asintoticamente stabile è che

y(t) = Cx(t)

$$\forall i: \left|\lambda_{j}(A)\right| < 1$$

- In tal caso la perturbazione sullo stato $\delta x(k)$, oltre a rimanere limitata, tende a zero asintoticamente per qualsiasi perturbazione iniziale $\delta x(k_0)$ \Rightarrow il sistema è globalmente asintoticamente stabile
- Se l'ingresso nominale è costante e pari ad \bar{u} , esiste un unico stato di equilibrio $\bar{x} = (I A)^{-1}B\bar{u}$ (infatti la matrice I A è invertibile: $\det(I A) = \prod_{j=1}^{n} (1 \lambda_j) \neq 0$) ed è globalmente asintoticamente stabile

Criterio di instabilità per sistema LTI TD

Dato un sistema dinamico LTI a tempo discreto, condizione (soltanto) sufficiente affinché risulti instabile è che

$$\exists i: \left|\lambda_{i}(A)\right| > 1$$

Criterio di semplice stabilità per sistema LTI TD

Dato un sistema dinamico LTI a tempo discreto, condizione (soltanto) sufficiente affinché risulti semplicemente stabile è che

$$\forall i : |\lambda_{i}(A)| \leq 1$$

$$\exists k : |\lambda_{k}(A)| = 1$$

$$\forall k : |\lambda_{k}(A)| = 1 \Rightarrow \mu_{k} = 1$$

Caso critico per lo studio della stabilità (1/3)

Dato un sistema dinamico LTI a tempo discreto tale che

y(t) = Cx(t)

$$\forall i: \left| \lambda_{i}(A) \right| \leq 1$$

$$\exists k: \left| \lambda_{k}(A) \right| = 1, \ \mu_{k} > 1$$

esso può risultare semplicemente stabile oppure instabile, a seconda che modi polinomialmente divergenti siano effettivamente presenti nella evoluzione temporale della perturbazione $\delta x(k)$

Caso critico per lo studio della stabilità (2/3)

Esempio #1: si consideri il sistema dinamico LTI TD avente matrice di stato $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, caratterizzato dall'autovalore $\lambda = 1$ con molteplicità $\mu = 2$. La perturbazione sullo stato $\delta x(k)$ è soluzione della equazione alle differenze

y(t) = Cx(t)

$$\delta X(k+1) = A \delta X(k) = \delta X(k) = \begin{bmatrix} \delta X_1(k) \\ \delta X_2(k) \end{bmatrix} \Rightarrow$$

$$\begin{cases} \delta X_1(k+1) = \delta X_1(k) \\ \delta X_2(k+1) = \delta X_2(k) \end{cases} \Rightarrow \begin{cases} \delta X_1(k) = \delta X_1(0) \\ \delta X_2(k) = \delta X_2(0) \end{cases}$$

 $\delta x(k)$ è costante e quindi è limitata ma non tende a zero asintoticamente

⇒ il sistema risulta semplicemente stabile

Caso critico per lo studio della stabilità (3/3)

Esempio #2: si consideri il sistema dinamico LTI TD avente matrice di stato $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, caratterizzato ancora dall'autovalore $\lambda = 1$ con molteplicità $\mu = 2$. La perturbazione sullo stato $\delta x(k)$ è soluzione della equazione alle differenze

$$\delta x(k+1) = A\delta x(k) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \delta x_1(k) \\ \delta x_2(k) \end{bmatrix} = \begin{bmatrix} \delta x_1(k) \\ \delta x_1(k) + \delta x_2(k) \end{bmatrix} \Rightarrow$$

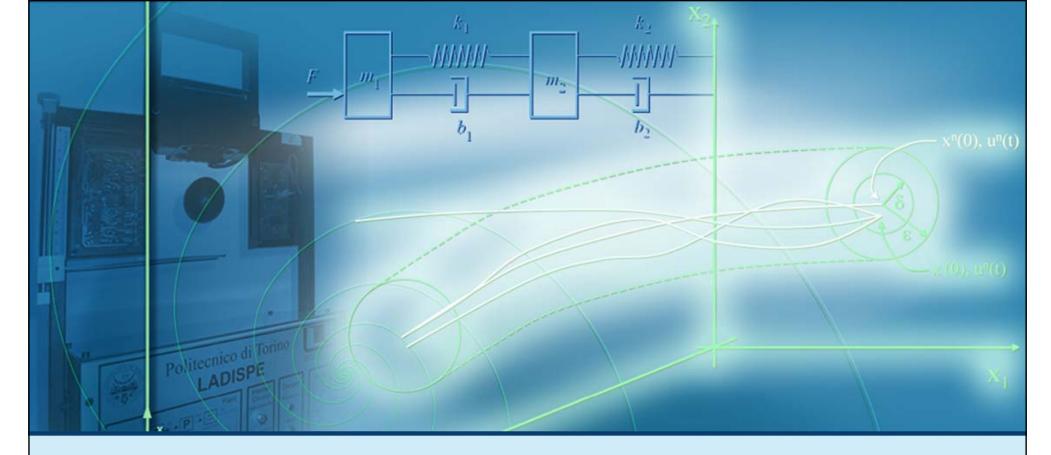
$$\begin{cases} \delta x_1(k+1) = \delta x_1(k) \\ \delta x_2(k+1) = \delta x_1(k) + \delta x_2(k) \end{cases} \Rightarrow \begin{cases} \delta x_1(k) = \delta x_1(0) \\ \delta x_2(k) = k\delta x_1(0) + \delta x_2(0) \end{cases}$$

$$\delta x(k) \text{ diverge polinomialmente, se } \delta x_1(0) \neq 0$$

$$\Rightarrow \text{ il sistema risulta instabile}$$

Prospetto riassuntivo per sistemi dinamici LTI TD

Autovalori $\lambda_i(A)$ del sistema	Modi propri del sistema	Proprietà di stabilità del sistema
$\forall i: \lambda_i(A) < 1$	Convergono tutti geometricamente	Asintotica stabilità
$\exists i: \lambda_i(A) > 1$	Almeno uno diverge geometricamente	Instabilità
$\forall i : \lambda_i(A) \le 1$ $\exists k : \lambda_k(A) = 1$ $\forall k : \lambda_k(A) = 1$ $\Rightarrow \mu_k = 1$	Oltre a quelli che convergono geometricamente, è presente almeno uno limitato	Semplice stabilità
$\forall i : \lambda_i(A) \le 1$ $\exists k : \lambda_k(A) = 1,$ $\mu_k > 1$	Oltre a quelli che convergono, almeno uno diverge polinomialmente oppure è limitato	Instabilità oppure Semplice stabilità



Stabilità interna di sistemi dinamici LTI

Esempi di analisi della stabilità interna

Esempio #1 di analisi della stabilità

Dato il sistema dinamico LTI TC descritto dal modello

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{i}(A)\} = \{-2, -0.4, -0.2, -0.1\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo continuo, occorre considerare la parte reale degli autovalori

$$\{ \mathbb{R}e(\lambda_{j}(A)) \} = \{ -2, -0.4, -0.2, -0.1 \}$$

Tutti gli autovalori hanno $\mathbb{R}e(\lambda_i(A)) < 0$

⇒ il sistema è globalmente asintoticamente stabile

Esempio #2 di analisi della stabilità

Dato il sistema dinamico LTI TC descritto dal modello

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

y(t) = Cx(t)

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{j}(A)\} = \{-1, -0.5, 0, 0.5\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo continuo, occorre considerare la parte reale degli autovalori

$$\{ \mathbb{R}e(\lambda_{j}(A)) \} = \{ -1, -0.5, 0, 0.5 \}$$

L'autovalore $\lambda_4 = 0.5$ ha $\mathbb{R}e(\lambda_4) = 0.5 > 0$

⇒ il sistema è instabile

Esempio #3 di analisi della stabilità

Dato il sistema dinamico LTI TC descritto dal modello

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

y(t) = Cx(t)

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{j}(A)\} = \{-0.5 \pm 0.1 j, 0.4 \pm 0.2 j\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo continuo, occorre considerare la parte reale degli autovalori

$$\{ \mathbb{R}e(\lambda_{j}(A)) \} = \{ -0.5, -0.5, 0.4, 0.4 \}$$

La coppia $\lambda_{3,4} = 0.4 \pm 0.2j$ ha $\mathbb{R}e(\lambda_{3,4}) = 0.4 > 0$

⇒ il sistema è instabile

Esempio #4 di analisi della stabilità

Dato il sistema dinamico LTI TC descritto dal modello

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

y(t) = Cx(t)

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{i}(A)\} = \{-10, -5, -0.1, 0\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo continuo, occorre considerare la parte reale degli autovalori

$$\left\{ \mathbb{R}e\left(\lambda_{j}(A)\right) \right\} = \left\{ -10, -5, -0.1, 0 \right\}$$

Tutti gli autovalori hanno $\mathbb{R}e(\lambda_j(A)) \leq 0$ ed un solo autovalore $\lambda_4 = 0$ ha $\mathbb{R}e(\lambda_4) = 0$

⇒ il sistema è semplicemente stabile

Esempio #5 di analisi della stabilità

Dato il sistema dinamico LTI TC descritto dal modello

$$\dot{X}(t) = AX(t) + BU(t)$$

$$Y(t) = CX(t) + DU(t)$$

y(t) = Cx(t)

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_j(A)\} = \{-1, \pm j, 0\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo continuo, occorre considerare la parte reale degli autovalori

$$\left\{ \mathbb{R}e\left(\lambda_{j}(A)\right)\right\} = \left\{-1,0,0,0\right\}$$

Tutti gli autovalori hanno $\mathbb{R}e(\lambda_i(A)) \le 0$ e tutti quelli con $\mathbb{R}e(\lambda_k(A)) = 0$ sono distinti, cioè hanno $\mu_k = 1$

⇒ il sistema è semplicemente stabile

Esempio #6 di analisi della stabilità

Dato il sistema dinamico LTI TD descritto dal modello

y(t) = Cx(t)

$$X(k+1) = AX(k) + BU(k)$$
$$Y(k) = CX(k) + DU(k)$$

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{i}(A)\} = \{-2, -0.4, -0.2, -0.1\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo discreto, occorre considerare il modulo degli autovalori

$$\{ |\lambda_j(A)| \} = \{ 2, 0.4, 0.2, 0.1 \}$$

L'autovalore $\lambda_1 = -2$ ha $|\lambda_1| = 2 > 1$

⇒ il sistema è instabile

Esempio #7 di analisi della stabilità

Dato il sistema dinamico LTI TD descritto dal modello

$$X(k+1) = AX(k) + BU(k)$$
$$Y(k) = CX(k) + DU(k)$$

y(t) = Cx(t)

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{i}(A)\} = \{-1, -0.5, 0, 0.5\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo discreto, occorre considerare il modulo degli autovalori

$$\{ |\lambda_j(A)| \} = \{ 1, 0.5, 0, 0.5 \}$$

Tutti gli autovalori hanno $|\lambda_i(A)| \le 1$ ed un solo autovalore $\lambda_1 = -1$ ha $|\lambda_1| = 1$

⇒ il sistema è semplicemente stabile

Esempio #8 di analisi della stabilità

Dato il sistema dinamico LTI TD descritto dal modello

$$X(k+1) = AX(k) + BU(k)$$
$$Y(k) = CX(k) + DU(k)$$

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{j}(A)\} = \{-0.5 \pm 0.1 j, 0.4 \pm 0.2 j\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo discreto, occorre considerare il modulo degli autovalori

$$\left\{\left|\lambda_{j}(A)\right|\right\} = \left\{\sqrt{0.5^{2}+0.1^{2}} = \sqrt{0.26}, \sqrt{0.26}, \sqrt{0.4^{2}+0.2^{2}} = \sqrt{0.2}, \sqrt{0.2}\right\}$$

Tutti gli autovalori hanno $|\lambda_i(A)| < 1$

⇒ il sistema è globalmente asintoticamente stabile

Esempio #9 di analisi della stabilità

Dato il sistema dinamico LTI TD descritto dal modello

y(t) = Cx(t)

$$X(k+1) = AX(k) + BU(k)$$
$$Y(k) = CX(k) + DU(k)$$

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_{j}(A)\} = \{-10, -5, -0.1, 0\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo discreto, occorre considerare il modulo degli autovalori

$$\left\{ \left| \lambda_{j}(A) \right| \right\} = \left\{ 10, 5, 0.1, 0 \right\}$$

Gli autovalori $\lambda_1 = -10$ e $\lambda_2 = -5$ hanno $|\lambda_1| = 10 > 1$ e $|\lambda_2| = 5 > 1$

⇒ il sistema è instabile

Esempio #10 di analisi della stabilità

Dato il sistema dinamico LTI TD descritto dal modello

y(t) = Cx(t)

$$X(k+1) = AX(k) + BU(k)$$
$$Y(k) = CX(k) + DU(k)$$

analizzarne la proprietà di stabilità interna, sapendo che gli autovalori $\lambda_i(A)$ della matrice di stato A sono

$$\{\lambda_j(A)\} = \{-1, \pm j, 0\}$$

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo discreto, occorre considerare il modulo degli autovalori

$$\left\{ \left| \lambda_{j}(A) \right| \right\} = \left\{ 1, 1, 1, 0 \right\}$$

Tutti gli autovalori hanno $|\lambda_i(A)| \le 1$ e tutti quelli con $|\lambda_k(A)| = 1$ sono distinti, cioè hanno $\mu_k = 1$ \Rightarrow il sistema è semplicemente stabile

Esempio #11 di analisi della stabilità (1/2)

Dato il sistema dinamico LTI TC con matrice di stato

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & -4 & 0 & 0 \\ 0 & 0 & -0.2 & 0 \\ 0 & 0 & 0 & -0.3 \end{bmatrix}$$

analizzarne la proprietà di stabilità interna

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo continuo, occorre considerare la parte reale degli autovalori In questo caso, la matrice A è diagonale a blocchi \Rightarrow gli autovalori $\lambda_i(A)$ sono gli autovalori dei blocchi quadrati posti sulla diagonale principale di A

Esempio #11 di analisi della stabilità (2/2)

$$A_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & -4 & 0 & 0 \\ 0 & 0 & -0.2 & 0 \\ 0 & 0 & 0 & -0.3 \end{bmatrix}$$

$$\{\lambda_{i}(A)\} = \{\lambda_{i}(A_{1})\} \bigcup \{-0.2, -0.3\}$$

$$p.c.(A_{1}) = \det(\lambda I - A_{1}) = \begin{vmatrix} \lambda & -1 \\ 4 & \lambda + 4 \end{vmatrix} = \lambda^{2} + 4\lambda + 4 = (\lambda + 2)^{2}$$

$$\Rightarrow \{\lambda_{i}(A)\} = \{-2, -2, -0.2, -0.3\}$$

$$\{\operatorname{Re}(\lambda_{i}(A))\} = \{-2, -2, -0.2, -0.3\}$$

- ightharpoonup Tutti gli autovalori hanno $\mathbb{R}e(\lambda_i(A)) < 0$
 - ⇒ il sistema è globalmente asintoticamente stabile

Esempio #12 di analisi della stabilità (1/2)

Dato il sistema dinamico LTI TD con matrice di stato

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & -4 & 0 & 0 \\ 0 & 0 & -0.2 & 0 \\ 0 & 0 & 0 & -0.3 \end{bmatrix}$$

analizzarne la proprietà di stabilità interna

Per analizzare la stabilità interna dei sistemi dinamici LTI a tempo discreto, occorre considerare il modulo degli autovalori

In questo caso, la matrice A è diagonale a blocchi \Rightarrow gli autovalori $\lambda_i(A)$ sono gli autovalori dei blocchi quadrati posti sulla diagonale principale di A

Esempio #12 di analisi della stabilità (2/2)

$$A_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & -4 & 0 & 0 \\ 0 & 0 & -0.2 & 0 \\ 0 & 0 & 0 & -0.3 \end{bmatrix}$$

$$\{\lambda_{i}(A)\} = \{\lambda_{i}(A_{1})\} \bigcup \{-0.2, -0.3\}$$

$$p.c.(A_{1}) = \det(\lambda I - A_{1}) = \begin{vmatrix} \lambda & -1 \\ 4 & \lambda + 4 \end{vmatrix} = \lambda^{2} + 4\lambda + 4 = (\lambda + 2)^{2}$$

$$\Rightarrow \{\lambda_{i}(A)\} = \{-2, -2, -0.2, -0.3\}$$

$$\{|\lambda_{i}(A)|\} = \{2, 2, 0.2, 0.3\}$$

Gli autovalori $\lambda_1 = \lambda_2 = -2$ hanno $|\lambda_1| = |\lambda_2| = 2 > 1$ \Rightarrow il sistema è instabile